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Abstract

Preservation of female genetics is currently done primarily by means of oocyte and embryo cryopreservation. The field has seen

much progress during its four-decade history, progress driven predominantly by research in humans, cows, and mice. Two basic

cryopreservation techniques rule the field – controlled-rate freezing, the first to be developed, and vitrification, which, in recent years,

has gained a foothold. While much progress has been achieved in human medicine, the cattle industry, and in laboratory animals, this is

far from being the case for most other mammals and even less so for other vertebrates. The major strides and obstacles in human and

other vertebrate oocyte and embryo cryopreservation will be reviewed here.
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Introduction

Preservation of female genetics can be done through
the preservation of germplasm (oocytes and embryos).
It can also be done by preservation of ovarian tissue or entire
ovary for transplantation, followed by oocyte harvesting or
natural fertilization. Germplasm can be collected at different
stages in its maturation process using any of the following
techniques: 1) following ovulation (natural or chemically
induced); 2) by ovum pick up, performed transabdominally,
transvaginally, or transrectally. This can be done during
natural estrous cycle or following chemical stimulation to
achieve superovulation; 3) following ovariectomy, when
removing the ovaries due to health issues, as a means of
contraception, or post mortem; and 4) after fertilization
(natural mating or artificial insemination) at various
developmental stages prior to implantation. The collected
oocytes can be at any level of maturation including oocytes
found in primordial, preantral, or antral follicles, each
presenting its own special requirements and sensitivities
(Carroll et al. 1990b, Jewgenow et al. 1998). Oocyte
harvesting and preserving, however, is practically pointless
in the long run if other associated assisted reproductive
technologies – in vitro maturation (IVM), IVF, in vitro culture
(IVC), andembryo transfer (ET),arenotmastered to support it.
Unlike in humans and a handful of domestic and laboratory
animals where much progress has been reported, this is far
from being the case for the vast majority of vertebrates on
Earth. Preservation of females’ germplasm poses several
difficulties, which will be discussed in the following pages.
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Germplasm cryopreservation

Two basic techniques currently rule the field of oocyte
and embryo cryopreservation. The first to be developed
was the slow freezing technique (Whittingham 1971,
Whittingham et al. 1972, Wilmut 1972, Willadsen et al.
1976, 1978). Following this technique, germplasm is
gradually exposed to relatively low concentration of
permeating cryoprotectants (CPs). These are usually
glycerol or DMSO in the range of 1.0–1.5 M for oocytes
or 1.35–1.5 M for embryos, which are added to the
culture medium. Other CPs are also in widespread use,
alone or in various combinations. These include
permeating CPs such as ethylene glycol (EG) and
propylene glycol (e.g. Chen et al. 2005b, Luz et al.
2009) and non-permeating ones such as sucrose, glucose,
or fructose (e.g. Diez et al. 2001, Barcelo-Fimbres &
Seidel 2007b). The germplasm is then loaded in small
volumes into straws and cooled to about K5 to K7 8C
where they are kept for several minutes to equilibrate.
After equilibration, the solution is seeded to initiate
extracellular freezing, and then cooled slowly, at about
0.3–0.5 8C/min, to anywhere between K30 andK65 8C.
Once at the desired temperature, the straws are plunged
into liquid nitrogen for storage. When following this
procedure, seeding of the extracellular solution and a
very slow cooling rate ensure that freezing will take
place only outside the germplasm, resulting in outward
movement of osmotically active water from the germ-
plasm and their gradual dehydration until they reach
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the temperature at which the intracellular matrix vitrifies
(Mazur 1963).

The second technique is vitrification. To achieve this,
three important factors should be considered:

1) Cooling rate, which is achieved with liquid nitrogen
or liquid nitrogen slush. When using liquid nitrogen,
the sample is plunged into liquid nitrogen resulting in
cooling rates of hundreds to tens of thousands degrees
Celsius per min, depending on the container, the
volume, the thermal conductivity, the solution
composition, etc. (e.g. Yavin & Arav 2007). To achieve
liquid nitrogen slush, the liquid nitrogen needs to be
cooled close to its freezing point (K210 8C). Slush is
generated by the VitMaster (IMT Ltd, Ness Ziona,
Israel), a device that reduces the temperature of the LN
to between K205 and K210 8C by applying negative
pressure. Liquid nitrogen slush is then formed, and the
cooling rate is dramatically increased. The cooling
rate is especially enhanced in the first stage of cooling
(from 20 to K10 8C), when it is two to six times higher
than liquid nitrogen (K196 8C) with 0.25 ml straw
or any other device such as open-pulled straws (OPS)
or electron microscope (EM) grids (Arav & Zeron
1997). It was shown for oocytes and embryos that
increasing the cooling rate would improve survival
rates by up to 37% (Table 1).

2) Viscosity of the medium in which the embryos
are suspended. This is defined by the concentration
and behavior of various CPs and other additives
during vitrification. The higher the concentration of
CPs, the higher the glass transition temperature (Tg),
thus lowering the chance of ice nucleation and
crystallization. Different CPs and other additives
have different toxicity, penetration rate, and Tg.
Table 1 The effect of cooling rate on survival; comparison between
liquid nitrogen and liquid nitrogen slush.

Model
Survival
slush (%)

Survival
LN (%) Sig. Publication

Bovine MII 48 28 P!0.05 Arav & Zeron
(1997)

Ovine GV 25 5 P!0.05 Isachenko et al.
(2001)

Porcine
blastocysts

83 62 P!0.05 Beebe et al.
(2005)

Bovine MII 48 39 P!0.05 Santos et al. (2006)
Mouse four-cell

embryos with
biopsied
blastomere

87 50 P!0.05 Lee et al. (2007)

Rabbit embryos 92 83 NS Papis et al. (2009)
Porcine

blastocysts
89 93 NS Cuello et al.

(2004)
Mouse MII O80 O80 NS Seki & Mazur

(2009)
Rabbit oocytes 82 83 NS Cai et al. (2005)

LN, liquid nitrogen; GV, germinal vesicle; Sig., statistical significance;
NS, not significant.
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The combination of different CPs is often used to
increase viscosity, increase Tg, and reduce the level
of toxicity. In the cattle industry, so as to avoid
handling of the post-warmed embryos and allow
direct transfer, EG is often used as the permeating CP
because of its high penetration rate (Saha et al. 1996).

3) Volume – the smaller the volume, the higher the
probability of vitrification (Arav 1992, Arav et al.
2002, Yavin & Arav 2007). Smaller volumes allow
better heat transfer, thus facilitating higher cooling
rates. Many techniques have been developed to
reduce sample volume with an explosion of methods
appearing in the literature during the last decade.
These techniques can generally be divided into two
categories, surface techniques and tubing techniques.
The surface techniques (Fig. 1) include EM grid
(Steponkus et al. 1990, Martino et al. 1996), minimum
drop size (MDS; Arav 1992, Arav & Zeron 1997,
Yavin & Arav 2001), Cryotop (Hamawaki et al. 1999,
Kuwayama & Kato 2000), Cryoloop (Lane et al.
1999a, 1999b), Hemi-straw (Vanderzwalmen et al.
2000), solid surface (Dinnyes et al. 2000), nylon mesh
(Matsumoto et al. 2001), Cryoleaf (Chian et al. 2005),
direct cover vitrification (Chen et al. 2006), fiber plug
(Muthukumar et al. 2008), vitrification spatula (Tsang
& Chow 2009), Cryo-E (Petyim et al. 2009), plastic
blade (Sugiyama et al. 2010), and Vitri-Inga (Almodin
et al. 2010). To the tubing techniques (Fig. 2)
belong the plastic straw (Rall & Fahy 1985), OPS
(Vajta et al. 1997, 1998), closed pulled straw (CPS; Chen
et al. 2001), flexipet-denuding pipette (Liebermann
et al. 2002), superfine OPS (Isachenko et al. 2003),
CryoTip (Kuwayama et al. 2005), pipette tip (Sun et al.
2008), high-security vitrification device (Camus et al.
2006), sealed pulled straw (Yavin et al. 2009),
Cryopette (Portmann et al. 2010), Rapid-i (Larman &
Gardner 2010), and JY Straw (R C Chian, personal
communication). Each of these two groups has its
specific advantages. In the surface methods, if the size
of the drop (w0.1 ml) can be controlled, high cooling
rate can be achieved because these systems are open,
and high warming rates are achieved by direct
exposure to the warming solution. The tubing systems
have the advantage of achieving high cooling rates in
closed systems, thus making them safer and easier to
handle. Decreasing the vitrified volume and increas-
ing the cooling rate allow a moderate decrease in CP
concentration so as to minimize its toxic and osmotic
hazardous effects (Yavin et al. 2009). Combining these
three factors can result in the following general
equation for the probability of vitrification:

