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Abstract

A photoplethysmograph (PPG) is a simple medical device for monitoring blood flow and transportation of substances in the 
blood. It consists of a light source and a photodetector for measuring transmitted and reflected light signals. Clinically, PPGs 
are used to monitor the pulse rate, oxygen saturation, blood pressure, and blood vessel stiffness. Wearable unobtrusive PPG 
monitors are commercially available. Here, we review the principle issues and clinical applications of PPG for monitoring 
oxygen saturation.

Keywords Photoplethysmograph (PPG) · Pulse rate · Transmitted light · Reflected light · RGB image · Respiratory rate · 
Motion artifact

1 Introduction

A photoplethysmograph (PPG) is used to measure blood-
flow volume and evaluate the physiological condition of a 
patient [1]. A PPG is a simple device consisting of a light 
source and detector; PPG devices that use light of different 
wavelengths and intensities based on light-emitting diode 
(LED) technology have been developed. The amount of 
energy transferred to the skin by light is dependent on its 
wavelength; for example, green light is frequently used and 
has a good signal-to-noise ratio (SNR) [2]. Additionally, red, 
green, and blue (RGB) light signals enable determination of 
the pulse and respiratory rates.

PPGs are typically used to determine the pulse and res-
piratory rates. Although PPGs can measure the rise and 
decline of the pulse wave, and thus provide accurate pulse-
rate readings, measuring the pulse rate (PR) can be difficult 
in certain situations. The efficacy of other parameters, such 
as blood-vessel stiffness and cuffless blood pressure, has 
been assessed but only pulse oximetry yielded satisfactory 
results. Additionally, motion artifacts reduce the accuracy 
of continuous long-term monitoring of the PR. However, 
application of signal processing to remove the influence of 

motion artifacts yields satisfactory performance under cer-
tain conditions.

The development and applications of PPGs have been 
reviewed elsewhere [2–6]. Therefore, in this review, we 
outline the principle of PPG and the contribution of signal 
processing. We also describe recent developments in wear-
able unobtrusive PPGs, and provide an overview of effective 
clinical practices.

2  Photoplethysmography

2.1  Principle

The principle of PPG has been reviewed previously [2–6] 
and so here it is explained only briefly. Incident light trave-
ling though skin and tissues is absorbed by, for example, 
pigments in the skin, bones, and arterial and venous blood. 
Changes in the pulsatile blood flow occur mainly in the 
arteries and arterioles. However, venous pulsations contrib-
ute significantly to the variability in light absorption, which 
influences the PPG data [7, 8]. However, we assume that this 
parameter does not change markedly. The volume of blood in 
arteries is greater during the systolic phase than the diastolic 
phase of the cardiac cycle. The PPG sensor optically detects 
changes in the pulsatile blood-flow volume (i.e., changes in 
the detected light intensity) in the microvascular tissue bed 
based on the intensity of reflected and transmitted light.
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Figure 1 shows detection of a photoplethysmographic 
transmission waveform, which has direct current (DC) and 
alternating current (AC) components. The DC component 
of the PPG waveform corresponds to the transmitted or 
reflected optical signal from the tissue and depends on the 
structure of the tissue and the average volume of both the 
arterial and venous blood. The DC component changes 
slowly with respiration, while the AC component fluctu-
ates according to the changes in blood volume that occur 
between the systolic and diastolic phases of the cardiac 
cycle. The fundamental frequency of the AC component 
depends on the heart rate (HR) and is superimposed onto 
the DC component.

2.2  Light source and electrical circuit

2.2.1  Light source

Light transmitted or reflected by tissue is detected by a 
PPG. Within the visible region, the dominant absorption 
peak is in the blue region of the spectrum, followed by the 
green-yellow region (500–600 nm), corresponding to red 
blood cells (Fig. 2). Light of shorter wavelengths is strongly 
absorbed by melanin. Water absorbs light in the ultraviolet 
and longer infrared (IR) regions. Red (R, 660 nm) and IR 
(940 nm) light passes through tissue and blood. Thus, IR 
light has been used in PPG sensors. In the last decade, the 
efficiency of LEDs has increased, and their forward voltage 
has decreased, resulting in an increased number of lumens 
per Watt. Because of high-power illumination, the cardiac 
cycle difference between the systolic and diastolic phases 
shows large variation in the green wavelength.

