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Abstract
The collection of multiple genome-scale datasets is now routine, and the frontier of research in systems biology has
shifted accordingly. Rather than clustering a single dataset to produce a static map of functional modules, the focus
today is on data integration, network alignment, interactive visualization and ontological markup. Because of the
intrinsic noisiness of high-throughput measurements, statistical methods have been central to this effort. In this
review, we briefly survey available datasets in functional genomics, reviewmethods for data integration and network
alignment, and describe recent work on using network models to guide experimental validation. We explain how
the integration and validation steps spring from a Bayesian description of network uncertainty, and conclude by
describing an important near-term milestone for systems biology: the construction of a set of rich reference
networks for key model organisms.
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INTRODUCTION
The term ‘post-genomic era’ became a cliche even

before the human genome was sequenced, but it has

a definite meaning. It refers to the refocusing of

effort on tasks that were insurmountable without the

genome as a platform, such as the construction of

hybridization probes for every human gene [1] or the

phenotyping of knockout strains for every yeast

ORF [2]. Many different kinds of these genome-

scale datasets are now available [3–9], and each

analysis tells the same story: the components of

biological systems are not free-floating parts, but are

organized into functional modules [10].

Systems biology is the science of quantitatively

defining and analyzing these modules [11]. While a

continuum of strategies exists [12], it is useful to

divide the field into three levels of increasingly

detailed modeling: global characterizations of an

organism’s interactome [13] or metabolome [14],

deterministic models of kinetics and diffusion [15,

16], and detailed stochastic models of variation in

isogenic cell lines [17]. While global interactome

models can be derived from assays on populations of

cells, deterministic models require temporally and

sometimes spatially [18] resolved data, and stochastic

models require even more data in the form of
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population ensembles. Though there have been

some signal successes for both deterministic [19] and

stochastic [20] modeling of systems for which many

parameters are available, many believe that this

area will remain ‘data starved’ [21] until high-

throughput methods for the determination of rate

constants [22] and spatial structure [4, 23] become

commonplace.

For this reason, we focus here primarily upon the

relatively data-rich level of systems biology: the

inference and analysis of a global network of

interactions for a single organism in which subgraphs

of tightly interconnected objects represent

functional modules [24]. Some of these networks

come from direct measurements of pair-wise inter-

actions [25], including physical [5, 7], signaling

[26, 27], transcriptional [28, 29], metabolic [30] and

epistatic [3, 31, 32] networks. Other networks are

inferred through indirect correlations, including

coexpression under the same conditions [8], in the

same tissues [33], or at the same time points [34, 35];

coinheritance in the same species [36, 37];

collocation on chromosomes [38]; coevolution of

residues [39] or shared mutant phenotype [40].

These indirect networks are constructed by using

variation along one dimension (time, space, envir-

onmental perturbation, etc.) to inform the construc-

tion of the global network. For example, proteins

that are abundant in the same subcellular organelles

[4] are likely to functionally interact, as are genes

that are expressed at the same time [35]; such

interacting sets represent subgraphs in the global

interaction network.

While it might seem suboptimal to collapse

variation in this way, consider the problem of

determining a conditional network of interactions

or correlations in each subcellular organelle.

As Figure 1 shows, this seemingly simple request

dramatically increases the amount of data that

must be collected. Moreover, in many cases

the extra resolution is simply unavailable with

current experimental techniques. Microfluidic

automation of basic laboratory procedures [41, 42]

may make such cross-sectional measurements feasible

in the future, but with few exceptions, such as

the high-throughput construction and characteriza-

tion of deletion strains [43], fine-grained conditional

data is usually unavailable. Even in large scale

Figure 1: Data availability constrains networkdetail. (A) Given a cell-cycle time course of gene expressionmeasure-
ments,we candeterminewhichgenes are temporally coexpressed [35]. Similarly, fromprotein correlationprofiling [4],
we can determinewhich proteins are abundant in the same subcellular organelles, and therebyderive a roughmeasure
of colocalization. (B) Suppose, however, that we wish to determine whether a given protein pair is colocalized at a
particular time in the cell cycle. To calculate this conditional correlation we must (i) sharply increase the number of
data points in our experiment and (ii) collect both kinds of data on the same object at the same time.This may be
difficult or impossible to do experimentally; for example, themethods for determiningprotein abundance across orga-
nelles are very different from those for determing an mRNA abundance time series. As more kinds of variables are
incorporated (chemical stimuli, genetic background, etc.) the requisite number of data points increases exponentially.
These constraints fundamentally limit the extent towhich conditional interactions can be probed.
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studies, data is usually collected on only one variable

at a time.