Probability of vitrification Z
Cooling rate!Viscosity

Volume

An attempt to compare between slow freezing and
vitrification is basically a comparison between a method
www.reproduction-online.org
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Figure 1 Vitrification surface carrier systems:
(1) electron microscope grid, (2) minimum drop
size, (3)* Cryotop, (4)* Cryoloop, (5) Hemi-straw,
(6)* Cryoleaf, (7)* fiber plug, (8)* direct cover
vitrification, (9)* vitrification spatula, (10) nylon
mesh; arrow points at the nylon mesh, (11)* plastic
blade, (12)* Vitri-Inga. *These photos were kindly
provided by Masa Kuwayama (3), Juergen Lieber-
mann (4, 7), Ri-Cheng Chian (6), Shee-Uan Chen
(8), King L Chow and Wai Hung Tsang (9), Koji
Nakagawa (11), and Carlos Gilberto Almodin (12).
Picture reprinted with minor revisions from
Matsumoto H, Jiang JY, Tanaka T, Sasada H & Sato
E 2001 Vitrification of large quantities of immature
bovine oocytes using nylon mesh. Cryobiology 42
139–144, with permission from Elsevier. q 2001
Elsevier.
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and a physical process. It would be wrong and too
simplistic to define the difference between the two by
saying that slow freezing is a method in which slow
cooling rate and low CP concentrations are used, while
in vitrification, high cooling rate and high CP concen-
tration are used. Successful vitrification can occur with a
very low cooling rate (Seki & Mazur 2009) and very low
concentration of CPs (Arav 1992). Cryopreservation by
slow freezing is a process where extracellular water
crystallizes, resulting in osmotic gradient that draws
water from the intracellular compartment till intra-
cellular vitrification occurs. In cryopreservation by
vitrification, both intra and extracellular compartments
apparently vitrify after cellular dehydration has already
occurred. Owing to these differences, the terms freezing
and thawing are relevant to the slow freezing process
while cooling and warming are relevant to vitrification.
Both slow freezing and vitrification are under the
www.reproduction-online.org
umbrella of cryopreservation. Unlike the controlled-
rate freezing method, which requires sophisticated
equipment to manage the cooling rate, vitrification can
be done relatively cheaply and even under field
conditions with no need for special equipment, making
it a good alternative for the use in various settings often
encountered with wildlife species, such as zoos, poorly
equipped locations, and field work in remote sites.
However, performing vitrification, and in particular
loading the sample properly into or onto the container,
does require much experience to be done properly.

Once frozen or vitrified, germplasm can be stored
for extended periods of time with no noticeable
deterioration. Cryostorage of frozen human embryos for
up to 20 years, for instance, was shown recently to have
no effect on any of the parameters evaluated – post-thaw
survival, and rates of implantation, clinical pregnancy,
miscarriage, and live birth (Riggs et al. 2010).
Reproduction (2011) 141 1–19
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Figure 2 Vitrification tubing carrier systems: (1 top)* plastic straw,
(1, 2nd from top)* open-pulled straw, (1, 3rd from top)* superfine
open-pulled straw, (1 bottom)* flexipet-denuding pipette, (2)* CryoTip,
(3)* high-security vitrification device, (4)* pipette tip, (5) sealed pulled
straw, (6)* Cryopette, (7)* Rapid-i, and (8)* JY Straw. *These photos
were kindly provided by Juergen Liebermann (1, 3, 6, 7), Masa
Kuwayama (2), John Engelhardt (4), and Ri-Cheng Chian (8).
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Recently, Seki & Mazur (2009) have shown the
dominance of warming rate on cooling rate during
vitrification. Survival of mouse oocytes after very slow
cooling rate (!200 8C/min) with high warming rate
(O2000 8C/min) was very high when compared with
those cooled very rapidly and warmed slowly. However,
we and others (see Table 1) have shown that this is not
the case for chilling sensitive oocytes and embryos such
as those of bovine, pig, rabbit, and human (Arav & Zeron
1997, Lee et al. 2007, Papis et al. 2009).
Oocyte freezing and vitrification

Females are born with their life supply of oocytes already
in their ovaries. Unlike males, they do not generate new
gametes during their reproductive years, or at least so it
was generally assumed until recently (e.g. Niikura et al.
2009; and reviewed in Tilly et al. 2009). At birth, oocytes
Reproduction (2011) 141 1–19
are dormant at a very early stage of maturation. Once the
female reaches puberty, a cohort of oocytes is selected at
each estrous cycle to progress in the maturation process
and, depending on the species, one or several oocytes are
ovulated whereas the rest of the cohort degenerate. To be
fertilized, an oocyte needs to reach the metaphase II (MII)
stage of maturation, or else the probability of fertilization
is very low (Luvoni & Pellizzari 2000). Thus, an IVM
procedure should be in hand to handle immature oocytes,
and this process is currently developed for only a handful
of species and even for these success is often fairly limited
(Krisher 2004). Furthermore, collection of immature
oocytes following chemical stimulation disrupts the
natural maturation process and thus compromises the
quality of oocytes even if they were later matured in vitro
(Moor et al. 1998, Takagi et al. 2001). During oocyte
maturation and follicular growth, oocytes accumulate
large quantities of mRNA and proteins needed for
continuation of meiosis, fertilization, and embryonic
development (Krisher 2004 and citations therein). In the
absence of the entire supporting system during IVC,
production of some of these needed components is
hampered resulting in suboptimal oocytes (Krisher
2004). In some seasonal animals, for example in cats or
red deer, oocytes collected out of season often show
resistance to IVM and IVF (Spindler et al. 2000, Berg &
Asher 2003, Comizzoli et al. 2003), a problem that can be
partially avoided by inclusion of anti-oxidants and FSH in
the culture media (Comizzoli et al. 2003). Despite
numerous studies on the issue, to date, no morphological
or other method is able to accurately predict which
oocytes have optimal developmental potential (Coticchio
et al. 2004). Even so, it is clear that oocyte quality is a
major determining factor in the success of IVF, early
embryonic survival, establishment and maintenance of
pregnancy, fetal development, and even adult disease
(Coticchio et al. 2004, Krisher 2004). Once all these
hurdles have been overcome and keeping in mind the
importance of oocyte quality, the next major hurdle to
overcome is oocyte cryopreservation.
Oocyte cryopreservation: the difficulties