The absorption of green light from LEDs by oxyhemo-
globin  (O2Hb) and deoxyhemoglobin (RHb) is far greater 
than that of IR light. Therefore, the blood-flow-induced 
change in the amount of reflected green light is larger than 
that in reflected IR light, resulting in a better SNR [9–11].

2.2.2  Sensor mode and electrical circuit

The PPG has two modes, transmission and reflectance 
(Fig. 3). In transmission mode, transmitted light is detected 
by a photodetector (PD) positioned opposite the LED, while 
in reflectance mode, the PD detects light backscattered or 
reflected from tissue, bone, and/or blood vessels.

Wearable unobtrusive PPGs use reflectance mode to 
enable convenient sensor placement. However, reflection-
mode PPG is affected by motion artefacts and pressure dis-
turbances. Any movement, such as physical activity, may 
lead to motion artefacts that corrupt the PPG signal and 

Fig. 1  Attenuation of light in tissue and blood [5]

Fig. 2  Light absorption by deoxyhemoglobin (RHb), oxyhemoglobin  (O2Hb), carboxyhemoglobin (COHb), and methemoglobin (MetHb) at dif-
ferent wavelengths. Wavelengths of green, red and near-IR is also shown
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limit the measurement accuracy of physiological param-
eters. Pressure disturbances acting on the probe, such as the 
contact force between the PPG sensor and the measurement 
site, can deform the arterial geometry by compression (see 
Sect. 2.4.3). Thus, in reflectance-mode PPG, the AC ampli-
tude may be influenced by pressure exerted on the skin.

The electrical circuit of a PPG consists of an amplifier, 
high-pass filter (around 0.1 Hz) to cut the DC component 
and obtain pulsatile signal changes, and a low-pass filter 
(around 30 Hz) to eliminate high-frequency noise. The fre-
quency range used depends on the design of the circuit. The 
majority of wearable-type PPGs have a wireless module to 
enable transmission of data to a smartphone (Fig. 4a).

For mobile healthcare, a simple PPG circuit and oximeter 
circuit are designed and assembled because of the develop-
ment of analog front-end (AFE). The AFE-based PPG con-
sists of an analog signal conditioning circuit that uses opera-
tional amplifiers and filters, and a low-noise receiver channel 
with an integrated analog-to-digital converter (ADC), an 

LED transmit section, and diagnostics for sensor and LED 
fault detection. The device has a configurable timing con-
troller. The user controls the device timing characteristics. 
The device communicates with an external microcontroller 
(Fig. 4b).

As shown in Fig. 4, the raw PPG signals are amplified and 
filtered, and then peaks are detected in microprocessor. The 
PR is calculated from intervals of the peaks. The real PPG 
signals are unstable, and are affected by motion artifact [12, 
13]. The details on noise reduction are presented in Sect. 2.4.

2.3  Remote photoplethysmography

PPG imaging (PPGi), or remote PPG (rPPG), is a new PPG 
technique that involves a video camera [6] with a non-con-
tact feature. Most recent references describe rPPGs. The 
principle of PR monitoring by rPPG is similar to that of 
reflectance-mode PPG; however, a two-dimensional (2D) 
image matrix is used instead of a single photodiode.

The use of an RGB video camera in rPPG has been con-
sidered, and green light provides the strongest plethysmo-
graphic signal [14–17]. Hemoglobin absorbs green light 
better than red light and penetrates deeper than blue light; 
therefore, green light yields a pulsatile signal with a marked 
difference between the systolic and diastolic phases. Due to 
its greater penetration depth than light of other wavelengths, 
green light is typically used for measurement of the PR and 
normalized pulse volume [18].