Thus, the limitations of the available data tend to

force us towards a static ‘lowest common denomi-

nator’ map of interactions for most organisms,

averaged over time, space, perturbation and

other variables. All is not lost, however, as

this static network is still a significant conceptual

leap beyond the raw genome sequence of

an organism. Moreover, variation of different

kinds (e.g. up-regulation of genes or spatial

localization of proteins) can be visualized by

superimposing tracks and layouts (also see Figure 4)

upon such static networks [44, 45], in the same

way we view gene and motif tracks upon a

genome assembly [46].

Here, we review methods for the inference of

these static networks from multiple data sources,

along with allied methods for network alignment,

network visualization and network-guided experi-

mental prioritization. We then describe a common

Bayesian formulation which unifies the steps of

network integration and experimental validation

(Figures 2 and 3). By analogy to the concept of

a reference genome assembly [47, 48], we

conclude with a discussion of how recent large

scale efforts at network determination, such as the

recent Connectivity Map [8] and the proposed

Figure 2: Enumerating labels and predictors for data integration. For each protein pair, we can compute labels and
predictors. At the top of the figure, two kinds of labels and four predictors have been tabulated for each pair of pro-
teins; givenNproteins, this tablewill haveN(N�1)/2 rows.Labels are directlyuseful to humanswhilepredictors repre-
sent raw experimental data. Importantly, many labels correlate with predictors. For example, calculating conditional
density estimates (lower left) for the phylogenetic profile correlation over all pairs inMycoplasmagenitalium shows that
highly coinherited pairs are likely to functionally interact in the same KEGG category [65].This statistical dependence
canbeused to putpredictors on the same scale, bynormalizing themin terms of their ability to recapitulate functional
interactions. It can also be used to fill in uncurated labels and integrate different data types (Figure 3).
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Human Interactome Project [49], can be focused to

produce ontologically labeled ‘reference networks’

(also see Figures 5 and 6).

DATA SOURCESANDNETWORK
INTEGRATION
Data sources and data types
Data sources
As hundreds of large-scale datasets are now available,

it has become essential to consult meta-databases.

Among the most useful are Pathguide [50],

BiowareDB [51], BioGRID [52], the yearly

Nucleic Acids Research Database [53] and Web

Server [54] issues, and a recent compilation of more

than 150 publicly available functional genomic

resources [55].

Labels versus predictors
For the purposes of data integration, a useful dataset

is one that provides measurements on at least one

type of biological object, such as genes, proteins or

protein pairs (Figure 2). Such datasets can be divided

into two broad categories: labels and predictors.

Predictors, such as expression ratio measurements on

a gene [1] or phylogenetic profiles of a protein [36],

are often ‘dense’ in that they are available for most

instances of a biological object and are acquired in a

high-throughput way. For example, because most

genes are present on standard microarrays, expression

profiles are available for most genes (modulo missing

values). In contrast, labels such as GO consortium

gene annotations [56] or phosphorylation interac-

tions culled from the literature [57] tend to be sparse

and of high quality. One of the most important

recent discoveries [13] in functional genomics is that

these curated labels, which represent directly useful

information, can be statistically predicted from

combinations of uncurated predictors.

Early methods for clustering and
integration
The road to this discovery began with early attempts

at unsupervised integration and clustering. When the

Figure 3: Data integration as supervised learning. For each biological object, we tabulate labels and predictors as
in Figure 2.Rather than comparing predictors in terms of their correlationwith the label, we use all the predictors at
the same time to estimate the label. If we do this for individual proteins, we can obtain an integrative prediction of
protein function. If instead,we do this for pairs of proteins,we canobtain an integrativeprediction of protein interaction.
Note that some of the columns in thepair table are onlydefined for pairs (in this case, theTAP/MS andY2Hdata),while
other quantities canbe computed from theprotein table.Note also that for statistical reasons, the interaction predic-
tion problem can be easier than the function prediction problem. In the former case, we have a multiclass
classification problem with only a few thousand data points, while in the latter case we have a binary classification
problem with millions of data points [148]. Importantly, the supervised learning framework can be applied to many
other kinds of biological objects besides proteins and protein pairs.
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first microarray datasets became available, dozens of

different algorithms for unsupervised clustering

of these datasets were published [58, 59]. These

techniques were also applied to other datasets, such

as phylogenetic profiling [36]. While individual

clusters of genes were sometimes experimentally

validated [37, 60], it was difficult to assess the

extent to which any given clustering reflected

the ‘true’ modules of the organism. Given the

fuzziness of the module concept, the fact that genes

(and other biological objects) can belong to more

than one module, and the often conditional nature

of intra-module interactions, it was not clear

whether the concept of a ‘true’ set of modules was

even a useful one.