Oocytes are very different from sperm or embryos with
respect to cryopreservation. The volume of the mamma-
lian oocyte is in the range of three to four orders of
magnitude larger than that of the spermatozoa, thus
substantially decreasing the surface-to-volume ratio and
making them very sensitive to chilling and highly
susceptible to intracellular ice formation (Toner et al.
1990, Ruffing et al. 1993, Arav et al. 1996, Zeron et al.
1999). This problem becomes even more pronounced in
non-mammalian vertebrates (fish, birds, amphibians, and
reptiles) whose oocytes are considerably larger than those
of mammals (e.g. Guenther et al. 2006, Kleinhans et al.
2006). Oocytes of amphibians, for example, are 20–25
times larger than human oocytes. The plasma membrane
www.reproduction-online.org
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of oocytes at the MII stage has a low permeability
coefficient, thus making the movement of CPs and water
slower (Ruffing et al. 1993). They are surrounded by zona
pellucida, which acts as an additional barrier to move-
ment of water and CPs into and out of the oocyte. As a
result of the freeze–thaw process, premature cortical
granule exocytosis may take place, leading to zona
pellucida hardening and making sperm penetration and
fertilization impossible (Carroll et al. 1990a, Mavrides &
Morroll 2005), a process that can be overcome by the use
of ICSI or subzonal sperm insertion. Oocytes also have
high cytoplasmic lipid content that increases chilling
sensitivity (Ruffing et al. 1993). They have less submem-
branous actin microtubules (Gook et al. 1993) making
their membrane less robust. Cryopreservation can cause
cytoskeleton disorganization, and chromosome and
DNA abnormalities (Luvoni 2000). The meiotic spindle,
which has been formed by the MII stage, is very sensitive
to chilling and may be compromised as well (Ciotti et al.
2009). It does, however, tend to recover to some extent
after thawing or warming and IVC, recovery that is faster
following vitrification than following slow freezing
(Ciotti et al. 2009). Oocytes are also more susceptible
to damaging effects of reactive oxygen species (Gupta
et al. 2010). Many of these parameters change after
fertilization, making embryos less chilling sensitive and
easier to cryopreserve (Gook et al. 1993, Fabbri et al.
2000, Ghetler et al. 2005). Despite many advances in the
field of cryopreservation, specifically with regards to
oocytes (ovulated, mature or immature), their cryopre-
servation is still not considered an established procedure
and thus its current label as experimental technique
(Noyes et al. 2010). Even in human medicine, fewer than
200 births resulting from cryopreserved oocytes were
reported as of 2007 (Edgar & Gook 2007), a number that
went up to only 500 by 2009 (Nagy et al. 2009). Yet,
despite all these difficulties, some success in oocyte
cryopreservation has been reported.
Overcoming the difficulties

The first human pregnancy from cryopreserved (by slow
freezing) oocyte was reported in 1986 (Chen 1986). This
followed success in other (laboratory) species that came a
few years earlier, such as the mouse (Whittingham 1977)
and rat (Kasai et al. 1979). Despite several decades of
research since these initial reports, success is still very
limited. A meta-analysis on slow freezing of human
oocytes showed that clinical pregnancy rate per thawed
oocyte was only 2.4% (95/4000) and only 1.9% (76/4000)
resulted in live birth (Oktay et al. 2006). Vitrification
gained a foothold only after 2005, prior to which only ten
human pregnancies resulting from vitrified oocytes were
reported (Oktay et al. 2006). Although high oocyte
survival rate is achieved with both methods, fertilization
and ET rates are still considerably lower than when fresh
oocytes are used (Magli et al. 2010). When comparing
www.reproduction-online.org
slow freezing to vitrification, higher oocyte survival rates
are achieved by the latter (95%, 899/948 vs 75%,
1275/1683 respectively), but pregnancy rate per tha-
wed/warmed oocyte is still low – in the range of 1.9–8.6%
for slow freezing and 3.9–18.8% for vitrification (Chen &
Yang 2009). Even among females with repetitive repro-
ductive success, the rate of live birth per oocyte retrieved
was reported to be 7.3% (180/2470) among best-
prognosis donors and lower than that (5.0%; 52/1044)
among standard donors (Martin et al. 2010).

Immature oocytes seem to be less prone to damages
caused by the chilling (at the nuclear level), freezing, and
thawing procedures, and they, too, can be cryopreserved
by controlled-rate freezing (Luvoni et al. 1997) or
vitrification (Arav et al. 1993). Preantral oocytes can be
preserved inside the follicle, and about 10% seem to be
physiologically active after thawing and 1 week of culture
(Jewgenow et al. 1998, Nayudu et al. 2003). In one report,
of w16 000 small preantral follicles recovered from the
ovaries of 25 cats, 66.3% were intact after thawing.
Before freezing, 33.9% of the follicles contained viable
oocytes. This decreased after thawing to 19.3% if frozen
in DMSO and 18.5% if frozen in 1,2-propanediol
(Jewgenow et al. 1998). However, culture conditions
that allow these oocytes to grow and reach full maturation
are still largely unknown despite attempts in several
species. The only species in which live young were
produced from fresh (Eppig & O’Brien 1996) or frozen–
thawed (Carroll et al. 1990b) primary follicles is the
mouse. Some, very limited, success was also reported in
cats, where following vitrification in 40% EG, 3.7% of the
in vitro matured oocytes were able to develop to the
blastocyst stage following IVF (Murakami et al. 2004).
The problems associated with maturation of early-stage
oocytes in vitro are the need to develop the complex
endocrine system that supports the development at
different stages, other culture conditions that will ensure
survival (oxygen pressure for example) and, in many
species, the duration of time required to keep the follicles
in culture – 6 months or more (Telfer et al. 2000). Another
option for isolated oocyte freezing is freezing individual
primordial follicles and later transplanting them to the
ovarian bursa, where they can mature and eventually
produce young offspring following natural mating as was
shown in mice (Carroll & Gosden 1993). Alternatively,
ovarian cortex tissue or the entire ovary can be frozen or
vitrified and then, after thawing/warming, transplanted to
allow maturation in vivo (Candy et al. 1995, Revel et al.
2001), or else the oocytes can be fertilized and the
resulting embryos can then be cryopreserved.
Embryo freezing and vitrification

For most of the species on Earth, with current knowledge
in cryopreservation, probably only male gametes can be
preserved, whereas oocytes or embryos at any stage of
development cannot. The culprits are in the vast
Reproduction (2011) 141 1–19

Downloaded from Bioscientifica.com at 08/25/2022 03:32:52PM
via free access



6 J Saragusty and A Arav
differences in size, composition, and associated
structures. As such, the issue of intracellular ice formation
becomes a major concern, even at relatively slow cooling
rates. To avoid this from happening, small volume
cryopreservation and either high CP concentration
coupled with very fast cooling rate to achieve a state of
vitrification or lower CP concentration and slow cooling
rate to ensure ice formation in the extracellular matrix
only (controlled-rate freezing) are utilized. The first
reports on successful embryo cryopreservation were
published in Whittingham (1971), Whittingham et al.
(1972) and Wilmut (1972), more than two decades after
Polge et al. (1949) reported their success in freezing
spermatozoa. A modification to cooling rate that came a
few years later (Willadsen et al. 1976, 1978) resulted in a
basic protocol that is still in vast use today. When
considered from conservation standpoint, embryo freez-
ing has the advantage of preserving the entire genetic
complement of both parents. While in humans and
domestic and laboratory animals this is not an issue, for
many other species getting both a male and a female
together to generate embryos is often a problem, and
when such embryos are finally created, one would often
opt for letting pregnancy proceed rather than collecting
the embryos for storage. Naturally, both male and female
embryos should be stored to ensure representation of
both sexes and wide genetic diversity. Cryobanking of
embryos can thus help in establishing founder popu-
lations with the aim of eventual reintroduction into the
wild (Ptak et al. 2002). However, evolution made each
species unique in many respects, one of which is the
development of highly specialized reproductive adap-
tation (Allen 2010), a specialization that is part of the
definition of a species (de Queiroz 2005). Thus, what may
work for one species does not necessarily work for
another. While thousands and thousands of offspring
were born following the transfer of frozen–thawed
embryos in humans, cattle, sheep, and mice, success is
very limited in many other, even closely related species.
To date, the number of species in which embryo
cryopreservation has been reported stands only at about
40 (humans and domestic and laboratory animals
included; Table 2). Obviously, to be successful, the best
option is to test and make the necessary adjustments to
protocols using embryos of the target species. In wild
animals, especially with endangered species, this is often
almost impossible, and the opportunity to collect oocytes
or embryos is very rare. To overcome this limitation,
researchers find it imperative to use laboratory, farm, or
companion animals as models during the process of
developing the necessary reproductive techniques
associated with embryo cryopreservation. In some
instances, appropriate model species were found. For
example, studies on the domestic cat helped to develop
various technologies, which were later applied to non-
domestic cats (Dresser et al. 1988, Pope et al. 1994,
Pope 2000) or cattle served as a model for other
Reproduction (2011) 141 1–19
ungulates (Dixon et al. 1991, Loskutoff et al. 1995).
Unfortunately, for many species (e.g. elephant, rhino-
ceros), no suitable model can be located, and studies
should be conducted with the limited available resources
while relying on the already available knowledge from
research on other species (Hermes et al. 2009).
Cryopreservation of embryos in the few mammalian
species in which it was attempted shows some, though
often very limited, success.
Non-human primates