Contrasting PPG, rPPG uses ambient light and does not 
require a dedicated light source. Furthermore, the 2D camera 
sensor enables extraction of spatially separated information, 
which overcomes the limitation of measurements at particu-
lar locations on the skin.

Fig. 3  Arrangement of photoplethysmograph (PPG) sensors. Left, 
transmission mode; right, reflectance mode

Fig. 4  Block diagram of the architecture of a PPG: a general circuit and b analog front end circuit
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rPPG can be performed in noncontact mode for long dis-
tance measurements using a charge-coupled device camera 
to measure the light reflected from the skin. Alternatively, 
contact-mode rPPG, typically in conjunction with a smart-
phone camera, enables short-distance measurements. Ple-
thysmographic signals can be measured using ambient light 
and PD with a consumer-level digital camera or smartphone. 
The pulse and respiratory rates are determined by process-
ing of the RGB signal. Although the green channel has the 
strongest plethysmographic signal, corresponding to the 
absorption peak of  O2Hb, the red and blue channels also 
contain plethysmographic information. PPG based on ambi-
ent light with detection of multiple wavelengths (660, 810, 
and 940 nm) may be useful for medical applications, such as 
non-contact 2D reflection-mode pulse oximetry.

For skin diagnoses, an ultraviolet wavelength was added 
to ambient light, and devices that monitor the autofluores-
cence intensity and photobleaching rate show promise for 
detecting skin tumors [19].

2.4  Factors that a�ect PPG signals

PPG signals can be affected by the wavelength of light, 
measurement site, contact force, motion artifacts, ambient 
light intensity, and ambient temperature.

2.4.1  Wavelengths

Wearable PPGs typically use green light, while rPPG 
involves RGB signals. IR light penetrates deeper into the 
skin but is of low intensity and so has little pulsatile action. 
The penetration depth of light is dependent on its wave-
length [20, 21]. The development of high-power LEDs and 
reflectance-mode PPG has enabled use of green light, which 
results in a pulsatile action far greater than that of IR light 
[9, 14, 22–32].

2.4.2  Measurement site

PPG sensors are commonly worn on the fingers because of 
the high signal amplitude that can be achieved [2]. However, 
this configuration is not well suited to continuous sensing 
because most daily activities involve use of the fingers. In 
recent years, various measurement sites for PPG sensors 
have been explored, including the ring finger [33], wrist 
[34, 35], brachia [11, 36, 37], in-ear [38], earlobe [39, 40], 
external ear cartilage [41–43], and superior auricular region 
[44–46]. The esophageal region has also been used in clini-
cal practice [47–49]. Commercial clinical PPG sensors com-
monly use the finger, earlobe, and forehead [50]. In addition, 
use of a glass-type wireless PPG has been explored [51].

Wristwatch-type HR monitors and pulse oximeters have 
been developed and commercialized by several companies. 

These devices are sometimes used in clinical settings 
because of the feasibility of long-term use (see Sect. 2.5.2). 
A recently developed wristwatch-type PPG-array sensor 
module measures the PPG signal from the radial artery 
and the ulnar artery of the wrist, whereas previous devices 
obtained a signal from the skin capillaries. The sensitivity 
and accuracy of this device are enhanced by an array of pho-
totransistors and IR-emitting diodes, and it has a conductive 
fiber wristband to reduce external noise [34].

2.4.3  Contact force

In reflectance-type PPG and contact rPPG, the PPG signal 
waveform may be affected by the contact force between 
the sensor and the measurement site. The waveform of the 
obtained PPG signal differs depending on the contact pres-
sure of the PPG probe. The contact force applied in PPG 
must be carefully controlled because it exerts a strong influ-
ence on blood vessel stiffness. The optimal contact pressure 
corresponds to the maximal pulsatile amplitude; this occurs 
when the transmural pressure approaches zero (i.e., under 
maximal arterial compliance). We also consider dynamic 
compliance (volume change per unit pressure change); that 
is, vessels are stiffer when their pressure changes quickly 
(e.g., intrabeat) and more compliant when their pressure 
changes slowly. The specific slope of a photoplethysmo-
gram-versus-transmural pressure curve is a function of the 
mechanical properties of the pulsating vessels and is sensi-
tive to the subject’s physiologic state.