This problem became more pronounced when

investigators began to combine interaction networks

inferred from different assays, which in turn had

apparently different modular structures. The first

Figure 4: Network alignment. A sample network
alignment calculated with the Graemlin algorithm [95].
In the top row, integrated association networks for four
microbes are depicted. In these large graphs, nodes
represent proteins and edge weights are probabilities
of association between proteins. Calculating a global
network alignment finds several conserved modules,
including one consisting of seven conserved protein
families: ruvC, ruvA, tolR, tolB, tolQ, pal and ybgC.
Each family contains four homologous proteins, one in
each species; node shape denotes the species of
origin and proteins from a given family are grouped
near each other. Moreover, the pattern of functional
associations between protein families (as revealed
by the edges) displays significant conservation.The align-
ment suggests a possible function for the module:
exogenous DNA is allowed into the cell by the tol/exb
membrane channel proteins and then incorporated
into the chromosomeby the ruv recombinationproteins.
The literature supports this hypothesis, as insertional
disruption of tol/exb family proteins in Pseudomonas
stutzeri reduces transformational efficiency to 20% of
its previous level [149]. This strongly suggests that
exogenous DNA travels through these channels before
chromosomal incorporation.

Figure 5: Reference assemblies and reference
networks. (A) The concept of a reference assembly
allows us to enforce a dividebetween data andmetadata.
Everything other than finished sequence data is visua-
lized and represented as a metadata track associated
with the raw sequence [46]. (B) Enforcing a similar
kind of separation for a reference network will have
key advantages. By enumerating a static list of highly
probable physical interactions which occur for an
‘average cell’ of a given species (averaged over condition,
space, time, etc.), we will obtain a lowest common
denominator of interaction information to compare
between species. Given this physical backbone,
metadata can then be visualized via tracks and layouts.
For example, we can apply a node track to flag
essential nodes, an edge track to highlight strongly and
weakly conserved edges and a layout to mirror the
known physical separation of modules.
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Figure 6: Network Ontology and RDF representation. Most current networks involve only one or two kinds of
biological objects, such as proteins alone [63, 65, 150] or transcription factors and motifs [81]. In order to achieve
the ambition of a reference network, however, a notationmust be devised for dealing withmany kinds of typed inter-
actions. (A) As a motivating example, consider the interaction of EGR1 with a transcription factor binding site,
which involves three zinc finger domains and a zinc cofactor. (B) One possible schematic of this interaction is shown,
where an individual protein with three domains (top layer) conditionally binds a DNA position (bottom layer) in
the presence of zinc (middle layer). The problem is that it is not immediately obvious how to represent this
in machine readable terms. (C) We believe that the solution lies in representing a network as a list of triples
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attempts [61] applied arbitrary thresholds to the

interactions derived from different assays and

used the union or intersection of these sets as an

integrated network. In some cases, such as large-scale

yeast two hybrid data, the intersection was essentially

the null set [62]. While the idea of combining

different assays to reduce noise was a step in the

right direction, the problem was that no clear

method for weighting the confidence of different

assays was available. As with unsupervised clustering,

the underlying issue here was the lack of a ‘true’

set of curated modules to benchmark different

assays against.

Data integration by supervised learning
Supervised normalization
The solution [13, 63–68] was to obtain a training set

or ‘gold standard’ of known protein relationships.

Different gold standards exist for different kinds of

protein relationships; for example, positive examples

of colocalized protein pairs can be calculated

from MIPS data on protein localization [69], while

positive examples of protein pairs in the same

functional category can be generated from EcoCyc

[70], Reactome [71], GO [72] or KEGG [73].

Negative examples can then be easily generated

via random permutations of these positive labels [74].

Though simple, the permutation-based approach

for generating negative examples has been shown to

be superior to selecting a statistically biased subset

of negative examples, such as proteins known to

be in different subcellular localizations [74].