Whereas non-human primates serve as research models
for humans in a wide variety of fields, things work the
other way around when it comes to embryo cryopre-
servation. The first successful non-human primate
embryo freezing (baboon; Pope et al. 1984) was reported
a year after the first reported pregnancy following transfer
of a frozen–thawed human embryo (Trounson & Mohr
1983). Things have not changed much since, and many
of the advances in embryo cryopreservation (primates
and others) were driven by research in human fertility
laboratories. Some scattered reports on non-human
primate embryo cryopreservation by either controlled-
rate freezing or vitrification were published over the
years, mostly working on small numbers of animals and
showing very limited success (e.g. Hearn & Summers
1986, Cranfield et al. 1992, Curnow et al. 2002).
Ungulates

A similar situation is found among ungulates. Industry
needs pushed frozen–thawed ET in the cattle industry to
commercial levels. According to a recent report by the
International ET Society, over 300 000 frozen–thawed
bovine embryos were transferred in 2008 worldwide
(Thibier 2009). This success was driven by at least four
important factors – needs of the industry, availability
of financial resources to support overwhelming number
of studies, the availability of an almost unlimited flow of
oocytes from abattoirs that made these studies possible,
and the fact that non-surgical collection of embryos is
possible in cattle. The situation is so far behind in other
ungulates that only a decade ago reviews on assisted
reproductive technologies in non-domestic ungulates
were to the effect that by that time only one successful
embryo cryopreservation has been achieved (Holt 2001).
Several factors, in addition to the need, money, and
availability mentioned above, are responsible for this
disparity between bovine and other ungulates. Non-
domestic ungulates usually do not show discernable
signs of estrus, and their receptive period is fairly short.
This requires a thorough understanding of the estrous
cycle, endocrine activity, and methods for monitoring
these in each species under study, knowledge that is
lacking for almost all ungulates. As in all other wildlife
www.reproduction-online.org
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Table 2 Embryo cryopreservation in mammalian species.

Species Scientific name Achievement Years Reference of first report

Primates
Human Homo sapiens First pregnancy (IVF eight-cell) then live birth

(IVF 8- to 16-cell)
1983 Trounson & Mohr (1983) and

Zeilmaker et al. (1984)
Baboon Papio sp. Live birth (i.v. 12-cell) 1984 Pope et al. (1984)
Marmoset monkey Callithrix jacchus Live birth (i.v. four- to eight-cell and morula) 1986 Hearn & Summers (1986)
Cynomolgus monkey Macaca fascicularis Slow freezing (IVF four- to eight-cell) –

pregnancies, vitrification (IVF two- to
eight-cell) – in vitro evaluation

1986 Balmaceda et al. (1986) and
Curnow et al. (2002)

Rhesus macaque Macaca mulatta Live birth (slow freezing (IVF three- to six-cell)
and vitrification (ICSI blastocysts))

1989 Wolf et al. (1989) and Yeoman
et al. (2001)

Hybrid macaque
(pig-tailed and
lion-tailed)

Macaca nemestrina
and Macaca silenus

Live birth of a hybrid (IVF two-cell) 1992 Cranfield et al. (1992)

Western lowland
gorilla

Gorilla gorilla gorilla Freezing outcome not reported (IVF two-cell) 1997 Pope et al. (1997)

Ungulates
Bovine Bos taurus Live birth (i.v. blastocyst) 1973 Wilmut & Rowson (1973)
Sheep Ovis aries Pregnancy base on progesterone and later live

births (i.v. day 5–8 for both)
1974 Willadsen et al. (1974, 1976)

Goat Capra aegagrus Live births (i.v. day 5–7) 1976 Bilton & Moore (1976)
Horse Equus caballus Live birth (i.v. day 6) 1982 Yamamoto et al. (1982)
African eland
antelope

Taurotragus oryx Pregnancy (i.v. blastocyst; palpation at
100 days) and later live birth

1983 Kramer et al. (1983) and Dresser
et al. (1984)

Arabian oryx Oryx leucoryx Failed transfer (i.v. morula) 1983 Durrant (1983)
Gaur Bos gaurus Freezing outcome not reported

(i.v. blastocysts), then pregnancy by
palpation (IVF expanded blastocyst)

1984 Stover & Evans (1984) and
Armstrong et al. (1995)

Bongo Tragelaphus euryceros Transfer outcome and embryo stage (i.v.) not
reported

1985 Dresser et al. (1985)

Scimitar-horned oryx Oryx dammah Failed transfer (i.v. late morula–blastocyst) 1986 Schiewe et al. (1991)
Swine Sus domestica Live birth (i.v. morula and blastocyst) 1989 Hayashi et al. (1989)
Red deer Cervus elaphus Live birth (i.v. morula and blastocyst) 1991 Dixon et al. (1991)
Suni antelope Neotragus moschatus

zuluensis
Failed transfer (eight-cell) 1991 Cited in Schiewe (1991)

Wapiti Cervus canadensis Live birth (stage not reported) 1991 Cited in Rall (2001)
Dromedary camel Camelus dromedarius First pregnancy (stage not reported) and then

first birth (i.v. expanded blastocysts)
1992 Cited and reported in Nowshari

et al. (2005)
Water buffalo Bubalus bubalis Live birth (i.v. morula to expanded blastocyst) 1993 Kasiraj et al. (1993)
Fallow deer Dama dama Pregnancy outcome not reported (i.v. morula

and blastocyst)
1994 Morrow et al. (1994)

European mouflon Ovis orientalis musimon Live birth (i.v. blastocyst; by vitrification) 2000 Naitana et al. (2000)
Llama Lama glama In vitro evaluation then pregnancy (by vitrifi-

cation) (i.v. hatched blastocysts for both)
2000 Palasz et al. (2000) and Aller et al.

(2002)
Wood bison Bison bison athabascae Vitrification outcome not evaluated (IVF

morula and blastocyst)
2007 Thundathil et al. (2007)

Sika deer Cervus nippon nippon Live birth (IVF blastocysts) 2008 Locatelli et al. (2008)

Carnivores
Domestic cat Felis catus Live birth (i.v. stage not reported) 1988 Dresser et al. (1988)
Blue fox Alopex lagopus Implantation sites found (stage and source not

reported)
2000 Cited in Farstad (2000)

Siberian tiger Panthera tigris altaica In vitro evaluation (IVF, two- to four-cell) 2000 Crichton et al. (2000)
African wildcat Felis silvestris Live birth (IVF, day 5–6 of IVC) 2000 Pope et al. (2000)
Ocelot Leopardus pardalis Live birth (IVF, stage not reported) 2000 Cited in Swanson (2001)
Tigrina Leopardus tigrinus Freezing outcome not reported (IVF, two- to

eight-cell)
2002 Swanson et al. (2002)

Bobcat Lynx rufus Failed transfer (i.v. blastocyst) 2002 Miller et al. (2002)
Caracal Felis caracal or Caracal

caracal
Live birth (stage and source not reported) 2002 Cited in Swanson (2003)

European polecat Mustela putorius Live birth (i.v. blastocysts by slow freezing and
i.v. morula and blastocysts by vitrification)

2003 Lindeberg et al. (2003) and Piltti
et al. (2004)

Geoffroy’s cat Felis geoffroyi Freezing outcome not reported (IVF, stage not
reported)

2004 Swanson & Brown (2004)

Serval Leptailurus serval Failed transfer (IVF, morula) 2005 Pope et al. (2005)
Dog Canis lupus familiaris Live birth (i.v. 8- to 16-cell) 2009 Suzuki et al. (2009)
Clouded leopard Neofelis nebulosa Failed transfer (IVF, morula) 2009 Pope et al. (2009)
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Table 2 Continued.