Insufficient pressure results in inadequate contact and 
consequently a low AC signal amplitude. However, PPG sig-
nal recording under excessive pressure conditions can also 
lead to a low AC signal amplitude and distorted waveforms 
caused by the occluded artery beyond the PPG probe [52].

Despite numerous attempts, no generally accepted 
standards for clinical or fundamental PPG measurements 
of contact pressure have been adopted. Changes in the AC 
pulse amplitude, DC amplitude, AC: DC amplitude ratio, 
and normalized pulse area of the reflected PPG signal have 
been investigated [29, 30, 53–63]. In most experiments, 
the contact force is adjusted within an appropriate range 
using a manipulator, and the maximum AD amplitude is 
determined. The optimum contact pressure varies markedly 
among individuals due to differences in skin elasticity and 
blood-vessel compliance [53]. Teng and Zhang reported that 
the AC amplitude first increased and subsequently decreased 
as the contact force on the finger increased from 0.2 to 1.8 N. 
The AC pulse amplitude and the AC: DC amplitude ratio 
peaked at contact forces of 0.2 to 0.8 N due to the variation 
in arterial stiffness according to gender and age. In a simi-
lar contact force study, an average compression pressure of 
30 mmHg (4 kPa) on the upper arm produced the maximum 
PPG peak amplitude for IR and green light [55].
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Contact pressures of 8–12 kPa (60–90 mmHg) resulted in 
the largest PPG amplitude for a reflectance sensor attached 
to the forehead above the eye, although the SNR did not 
improve significantly [55]. Note that most  SpO2 studies use 
the ratio of the changes in R and IR light intensities (R:IR) 
as an accurate indicator of oxygen saturation. The R:IR val-
ues of the forehead of a newborn infant varied from 0 to 
80 mmHg, and a portion of the PPG signal was derived from 
tissue beneath the skull [57–59].

The optimal probe-contact pressure is important, particu-
larly for measuring arterial stiffness. Use of non-optimal 
probe-contact pressures results in inconsistent estimates of 
arterial stiffness using the PPG pulse-wave amplitude. To 
determine the optimal contact pressure, PPG readings were 
obtained in vivo from conduit artery sites in five healthy 
subjects using probe-contact pressures of 0–113 mmHg 
(0–15 kPa) [61]. The maximum amplitude was obtained at 
a probe-contact pressure of 95 mmHg (12 kPa). A miniatur-
ized force regulator was designed and fabricated to adjust 
the PPG amplitude [63].

rPPG signals, which comprise light of three wavelengths, 
are also influenced by the probe-contact pressure. Light of 
the three wavelengths is decomposed and analyzed indepen-
dently [16], but the light intensity after interaction with the 
biological tissue is modulated by the heartbeat frequency, 
mainly due to pulsatile variations in the light absorption 
caused by arterial blood-volume pulsations. The elastic 
deformations of the capillary bed are important in generating 
the PPG waveform. In a previously proposed PPG model, 
pulse oscillations of the arterial transmural pressure deform 
the connective-tissue components of the dermis, resulting in 
periodic changes in light scattering and absorption. These 
local changes in the light-interaction parameters are detected 
as variations in the light intensity reaching a camera. There-
fore, arterial pulsations can be indirectly monitored using 
reflected light that penetrates tissue [29, 30] to determine 
how human skin interacts with light. Application of a glass 
plate to the skin modulated the temporal parameters of the 
light reflected from the dermis. The resulting increase in 
modulation amplitude of blood pulsations increased the 
accuracy of the pulse-rate measurement [30]. Therefore, the 
arterial transmural pressure must be controlled for accurate 
estimation of the PR by rPPG.