For a given gold standard, a useful predictor

will separate positive from negative examples

(Figure 2). This observed statistical separation can

then be converted into a posterior probability

by applying Bayes’ Rule [65], allowing different

predictors (uncurated data) to be compared in

terms of their ability to recapitulate known

biological labels (curated data). In the specific case

of protein interaction prediction, a good predictor

will recapitulate known labels by separating inter-

acting protein pairs from non-interacting pairs

(Figures 2 and 3).

Detection of corrupted data
One important application of this result is screening

microarray experiments for corrupted data [65].

In addition to a battery of internal consistency

checks [75, 76], a series of expression measurements

can also be used to calculate a correlation matrix,

which can then be compared to a training set.

If coexpression correlations separate positive and

negative training examples as in the lower left

panel of Figure 2, the dataset contains at least some

signal; if no separation is observed, problems may

have occurred with some hybridizations.

Supervised integration
In addition to allowing comparison of different

predictors and detecting corrupted data, a gold

standard also enables us to perform data integration.

In the context of protein interaction prediction, an

array of association predictors is the input to a binary

classifier function, which returns the integrated

probability that two proteins are linked in the

sense stipulated by the gold standard (Figure 3).

When this binary classifier function is applied to

predict interaction probabilities for all protein pairs in

a genome, the result is an integrated probabilistic

protein interaction network. Variants of this

approach have been used to predict functional

associations [13, 63, 65], physical contacts [77],

synthetically lethal genetic interactions [68] and

colocalizations [77, 78].

Importantly, this supervised learning framework

for data integration is not limited to interaction

encoded in a ‘Network Ontology’. This proposed Network Ontology is a meta-ontology that draws on established
ontologies and controlledvocabularies.By combining these sourcevocabularies, the small setof interactions described
in panel (B) can be described in terms of a set of unordered triples. Each triple represents a fact about the network,
expressed as (subject, predicate, and object) tuple. In general, eachmember of the triple has its own canonical identi-
fier. For example, the triple (CID:23994, MI:0407,CDD:pfam00096) indicates that zinc (CID:23994 in PubChem) phy-
sically interacts (MI:0407 in PSI-MI) with the zinc-finger domain (CDD:pfam00096 in theCDD).For simplicity, wehave
represented the‘is_a’ and ‘part_of’predicates as literals, but in general these should also be specifiedby URIs.For exam-
ple, the subtleties regarding the Sequence Ontology’s ‘part_of’ definition are treated during the discussion of exten-
sional mereology operators in [151]. (D) The advantage of the triple-based representation of the network is that it
corresponds to the RDF standard [152] of the W3C consortium. While RDF can be expressed as an XML file,
theN3/Turtle notation [153] is farmore compact andhumanreadable. Shown is an example of aTurtle formatencoding
of the triplestore described in panel (C). After the preliminary enumeration of namespaces, each non-comment
line corresponds to a single triple.
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prediction (Figure 3), and has also been applied to

direct prediction of protein function [79, 80]

and transcription factor/DNA binding [81]. In fact,

the concept of using supervised learning to system-

atize the data integration process has become

popular in several other areas of bioinformatics,

including gene finding [82], protein sequence

alignment [83] and RNA secondary structure

prediction [84, 85].

APPLICATIONSOF NETWORK
MODELS
In the recent past, network analyses often concluded

with a list of modules and an enumeration of

topological statistics. Today, now that integrated

networks are available for hundreds of organisms

[86, 87] the trend is to make network analysis a

starting point rather than an ending point, by

developing tools for user-friendly network visualiza-

tion, network-guided experimental validation and

network alignment.

Experimental prioritization
Ultimately, an interaction network is a model of the

cell, and a model is only useful to the extent that

it successfully predicts experiments. In particular,

one of the most important ways to leverage network

data is not simply to analyze it, but to use it to

understand what data to gather next.

One way to formulate this problem is in terms of

an ‘experiment recommender’, which uses network

context to prioritize experiments. For example,

network context can be used to identify genes that

are likely to be in pathways of interest [88].

Experiment recommenders of different kinds have

also been used to determine rate constants [89],

define metabolic topologies [90], determine disease

genes [91] and discern causal structure in signaling

pathways [9].

It is important to note that many such recom-

mendation problems can be viewed as updates of an

uncertain state variable, such as the GO category of a

protein or the value of a rate constant. On a

formal basis, this is highly similar to the Bayesian

supervised learning model for data integration

described in Figure 3, in which a prior gold standard

is updated to produce a posterior distribution.