Species Scientific name Achievement Years Reference of first report

Glires
Mouse Mus musculus Live birth, frozen to K79 8C (i.v. eight-cell and

blastocysts)
1971 Whittingham (1971)

European rabbit Oryctolagus cuniculus Live birth (i.v. eight-cell and morula by slow
freezing and i.v. morula by vitrification)

1974 Bank & Maurer (1974), Whittingham
& Adams (1974) and Smorag
et al. (1989)

Rat Rattus norvegicus Live birth (i.v. two- to eight-cell by slow
freezing and i.v. blastocyst by vitrification)

1975 Whittingham (1975) and Kono
et al. (1988)

Syrian hamster Mesocricetus auratus Pregnancy (i.v. one-cell to morula) and live
birth (i.v. one- to two-cell by vitrification)

1985 Ridha & Dukelow (1985) and Lane
et al. (1999a, 1999b)

Mongolian gerbil Moriones unguiculatus Live birth (i.v. four-cell to blastocyst by
vitrification)

1999 Mochida et al. (1999)

Marsupials
Fat-tailed dunnart Sminthopsis crassicau-

data
In vitro evaluation (i.v. one- to four-cell) 1994 Breed et al. (1994)

Achievement is reported as most advanced outcome, followed, in parentheses, by source of embryos (IVF; i.v., in vivo-produced embryos; ICSI) and
stage of embryos frozen/vitrified. Failed transfer, transferred embryo that failed to lead to clinical pregnancy.
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species, what works for one does not necessarily work
for another, even closely related species. For example,
bovine IVC protocol works well for water buffalo
(Bubalus bubalis), but when this protocol was used for
African buffalo (Syncerus caffer), embryos did not
develop beyond the morula stage (Loskutoff et al.
1995). Whereas hormonal monitoring can be achieved
non-invasively through fecal analysis, hormonal admin-
istration for synchronization or ovarian stimulation
requires stress-inflicting activities such as repeated
darting, general anesthesia, or movement restriction by
a chute. Thus, progress in this field has been slow.
Although ET has produced live births in a number of non-
domestic ungulate species, efficiency in in vitro
technologies (IVM, IVF, and IVC) has been low. For
example, in a study on kudu (Tragelaphus sp.), of 397
oocytes collected, 79 zygotes cleaved yet only 2
blastocysts were achieved (0.5%; Loskutoff et al. 1995).
Another example is the Mohor gazelle (Gazella dama
mhorr) in which embryos produced by IVF with frozen–
thawed semen did not develop beyond the six- to eight-
cell stage (Berlinguer et al. 2008). These studies suggest
that before reaching a stage at which embryo cryopre-
servation is a technology worthwhile pursuing, other
associated technologies should reach a level of matu-
ration to support it. To at least partially overcome this
limitation, and because they survive the cryopreserva-
tion process better, in vivo produced embryos were
utilized in many of the attempts to freeze embryos from
non-domestic ungulates. Still, almost all reported
successes were in a few species of some commercial
value (such as camels, llamas, and red deer; Table 2).
Carnivores

The order Carnivora includes two suborders – feliformia
(cat-like) and caniformia (dog-like). Both suborders have
at least one highly accessible member that can act as a
Reproduction (2011) 141 1–19
model for other species – the domestic cat (Felis catus)
and dog (Canis lupus familiaris) respectively. However,
while to date all relevant technologies have been
successfully developed in the cat model and applied,
with some level of success to other felids, the situation is
far behind in the domestic dog, and progress has been
slow. Preliminary technologies such as IVM, IVF, and IVC
are not yet fully mastered for dogs, and outcome is often
unpredictable (Rodrigues & Rodrigues 2006, Mastromo-
naco & King 2007). In the vast majority of studies, dog
zygotes do not progress to advanced embryonic develop-
mental stages (morula and blastocyst; Rodrigues &
Rodrigues 2006). Thus, while delivery of the first kittens
following transfer of frozen–thawed cat embryos was
reported in Dresser et al. (1988), the parallel report in dogs
was only published two decades later (Suzuki et al. 2009,
Abe et al. 2011). We were unable to find any publication
on embryo cryopreservation in a non-domestic canid,
other than a reference to an attempt to freeze blue fox
(Alopex lagopus) embryos, cited as personal communi-
cation by Farstad (2000). Attempts were also carried out
in another family within caniformia – the mustelids. Some
species in this family are of commercial value, primarily
in the fur industry, and are thus highly accessible. The
European polecat (Mustela putorius) was used as a model
to develop embryo retrieval, cryopreservation, and transfer
technologies to be later applied to endangered species
such as the black-footed ferret (Mustela nigripes) or the
European mink (Mustela lutreola). Both controlled-rate
freezing and vitrification were attempted, using in vivo-
produced embryos, with vitrification (Sun et al. 2008)
producing far better results than the controlled-rate
freezing technique (Lindeberg et al. 2003).
Glires

Embryo cryopreservation in mice was the first to be
reported among all mammals (Whittingham 1971,
www.reproduction-online.org
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Whittingham et al. 1972, Wilmut 1972), and work on
Glires (rodents and lagomorphs) has concentrated on
species of laboratory importance – mice, rats, rabbits,
gerbils, and hamsters. Using in vivo- or in vitro-produced
embryos, both controlled-rate freezing and vitrification
were attempted, the latter generally giving better results.
Still, the rate of live birth per cryopreserved embryo is
mostly low, around 10% and often even less. The excep-
tion was an early report on the vitrification of in vivo-
produced rat embryos in which w30% of the vitrified
embryos resulted in young pups (Kono et al. 1988).
Marsupials

The last mammalian group in which attempts at embryo
cryopreservation were reported is the marsupials. In
comparison to other mammals, marsupial oocytes are
much larger in size (w200–250 mm), their zona
pellucida does not form corona radiata and is already
shed off at ovulation, and a large yolk compartment takes
up much of their cytoplasm (Rodger et al. 1992, Breed
et al. 1994). All these characteristics make cryopreser-
ving their oocytes far more difficult than cryopreserving
the already hard-to-freeze eutherian mammals’ oocytes,
so the alternative is to cryopreserve embryos. In the only
published attempt to do that, in vivo-produced fat-tailed
dunnart (Sminthopsis crassicaudata) embryos were
cryopreserved using both controlled-rate freezing and
vitrification. Post-thaw/warming cleavage rate was low –
17, 0, or 18% when cryopreserved by controlled-rate
freezing, or vitrified with DMSO or with EG as CPs
respectively (Breed et al. 1994). Although under the light
microscope as many as 80% of the thawed and warmed
embryos looked morphologically normal, most had
multiple damages to intracellular organelles when
evaluated with the aid of electron microscopy.
Other vertebrates