2.4.4  Motion artefacts

For effective PPG, motion artefacts in the low-frequency 
region must be eliminated. The PPG signal contains frequen-
cies related to heart beat and respiratory function; the rest 
is noise. Various methods of eliminating motion artefacts 
have been investigated [5]. The time and frequency domain 
signals are processed mathematically and statistically, and 
motion artefacts are caused mainly by body movements. 

Thus, the simplest means of eliminating motion artefacts 
is to monitor body movements using an accelerometer and 
eliminate noisy signals. The skewness method, which can be 
used to distinguish excellent, acceptable, and poor signals, 
has been reported to be optimal for evaluating PPG signal 
quality. In this method, the Chebyshev filter improves the 
PPG signal quality more effectively than other digital filters 
[64]. A moving-average filter [65, 66] can also be used to 
reduce motion artefacts, but cannot adapt to sudden changes 
in noise (e.g., due to body movements).

A Fourier series is applicable only to periodic signals; 
therefore, it cannot be directly applied to the nonstationary 
and quasiperiodic PPG signal. Generally, fast Fourier trans-
form (FFT) analyses are followed by filter techniques [67, 
68]. For, example, before FFT, a smoothing filter was used to 
remove high-frequency noise and then a cycle-by cycle FFT 
was conducted [68]. Moreover, the quasi-periodic accelera-
tion signal is modeled using the harmonic sum (HSUM), 
which estimates the fundamental frequency of the accelera-
tion signal over short periods. The fundamental frequency 
of the acceleration signal is then used to model the PPG 
signal, which contains information about the HR and motion 
artefacts. The HR is extracted from the PPG signal using a 
HSUM model [69].

Adaptive noise cancellation (ANC) using acceleration-
based adaptive filters has been investigated [40, 70–86]. 
Identification of the optimal design usually requires a priori 
knowledge of certain statistical parameters (such as the mean 
and correlation functions) within the useful signal. With this 
information, an optimal filter can be designed that minimizes 
the unwanted signals according to statistical criteria.

Many adaptive techniques have been applied to reduce 
motion artefacts in PPG signals, including the normal least 
mean squares (NLMS) method [75–77], recursive least 
squares (RLS) method [78], time-varying step-size control 
(TVS-LMS) [79–81], adaptive step-size LMS (AS-LMS) 
[80], and Laguerre series [83–87].

In general, a wearable finger-type PPG device consists 
of a three-axis accelerometer, an IR or green LED, a photo 
diode, a microprocessor, and a wireless communication 
module. The sources of motion artefacts were investigated 
by computing the correlations between the three-dimen-
sional (3D) motions and distorted PPG signals. A 2D active 
noise cancellation algorithm using an NLMS adaptive filter 
and directional accelerometer data was applied to compen-
sate for the signal distortion [75, 76]. A NLMS filter with 
automatic step-size control was used to mitigate the effects 
of motion artefacts in PPG recordings for long-term moni-
toring [77].

The RLS adaptive filter recursively finds the filter coef-
ficients that minimize a weighted linear least squares cost 
function related to the input signal. A fast transversal 
RLS algorithm was applied to reduce the computational 
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complexity of the adaptive filter by providing an estimate 
of the linear motion-to-artefact transfer function [78].

The step size of an adaptive filter represents a compro-
mise between the speed of adaptation and the noise in steady 
state. Various step sizes have been used to evaluate the PPG 
signal quality. The TVS-LMS algorithm offers rapid conver-
gence. However, the AS-LMS algorithm provides not only 
rapid convergence, but also a minimal mean square error, as 
indicated by the high SNR value [79].

A simple and efficient approach based on the AS-LMS 
adaptive filter was applied to reduce motion artefacts in cor-
rupted PPG signals [82].

A Laguerre series was implemented to represent the 
dynamics of walking and jogging using a few parameters, 
such as the HR. An adaptive blind-source separation tech-
nique was used to recover the physiological signal; however, 
this method has not yielded promising results to date [83].