There is thus a significant opportunity to unify

the problems of data integration and experiment

recommendation in a common Bayesian

framework, where experiments are recommended,

in order of their ability to reduce the uncertainty of

state variables of interest.

Network alignment
Once multiple genome sequences became available,

research attention naturally turned to the question of

comparative genomics [92]. Similarly, the availability

of several different kinds of networks from

different sources and species has ignited interest in

comparative functional genomics. Many questions are

still open in this area: for example, can we enumerate

an organism’s inventory of modules much as we

can enumerate its inventory of genes? Is it feasible

to transfer module annotations from well-studied

organisms to newly sequenced ones? And can

we identify conserved modules of unknown

function?

One promising way of answering such questions

is through network alignment, which is a systems-

biological analog of sequence alignment. Network

alignment allows us to compare interaction

networks between different species to find conserved

modules. When comparing protein interaction

networks, conserved modules are sets of proteins

that have both conserved primary sequences and

conserved pair-wise interactions between species.

For example, we can apply network alignment to

find all species with nitrate reduction systems

similar to that of Escherichia coli, or to examine the

extent to which the cell division apparatus is

conserved across a set of microbes. A sample

alignment is shown in Figure 4; the figure displays

a putative DNA uptake and transformation

module in which seven protein families across four

species show a conserved pattern of functional

association [93].

Network alignment has attracted much interest

in recent years, beginning with manual alignments

of metabolic pathways [94, 95], proceeding to

precursors of network alignment guided by

best bidirectional BLAST hits [60, 96, 97], and

culminating in more recent graph-based formula-

tions [98]. Recent alignment algorithms have

introduced the ability to compare three networks

at once [99] as well as simple models of network

evolution [100]. We recently developed the

Graemlin network aligner, which was the first

program capable of identifying conserved functional

modules across an arbitrary number of dense

association networks. By using a number of
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BLAST-like optimizations Graemlin’s running

time scaled linearly, rather than exponentially with

the number of species [93].

Just as sequence alignment rests upon substitution

matrices [101] and models of sequence evolution

[102], we believe that it will be crucial to provide a

principled foundation for network alignment

by developing a detailed theory of network evolu-

tion [103, 104]. Moreover, just as fast algorithms

for sequence alignment such as BLAST became

ever more essential as sequence data accumulated,

it seems clear that the utility of network

alignment will rise in direct proportion to the quality

of inferred interaction networks in different

organisms.

Indeed, the pace of research in this area is

accelerating with several papers published in the

last few months [105–108]. Part of the reason for this

interest is that many of the signal successes of

bioinformatics have been concentrated in the area

of alignment [109]. Even though the vast majority

of objects in biology have not been directly

characterized by experimentalists, information on

objects which have good digital encodings, like

sequences and structures, can easily propagated with

an appropriate alignment tool. For example, we can

characterize a protein in Drosophila melanogaster and

immediately BLAST its digital representation to get

some clue as to the function of that protein in other

insects, or possibly even in humans or yeast.

Yet, the lack of digital representation means that

many other interesting objects (like tissues or

developmental hierarchies) are not yet easily ‘aligned’

between organisms. Currently, we resort to

simple phylogenetic interpolation to reason that if

organism X is phylogenetically equidistant between

organism Y and organism Z, then its characteristics

are intermediate between these two organisms.

However, it is well known that gene trees are not

the same as species trees [110–112], and that it is

far more accurate to compare genes via sequence

alignment. While the divergence of a network

tree from the species tree is likely to be less than

that of a gene tree (as a collection of genes will

have lower sampling variance than an individual

gene), nevertheless the same principle holds:

the evolutionary history of a module is distinct

from that of its host. The promise of network

alignment, then, is that we may be to improve

upon crude phylogenetic interpolation by directly

comparing network models of higher-order

processes (such as organs and developmental hier-

archies) between species and individuals.

Network visualization
Large interaction datasets with thousands of nodes

and edges are best visualized interactively rather

than statically. Several tools for this purpose are

now available, and can be divided into standalone

applications, programming libraries and web

applications.

Desktop tools
Among standalone programs, several options are

available including Cytoscape [45], Osprey [113],

Medusa [114] and Pajek [115]. Cytoscape is a

popular choice with many features and plugins,

but as it is written in Java it requires large amounts of

memory to navigate dense networks. Osprey is

similar in functionality, and is somewhat more

responsive, but has a smaller user community.