The situation is much less advanced in all other
vertebrates (fish, birds, reptiles, and amphibians) where
noticeably less efforts have been invested and the
challenges are often considerably more complex. In
comparison to mammals, embryos in all these classes are
usually substantially larger in volume resulting in a lower
surface area-to-volume ratio, and thus poorer water and
CP movement across cellular membrane during chilling,
freezing, and thawing. These embryos have large yolk
compartment, enclosed in the yolk syncytial layer (YSL).
The behavior of the yolk during cryopreservation differs
from that of other embryonic compartments, making
cryopreservation very complex. Embryos in these
vertebrates have at least three membrane structures –
YSL, plasma membrane of the developing embryo, and
the chorion membrane, which surrounds the perivitelline
space (Kalicharan et al. 1998, Rawson et al. 2000). Each
www.reproduction-online.org
of these membranes has a different permeability coeffi-
cient to water and CPs, resulting, for example, in water
permeability in the range of one order of magnitude lower
in fish embryos than in other animals (0.022–0.1 mm!
min per atm for zebrafish (Hagedorn et al. 1997a)
compared with 0.722 in Drosophila (Lin et al. 1989) or
0.43 in mice (Leibo 1980)). As if to complicate things
even further, the different embryonic compartments have
different water content and different osmotically inactive
water content (Hagedorn et al. 1997b). All these make
embryos in these classes highly susceptible to chilling
injury and, with the currently available knowledge and
techniques, make their cryopreservation extremely
complicated and often practically impossible (Zhang &
Rawson 1996, Robles et al. 2003, Cabrita et al. 2006,
Edashige et al. 2006, Hagedorn 2006). Attempts to
overcome these hurdles and freeze embryos in these
classes were made, but to date successful and repro-
ducible embryo cryopreservation in any member of these
vertebrates has never been described, and embryo
cryopreservation in any of these groups seems far off.
Points for improving survival of cryopreserved
oocytes and embryos

In an attempt to improve survival of the cryopreserved
germplasm, several possible manipulations have been
proposed so as to strengthen the weak links in these
biological systems. These relatively sensitive aspects
include the cellular membrane, the cytoskeleton,
intracellular lipids, intracellular water, and manipula-
tions to IVC conditions. Other aspects that have been
recognized as having an effect on survival through the
cryopreservation process are age of oocyte donor and, at
least in some species, season of collection.
Optimal embryonic stage for cryopreservation

Despite many advances in the field of embryo cryopre-
servation, there is still no consensus as to the optimal
developmental stage for embryo cryopreservation. A
study on human embryos comparing the outcome of IVF–
ET for embryos frozen at the pronuclear (day 1), cleavage
(day 3), or blastocyst stage (Moragianni et al. 2010) found
no difference between the three in rates of implantation,
clinical pregnancy, multiple pregnancy, twin pregnancy,
and the male/female ratio. The only difference found was
in post-thaw survival rate where day 3 embryos had
lower survival than day 1 or blastocyst. Interestingly,
calculations based on the data in this study revealed an
overall sex ratio (0.4689) and sex ratio of day 1 ETs
(0.3427), both significantly lower than the current US
national birth sex ratio of 0.5122 (PZ0.024 and
PZ0.000004 respectively; binomial exact, cumulative
probability, one-tailed). Day 3 and blastocyst sex ratios
did not differ from 0.5122. In another study, embryos
Reproduction (2011) 141 1–19
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were frozen at the zygote, day 2, and day 3 stages and
transferred after thawing (Salumets et al. 2003). Here,
too, there were no differences between groups in rates of
clinical pregnancies, implantation, delivery, and birth.
Miscarriage rate was higher in the day 3 group (45%)
compared with the zygote group (21.3%) and day 2
embryos (18.3%). Efficiency (birth rate per thawed
embryo) was low (overall, 7.3%; zygotes, 7.1%; day 2,
7.6%; and day 3, 4.2%). Yet others suggest that day 5 and
6 blastocysts are superior as, following vitrification,
survival rate was 96.3% and implantation rate was
29.4% (Liebermann 2009). Clinical pregnancy rate in
this study, calculated as a percentage of vitrified embryos
or a percentage of warmed-transferred embryos, was
21.1 and 42.8% respectively.
Cellular membrane

The cellular plasma membrane is very sensitive to
chilling and is often damaged during cryopreservation
(Zeron et al. 2002). Cholesterol is present in the plasma
membrane, and its level and the ratio between
cholesterol and the membranes’ phospholipids
determine to a great extent the membrane fluidity and
thus its chilling sensitivity (Darin-Bennett & White 1977,
Horvath & Seidel 2006). Enriching the plasma membrane
with cholesterol or unsaturated fatty acids can be done
by incubating the cells with cholesterol-loaded methyl-
b-cyclodextrin, or cholesterol- or unsaturated fatty acids-
loaded liposomes. While the addition of cholesterol to
the cryopreservation media had no effect (positive or
negative) on cryopreserved in vitro-produced bovine
blastocysts (Pugh et al. 1998), it seems to have benefited
vitrified oocytes whose cleavage to the eight-cell stage
after warming and IVF was slightly improved (55 vs 41%
for the control, P!0.05; Horvath & Seidel 2006). The
addition of unsaturated fatty acids to bovine oocytes by
electrofusion of liposome with their plasma membrane
decreased their sensitivity to chilling (Zeron et al. 2002).
Cytoskeleton

One of the cellular components often damaged during
cryopreservation is the cytoskeleton (Dobrinsky et al.
2000). Its stabilization can thus be expected to improve
cryosurvival. This was attempted by the addition of
cytoskeleton stabilizing components such as cytochala-
sin B or D or colchicine to the culture media prior to
cryopreservation. Pig embryos cultured with these
components survived vitrification but survival seemed
to be stage dependent. The addition benefited expanding
and hatching blastocysts but not embryos at the morula
or early blastocyst stages (Dobrinsky et al. 2000). The
treatment with cytochalasin B, however, seems to cause
irreversible actin depolymerization which may compro-
mise embryonic survival (Tharasanit et al. 2005).
Reproduction (2011) 141 1–19
Intracellular lipids

The role of intracellular lipids is not fully understood.
Some suggest that they are needed as an energy source
for the oocyte and developing embryo (Sturmey et al.
2009). Others suggest that they are needed as a lipid
source for cell division (Yoneda et al. 2004). Lipid
content depends on the stage of embryo development,
significantly decreasing after the morula stage (Romek
et al. 2009), thus making early stages more susceptible to
low temperatures. Following the observation that
embryos with high intracellular lipid content are more
prone to cryoinjury, at least three methods to manipulate
these lipid droplets have been attempted.

Phenazine ethosulfate (PES) is a regulator of cell
metabolism. It increases glucose metabolism, glycolysis,
oxidation of NADPH to NADP, production of CO2, and
utilization of the pentose phosphate pathway (PPP),
which is important in the process leading to oocyte
maturation (Downs et al. 1998, De La Torre-Sanchez
et al. 2006, Gajda 2009). Activity of the PPP is embryonic
developmental stage dependent, peaking at the two-cell
and morula stages and being lowest at the blastocyst
stage. PES can increase the PPPactivity sixfold, indicating
that embryos can potentially reach high levels of PPP
activity (O’Fallon & Wright 1986). When IVP bovine
zygotes were cultured in the presence of PES, the
resulting blastocysts contained lower number of medium
(2–6 mm) and large (O6 mm) lipid droplets than control or
zygotes cultured in the presence of FCS (Barcelo-Fimbres
& Seidel 2007a). While the presence of PES brought a
reduction in lipid droplets, the number of these was even
lower in in vivo-produced same-stage embryos (De La
Torre-Sanchez et al. 2006). This may explain, at least in
part, why in vivo-produced embryos survive cryopreser-
vation better than in vitro-produced ones (Rizos et al.
2002). Post-cryopreservation survival of blastocysts
averaged over vitrification and slow freezing (between
which there was no difference) was 91.9, 84.9, and
60.2% of unfrozen controls (P!0.01) for PES, control,
and FCS groups respectively (Barcelo-Fimbres & Seidel
2007b). The effects of PES on in vivo embryonic and fetal
development, however, are still unclear (Barcelo-Fimbres
et al. 2009).