In the absence of a triaxial accelerometer, singular value 
decomposition [88, 89], time and period domain analysis 
[90], adaptive comb filter (ACF) [91–93], spectrum subtrac-
tion [94], empirical mode decomposition (EMD) [95, 96], 
Wigner–Ville distribution [97], Kalman filtering [98–101], 
wavelet-based method [102–109], independent component 
analysis (ICA) [110–112], particle filter [113], and blind 
source separation [15, 16] can be used to generate a refer-
ence noise signal.

The number of motion artefacts differs according to the 
wavelength of light. The multichannel template-matching 
algorithm selects the channel with the least motion artefacts 
to calculate the PR for a particular time interval [114, 115].

Artefact corruption of the underlying photoplethysmo-
graphic signal was reduced in real time by an electronic 
processing methodology based on inversion of a physi-
cal artefact model. A heuristic physical model of motion 
artefacts was introduced and verified experimentally by 
inversion of a physical artefact model using an additional 
source-detector pair, resulting in a three-wavelength probe 
[116, 117]. In rPPG, a color filter array (CFA) is used to 
demosaicize and denoise the signal [118, 119]. The algo-
rithm utilized signal decomposition and the support vector 
machine (SVM) model to remove motion artefacts from the 
PPG signal [110, 120–125]. Generally, the PPG signal and 
acceleration-derived features are extracted and classified 
using an SVM classifier.

The random forest method, which involves generation of 
a large number of classification trees, is also used for feature 
extraction. The random forest-based spectral peak-tracking 
algorithm identifies the spectral peak of the PR [126].

Deep and machine learning and neural networks have 
also been used to classify the PPG signal. However, meth-
ods based on neural networks and fuzzy systems require 
training or self-tuning of adaptive parameters [127–132]. 
For example, a combined ECG/PPG signal within a 

nonlinear system, based on a reaction–diffusion mathe-
matical model implemented using the cellular neural net-
work (CNN) methodology, was employed to filter the PPG 
signal by assigning a recognition score to the waveforms 
in the time series [132].

It is difficult to extract the pulse signals from a video 
signal because multiple wavelengths are used and there 
are noise artifacts. In a light-controlled environment, the 
extraction of PPG data based on analysis of RGB channels 
captured by a video camera has been successful. Under 
ambient illumination, however, many algorithmic image-
processing techniques can be applied for single/multiple 
channel analysis to improve the extracted signal. The rPPG 
signal is strongly affected by noise artifacts, such as the 
subject’s motions, facial expressions, talking, and varia-
tion in skin tone and illumination.

Camera imaging-based technologies can be divided 
into two categories: image photoplethysmography (iPPG) 
methods, which rely on the optical properties of skin color 
changes; and motion-based methods, which rely on the 
mechanical activity of the heart. A comprehensive review 
of remote monitoring technologies can be found elsewhere 
[133]. Detailed information can be obtained from Tables 3 
and 4 in that paper [133]. In addition, the literature before 
2104 was collected by the MIT rPPG imaging group [134].

In iPPG methods with ambient light, autoregressive 
(AR) spectral analysis is applied to extract the frequency 
bands of interest. For multiple channel analysis, PPG data 
are extracted and then FFT is applied to extract the fre-
quency bands of interest [14]. Many algorithmic image-
processing techniques based on the characteristics of the 
skin and wavelengths can be used with single/multiple 
channel analysis to improve the extracted signal [135].

Principle component analysis (PCA) and ICA are used 
for blind source separation, to distinguish skin pixels 
that contain PPG information and reduce the influence of 
variation in illumination [15, 16, 136, 137]. Chrominance 
(CHRO) signals are used to combine the color difference 
signals linearly by assuming standardized skin color to 
white-balance images [138].