Medusa has several novel features, including support

for multigraphs with multiple edges between a

given pair of nodes. Pajek has many features for

mathematical graph analysis but a comparatively

steep learning curve.

Programming libraries
Data analysts often wish to dynamically generate

network visualizations from within programs, and

many libraries for this purpose are available.

Cytoscape, mentioned earlier, has an API that can

be called from within Java. The Boost Graph Library

[116] and AT&T’s Graphviz library [117] are open

source Cþ libraries which have bindings for many

different programming languages, including

R, Python and Perl.

Online network browsers
Several rich web applications for network visualiza-

tion have been described in recent years, including

STRING [87], PubGene [118], iHOP [119],

PSTIING [55] and the Stanford Network Browser

[86]. STRING provides several different kinds of

interaction predictions between genes for many

sequenced genomes. STRING, PubGene and

iHOP all allow browsing of literature co-occurrence

networks. PSTIING is a powerful data browser

that is particularly useful for analysts looking for new

datasets to integrate. Finally, the Stanford

Network Browser provides access to integrated

interaction networks for all sequenced microbes,

as well as interfaces for network alignment [93]
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and experimental target generation via a protein

recommender.

TOWARDSREFERENCE
NETWORKS
Now that high-throughput data collection is de

rigeur, and algorithms for network integration and

comparison have been described, we believe that a

feasible near-term goal for systems biology is the

construction of static ‘reference networks’ for key

model organisms. It is important to define precisely

what is meant by this term. These reference

networks should integrate multiple data types

(Figure 3), incorporate explicit models of uncer-

tainty, and include ontologically typed edges and

nodes. However, as they are meant to represent the

‘average cell’ of a given organism near the median of

the norm of reaction [120], they should not directly

incorporate interactions which only occur during

certain perturbations, at specific times or within

particular cell types. Such conditional interactions

should be modeled by superimposing tracks and

layouts on the static reference network rather than

incorporating conditional interactions directly into

the reference network.

Reference networks should exclude
conditional interactions
To appreciate why this restriction is useful, a

comparison to genome sequencing is appropriate

(Figure 5). The concept of a reference assembly is a

fiction, but a useful fiction. The genome coils and

uncoils [121], moves about the cell [122], is

methylated and demethylated [123], varies substan-

tially between individuals [124] and has non-trivial

3D structure [125]. Nevertheless, each of these

phenomena can be visualized and analyzed by

superimposing tracks upon the reference assembly,

which represents a lowest common denominator

of analysis. In particular, by separating the raw

data (the reference assembly) from the metadata

(the species-specific tracks and annotations), cross-

species comparisons and genome alignments are

enabled [92, 126].

Similarly, by keeping the building blocks of the

reference network separate from the details of when

or where they interact, we can enforce a separation

between data and metadata that will permit powerful

kinds of network visualizations and alignments

(Figure 5). This is particularly valuable because

network metadata is likely to accumulate in bits

and pieces due to the prohibitive cost of compiling

cross-sectional data on different network states

(Figure 1). With respect to visualizing this metadata,

the primary new feature in the network context is

the availability of layouts in addition to tracks, which

are particularly suitable for visualizing spatial or

functional relationships (Figure 5B).

Reference networks must include ontological markup
One of the most important lessons learned from

genome sequencing was the value of the Gene

Ontology’s systematic, machine-readable approach

to categorizing function [56]. Before GO, it was

impossible for a computer to discern that a protein

annotated as an ‘alcohol dehydrogenase’ was a kind

of oxidoreductase. We propose that a similar state of

affairs is currently prevalent in systems biology, and

believe that a Network Ontology for explicit

ontological markup of reference networks will

prove to be an essential tool (Figure 6).

We envision this Network Ontology as a meta-

ontology that derives largely from existing ontolo-

gies, something like a more focused analog of the

Unified Medical Language System [127] for systems

biology. Such an ontology would allow rich kinds of

logical and statistical reasoning to be applied in a

network context, as exemplified by the Hybrow

project [128]. Many of the terms for this Network

Ontology can be derived from existing ontologies

like the Gene and Sequence Ontology and from lists

of canonical identifiers such as those available

through Entrez Gene [129], UniProt [130], CDD

[131] and PubChem [129]. There are also several

available standards in the systems biology space [132]

which can serve as building blocks for this project,

including SBML [133], CellML [134], BioPax [135]

and PSI-MI [136]. Of these ontologies, SBML and

CellML are invaluable tools for detailed, time-

dependent modeling but may be too granular for

genomic scale networks. BioPax and PSI-MI are

more appropriate; BioPax was originally developed

for exchanging pathway data between databases

such as KEGG and Ecocyc, and PSI-MI was built

for describing the results of high throughput

experiments [137].