Microsurgical removal of lipids (delipidation),
following high-force (O10 000 g) centrifugation, was
done in pigs (Nagashima et al. 1994) whose early-stage
embryos have high lipid content and thus do not survive
cryopreservation well. Delipidated two- to eight-cell
embryos developed normally to blastocysts in vitro and
produced normal progeny following ET. Similar
procedure was conducted on bovine IVM/IVF one-cell
embryos, which were then cultured to the 8- to 16-cell
stage before being frozen (Ushijima et al. 1999). The
development to blastocyst of these embryos was similar
to control (20/126 compared with 35/176 respectively),
but after freezing, more delipidated embryos developed
www.reproduction-online.org
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to blastocyst than control or sham-operated embryos
(12/53, 2/43, and 5/59 respectively). Similarly, vitrified
porcine-advanced blastocysts derived from delipidated
two-cell embryos had similar post-warming survival to
the control (not vitrified) blastocysts (72 vs 92%;
Kawakami et al. 2008). The developing blastocysts,
however, seem to be affected by delipidation. In a study
on IVM/IVF porcine embryos, it was found that cell
number per blastocyst was lower than in the control (19.8
vs 24.2 respectively; P!0.05; Yoneda et al. 2004). This
method was also proved beneficial to pig oocytes that
developed well up to morula stage following IVF and IVC
(Nagashima et al. 1996). The beneficial effect of
delipidation was also demonstrated on embryos exposed
to chilling without freezing. Delipidated porcine
embryos at the one-cell or two- to four-cell stages
developed in vitro significantly better than non- or
partially delipidated chilled embryos and similar to the
non-chilled intact controls (Nagashima et al. 1994).
The development of delipidated embryos was also
demonstrated in vivo. Porcine delipidated embryos at
the two- to four-cell stage, which were frozen–thawed
and then transferred, developed normally to term
(Nagashima et al. 1995). This procedure, however, is
very time consuming so it is not practical when large
numbers are involved.

An alternative procedure that has been tested is
polarization of the lipids by centrifugation without their
removal by micromanipulation (Esaki et al. 2004). In
this study, parthenogenetic porcine IVP morulae were
vitrified immediately after centrifugation and compared
with morulae that were delipidated by micromanipula-
tion and non-treated morulae with and without
vitrification. Development to blastocyst stage was for
centrifugation, delipidation by micromanipulation, and
non-vitrified control (82.5, 82.1, and 84.6% respect-
ively), while only 8.6% of non-treated vitrified morulae
developed to blastocysts.
Blastocoelic fluid depletion

Blastocysts present special challenge to cryopreserva-
tion because of the large number of cells in multiple
layers they contain and the blastocele that presumably
does not dehydrate sufficiently during freezing or prior
to vitrification (Kader et al. 2010). Excessive water in the
blastocele may lead to ice formation, which is
damaging to cellular structures. To minimize this risk,
removal of some of this blastocoelic fluid has been
attempted. Removal of these fluids can be done by
perforating the blastocele and letting the fluid flow
passively out or by microsuction. In mice, microsuction
of blastocoelic fluid was done before vitrification (Chen
et al. 2005a). Blastocysts that underwent microsuction
showed, after warming, better survival rate (92 vs 80%,
higher rate of expanded blastocysts (89 vs 59%) and live
young from transferred warmed expanded blastocysts
www.reproduction-online.org
(34 vs 9%)). In horses, where blastocysts can reach sizes
of 500–600 mm, making them highly vulnerable to
chilling injury and cryodamage, blastocele collapse was
achieved with the aid of Piezo drill (Choi et al. 2009).
Of ten vitrified–warmed treated expanded blastocysts,
three were used for in vitro evaluations and seven were
transferred, resulting in five pregnancies (71%). A recent
study on mouse blastocysts compared fresh control with
vitrified non-hatched or assisted hatched non-expanded
blastocysts (Kader et al. 2010). While survival was the
same for all (100%), the assisted hatched group showed
higher DNA integrity compared with the non-hatched
group (94.63 vs 84.36%; P!0.01) and similar to the
control. When blastocele aspiration was used in
expanded blastocysts before vitrification, it showed
similar survival and DNA integrity (100 and 90.08%)
to spontaneously hatched expanded blastocysts (100
and 88.45%) and the control (fresh, 100 and 95.47%)
but higher than vitrified expanded blastocysts with no
intervention (90.9 and 77.61%).
Manipulations to the zona pellucida

The zona pellucida that surrounds embryos acts as a
natural barrier, hindering the free movement of water
and CPs between the intra- and extracellular compart-
ments. To overcome this barrier, several possibilities are
available. Extending the IVC of blastocysts can even-
tually lead to natural hatching, or hatching can be
achieved artificially by acid perforation of the zona
pellucida. Alternatively, the zona pellucida can be
perforated using laser or micromanipulations or it can
be removed by exposing the embryos to acidic solution.
In vivo-produced mouse morulae that were cultured till
the embryos hatched through the zona pellucida and
then vitrified achieved a survival rate of 77% (79/103)
after warming (Zhu et al. 1996). Denuded (by acidic
treatment) and then vitrified rabbit blastocysts resulted in
91% survival after warming (Cervera & Garcia-Ximenez
2003). When assisted hatching, using diode laser, was
conducted before freezing of human blastocysts, 75.4%
post-thaw survival and 31.4% clinical pregnancies were
achieved (Kung et al. 2003). In this study, however, there
was no frozen–thawed control group for comparison.
Vitrified human blastocysts that underwent natural
hatching (full or partial) were compared with blastocysts
that did not hatch. Post-warming survival rates were 82%
(31/38), 72% (72/100), and 64% (25/39) for fully
hatched, partially hatched, and intact zona pellucida
groups respectively (Zech et al. 2005). Using assisted
hatching by blowing acid on the zona pellucida in
mouse six- to eight-cell embryos before freezing
improved post-thaw survival (100 vs 81.25%; P!0.01)
and development to blastocyst stage (39.38 vs 18.46%;
P!0.01; Hershlag & Feng 2005).
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IVC conditions

FCS

In some studies, FCS in the culture medium seems to
enhance embryo survival through cryopreservation.
Porcine embryos cultured with FCS to the blastocyst
stage survived vitrification better than those that were not
(P!0.05, 42.9 vs 28.6% respectively; Men et al. 2005).
In most other studies, however, FCS was shown to have
negative effect on embryos. The presence of FCS resulted
in lower post-thaw survival of bovine blastocysts as
compared with the control (60.2 vs 84.9%; P!0.01;
Barcelo-Fimbres & Seidel 2007b) or bovine blastocysts
and late morulae compared with the control (50.48 vs
68.01; P!0.01; Pugh et al. 1998). It was also reported to
retard embryo development (Abe & Hoshi 2003) and to
alter the levels of various mRNA relevant for embryonic
development and recognition (Rizos et al. 2003),
resulting in lower embryonic quality. It was suggested
that lipids from the serum find their way into the embryos,
thus negatively affecting their cryosurvival (Pugh et al.
1998). Culture of bovine IVP zygotes in the presence of
FCS resulted in higher number of large (O6 mm) lipid
droplets in the resulting blastocysts as compared with the
control (Barcelo-Fimbres & Seidel 2007a). However, this
is not the sole explanation as fatty acid-free serum still
caused elevated lipids compared with in vivo controls
(De La Torre-Sanchez et al. 2006). To overcome this,
alternative sources of proteins such as Ficoll, polyvinyl
alcohol, polyvinylpyrrolidone, or hyaluronic acid are
used to substitute FCS (Gajda 2009 and citations therein).