By combining these source vocabularies, the

Network Ontology will provide a unified frame-

work for defining a reference network and its

associated metadata, in terms of lists of triples

(Figure 6). Each triple corresponds to a fact about

the network, represented as a subject/predicate/

object tuple of uniform resource identifiers (URIs).
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Each URI represents a canonical identifier drawn

from one of the established databases or ontologies.

In addition to the vast number of ontological terms

compiled by the members of the OBO foundry

[138], good URIs currently exist for proteins via

UniProt, domains via the CDD, genes via Entrez

Gene and small molecules via PubChem. Canonical

names are also emerging for ncRNAs [139]

and regulatory motifs [140], though a consensus

solution will remain elusive until NCBI or EBI

launches a database.

Given a consensus set of URIs for biological

objects, an explicitly typed reference network can

then be naturally represented as a set of ontological

triples, such as ‘A physically_interacts_with B’, or

‘X is_a Y’, in which canonical URIs are used

for each member of the triple (Figure 6). This triple-

based representation of a network corresponds to the

RDF format of the World Wide Web Consortium

[141]. Though originally developed for the

Semantic Web (i.e. web page X links to web page

Y), a list of triples (also known as a ‘triplestore’) is

clearly also a natural representation for pathway

and network information. Importantly, significant

progress has already been made by the BioRDF

working group [142] towards converting key

biological databases into RDF format.

One of the principle advantages of representing

network data as an RDF triplestore with canonical

URIs for each member of the triple is that if

everyone uses the same URIs, then facts produced

by different providers can be integrated by forming

the union of the two triple stores (though in

practice statistical methods will be used to resolve

any contradictory triples). Another advantage is that

a network in RDF format with explicitly typed

nodes and edges can be the subject of non-trivial

queries based on the SPARQL query language [141],

such as ‘find all X’s which are regulated by Y’

or ‘find all signal transduction paths between A and

B’; a working example of this kind of query engine

can be seen at Pathway Knowledge Base [143].

Finally, a network with explicitly marked nodes

and edges suggests natural possibilities for data

visualization and enables rich kinds of network

alignment.

Reference networks will likely use a Bayesian
formulation for update and integration
As depicted in Figure 3, the shared thread behind

the supervised learning methods for network

integration and protein function prediction is to

(i) select a biological object (protein pair, gene pair,

protein, etc.), (ii) calculate a list of desired labels and

predictive features and (iii) use machine learning to

compute a mapping between features and labels.

Given sufficient labels and predictors, data on

any kind of biological object can be integrated.

Some machine learning algorithms, such as LARS

[144], include an explicit feature selection step

and give information on the leverage of a given

predictor on a label of interest. As such they can be

used to recommend which kinds of data to collect

to reduce the uncertainty in a given label, thereby

folding the process of experimental recommendation

into the same rigorous Bayesian framework.

Recent work [7] has shown the advantages of

integrating statistical techniques for scoring interac-

tion confidence with the process of data collection;

in the long run such techniques will become

as common to network determination as base-calling

algorithms [145, 146] have become to sequence

determination.

CONCLUSIONS
With hundreds of high-throughput datasets now

available, it may seem surprising to note that the

current investment in network determination is

currently only about 1% of that invested in

genome sequencing [147]. However, given

the recent push for a Human Interactome Project

[49, 147], this may soon change. From an informatics

perspective, the prospect of acquiring orders of

magnitude more network data in the immediate

future will demand more sophisticated tools for

data integration, network alignment and ontological

markup, which will likely involve ideas similar to

the ‘reference networks’ framework outlined earlier.

Key Points
� The availability of vast quantities of different types of interaction

data is pushing systems biology away from unsupervised
clustering and towards algorithms for data integration, network
alignment and experimental prioritization.

� The supervised learning approach, inwhichhigh throughputdata
is compared against a small training set of curated knowledge,
has proven to be the most fruitful data integration strategy to
date.

� Supervisedpredictions of function and interaction frommultiple
datasets are more robust than those derived from individual
datasets, and have provided a foundation for recent work on
network alignment and systematic validation.
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