High hydrostatic pressure

The application of high hydrostatic pressure to gametes
and embryos at a level of 20–90 MPa (200–900 times the
atmospheric pressure) seems to benefit their cryosurvival.
The level of pressure and its duration depend on the
species and the type of gamete or embryonic develop-
mental stage. For example, porcine oocytes optimally
withstand pressure of only 20 MPa, whereas mouse
blastocysts can survive pressure as high as 90 MPa for
30 min and then recover to the same level as the control
(Pribenszky et al. 2005, Du et al. 2008). Porcine oocytes
do not survive a much lower pressure of 60 MPa
(Pribenszky et al. 2008). Such improved survival was
demonstrated, for example, in pig and bovine oocytes
(Du et al. 2008, Pribenszky et al. 2008), mouse
blastocysts (Pribenszky et al. 2005), and boar spermato-
zoa (Pribenszky et al. 2006). This technique was initially
demonstrated by Pribenszky et al. (2005) and Du et al.
(2008) who suggested that the pressure put the cells
under stressful conditions that lead them to produce and
accumulate chaperone proteins such as heat shock
proteins. These proteins seem to be beneficial to the
cells during cryopreservation, which is also a stress-
inducing procedure. In one study, for example on porcine
Reproduction (2011) 141 1–19
IVM oocytes, 20 MPa was compared with 40 MPa,
showing that the 20 MPa was superior to the 40 MPa
and both groups were significantly better than the control
(vitrification without pressure treatment) (13.1, 5.3 vs 0%
respectively; P!0.01; Du et al. 2008). At 20 MPa, more
blastocysts were produced when the pressure before
vitrification was applied at 37 8C compared with 25 8C
(14.1 vs 5.3%; P!0.01).

EG and calcium

EG is often used as the sole CP or along with others in
freezing and vitrification of gametes and embryos. Its
effect seems to be beyond being a permeable CP because
some interaction between EG and calcium seems to take
place. When rat oocytes were vitrified in vitrification
solution of 15% EG, 15% DMSO, and 0.5 M sucrose and
20% FCS, survival and cleavage rate after activation of
vitrified warmed oocytes was 98.3 and 78.4% respect-
ively, but zona pellucida sperm penetration rate was very
low (3.6%, 6/168) and a high level of cortical granule
exocytosis was noted (Fujiwara et al. 2010). When the
oocytes were vitrified in EG-supplemented calcium-free
media without DMSO, they had 79.4% survival, 72.8%
cleavage after activation, 63.9% zona pellucida
penetration, and 23.1% of the oocytes developed to
blastocyst. When vitrified with DMSO without EG,
survival was only 23.6% but was 90.7% when both EG
and DMSO were present in calcium-free solution. The
cause behind these results might be in the fact that EG
and DMSO were showed to cause rise in mouse oocyte
intracellular calcium (Larman et al. 2006), and this
induces cortical granule exocytosis and the hardening of
the zona pellucida (Ben-Yosef et al. 1995, Larman et al.
2006). The removal of the calcium from the vitrification
solution can thus alleviate this effect, making sperm
penetration through the zona pellucida possible.
Age

Age is a factor both from the donor and from the recipient
perspectives. In a recent study on human patients
attending fertility treatments, age-related differences
were found in both fresh and frozen IVF embryos (Zhou
et al. 2009). Analysis of their results based on age groups
(!35 vs S35) by two-tailed z-test indicates that in the
fresh ET group, there were differences in rates of high-
quality embryos (72.7 vs 61.7%, zZ5.559, P!0.01),
implantation (32.4 vs 20.6%, zZ6.016, P!0.01), and
clinical pregnancy (50.2 vs 38.3%, zZ3.76, P!0.01),
whereas in the frozen–thawed embryo, group differences
were found only in the rate of high-quality embryos (70.3
vs 44.8%, zZ3.85, P!0.01). In another study on human
cryopreserved embryos, three age groups were compared:
– 22–33, 34–37, and 38–45 years (Goto et al. 2011). Post-
thaw comparison found that age affected the proportion
of good-quality blastocysts (62.3, 56.3, and 41.1%
www.reproduction-online.org
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respectively), and a tendency was found to a decrease in
clinical pregnancy rate, viable pregnancy rate, and
delivery rate with increasing age. In cattle, a comparison
between heifers and cows identified differences in
pregnancy rate for both surgical and non-surgical fresh
ET, but no difference was identified when frozen embryos
were used (Hasler 2001). However, in cows, non-surgical
frozen ETresulted in lower pregnancy rate compared with
surgical transfer (38.5 vs 71.1%). In a study on mouse
oocytes, age-related decrease in the number of oocytes
retrieved following superovulation was noted (Yan et al.
2010). Oocytes retrieved from older females had lower
survival and cleavage rate after vitrification, rate of deve-
lopment to blastocyst went down with maternal age when
oocytes were vitrified but not in the control (no vitri-
fication), and blastocyst quality (total cell number and
ratio of inner cell mass to trophectoderm) was lower in the
older age groups in both vitrified and control treatments.
Season

While time of the year can be expected to have its
influence on seasonal animals, several studies have
shown that the season has its effect on oocytes and
embryos of continuous breeders as well. In a study on
zebu (Bos indicus) in vivo-produced embryos, the season
(dry or wet) had significant effect on embryo quality
measured by the TUNEL assay. Embryos collected during
the rainy season had a lower number of apoptotic cells,
both following IVC and after freezing (Marquez et al.
2005). In cattle, a clear seasonality was found between
summer and winter oocytes in a wide variety of
measures, including conception rate, number of
2–8 mm follicles per ovary, percentage of ovaries with
fewer than ten follicles, number of oocytes recovered per
ovary, and cleavage rate following chemical activation
all the way through to the blastocyst stage (Zeron et al.
2001). The authors suggested that these differences were
related to differences found in membrane phospholipids’
composition being richer in saturated fatty acids in the
summer and in mono- and polyunsaturated fatty acids in
the winter. This difference results in a more fluid
membrane and a phase transition temperature six
degrees lower in the winter compared with the summer.
This higher fluidity and lower phase transition tempera-
ture can influence the tolerance of the oocytes to chilling
and cryopreservation (Zeron et al. 2002). Season,
however, seems to have no effect on recipients of
transferred embryos in continuous breeders. In one
study, conducted on cattle in the USA (Pennsylvania
and California) and Holland, no effect was found for the
season on transfer of either fresh or frozen–thawed
embryos (Hasler 2001). In a study on human frozen–
thawed ET, no seasonality was noted with respect to the
time of transfer (Dunphy et al. 1995); however, the
number of cycles analyzed was small (321) resulting in
low power for the study.
www.reproduction-online.org
Conclusions

The co-evolution of reproductive technology and
cryobiology has accelerated extensively in the last
century. Generally speaking, embryos ‘like’ to be either
in the uterus or in LN. Likewise, oocytes would rather be
in the follicle, fertilized or in LN. Anywhere else is
potentially damaging. The major damaging factors,
which occur during cryopreservation, are associated
with chilling injury, osmotic stress, CP toxicity, and
ice crystallization (Mazur et al. 1972, Quinn 1985,
Saragusty et al. 2009). In general, we are trying to reduce
these damages by increasing cooling and warming rates
using vitrification. In the past, vitrification was based on
the combination of a high cooling rate and high
concentration of CPs, which caused chemical toxicity
and osmotic stress. The major breakthrough in the field
of vitrification came when sample volume was reduced
to a level that permitted lowering the CP concentration.
We believe that commercialization of vitrification
solutions and containers will contribute to accelerate
the development of the field of oocyte and embryo
cryopreservation. Success has been reported in a handful
of mammalian species, but differences between species
make cryopreservation techniques’ dissemination diffi-
cult. Current improvements alone will not suffice to
overcome the hurdles on the way to successful oocyte
and embryo cryopreservation in all vertebrates other
than mammals. Those are waiting for other break-
throughs in the field of cryobiology that will facilitate
cryopreservation of their germplasm. Some attempts to
improve cryopreservation outcome through manipula-
tions to germplasm have been reported, but more studies
are needed to identify the more promising ones, which
will be incorporated into routine oocyte and embryo
cryopreservation protocols.
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