The Eindhoven University group has proposed several 
new iPPG methods. The signature of the blood volume 
changes at different wavelengths was used to explicitly dis-
tinguish pulse-induced color changes from motion noise in 
RGB measurements [139]. Spatial subspace rotation was 
used to estimate the spatial subspace of skin pixels for 
pulse extraction and determined the temporal rotation in 
the image domain to extract the cardiac signal. The essen-
tial difference between these rPPG methods lies in the 
way that RGB signals are combined into a pulse-signal. A 
plane orthogonal to the skin was defined in the temporally 
normalized color space based on physiological reasoning 
[140–143].
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Motion-based methods using a video camera are also 
commonly applied to measure pulse rate. Small amplitude 
motions in different regions of interest (ROIs) are captured.

2.5  Pulse-rate measurement and clinical trials

2.5.1  Pulse rate‑measurement devices

Wearable PPG monitors are commonly used in healthcare, 
as well as in sports, to monitor the PR during periods of 
physical exertion. Such devices typically use green light and 
perform signal processing to reduce motion artefacts (see 
Sect. 2.4.4).

A large number of PR monitors are commercially avail-
able; however, their accuracy and validity are unclear. We 
assumed that most commercial devices calculated HR from 
PPG signals, but the algorithms are not known.

The Apple Watch, Basis Peak, Fitbit Surge, Microsoft 
Band, Mio Alpha 2, PulseOn, and Samsung Gear S2 were 
evaluated in terms of their ability to measure the HR while 
sitting, walking, running, and cycling; continuous HR telem-
etry was used as the gold standard for comparison [144] 
(Fig. 5).

HR measurements using commercially available devices 
typically have acceptable errors (< 5%). These devices are 
regularly updated, and their algorithms tuned. Information 
on the precision of these devices is available on the Stanford 
University website [145].

Daily use of commercial HR monitors has been the sub-
ject of validation studies [146–150], most of which involved 
the subjects performing predetermined activities. However, 
in the daily living monitor, Fitbit trackers either overesti-
mated or underestimated the counts compared with the 
standard device. Therefore, their accuracy and sensitivity 
must be improved before they can be considered for monitor-
ing of patients recommended to exercise by their physician 
[149].

The Fitbit Charge 2 [150] exhibited moderate bias on 
average, but showed poor precision for individual measure-
ments, which could be underestimated by up to 30 bpm. 
The algorithm used by the Fitbit device to estimate HR is 
not widely used, and instability and improper positioning 
of the device may explain the variation in PR measure-
ments. Standards for home use of commercially available 
HR monitors are needed, and the manufacturers should be 
required to validate the performance of their products in 
various settings.

2.5.2  Clinical trials and home use of cardiac monitors

Advances in wearable cardiac monitor technology are 
improving both the experience of the patient and the ability 
to analyze their cardiac activity. Previous cardiac-monitor-
ing devices were hampered by low patient compliance and 
delayed access to data, but newer devices are less cumber-
some and provide immediate access to data.

Healthcare management is important for preventing 
and predicting cardiac disease. Thus, the latest mobile and 
wearable devices can be used both in hospitals and in the 
community.

Mobile and wearable devices can monitor key physi-
ological signals (e.g., physical activity, HR, and PR and 
rhythm) to promote healthy behaviors, detect disease, and 
enable ongoing care. During physical activity, the PR can 
be accurately measured, but energy expenditure cannot. In 
this section, we describe the recent progress and challenges 
in monitoring the HR and rhythm for detection and manage-
ment of artificial defibrillation (AF) [151].

Mobile and wearable devices for mobile health (mHealth) 
can be used to monitor the HR and heart rhythm of patients 
with cardiovascular disease. In particular, the detection and 
management of the most common type of arrhythmia—
AF—enables prevention of strokes, management of symp-
toms, and reduction in the rate of hospitalization [152, 153].

Analysis of pulse data from a wrist-wearable device by 
novel algorithms can accurately detect the pulse irregulari-
ties associated with AF. The wrist-based wearables capa-
ble of pulse monitoring can be used over the long-term by 
patients with AF to enhance detection of paroxysmal AF and 
assessment of AF burden.

Fig. 5  Median device error. The acceptable error is < 5% (dark 
colors); light colors indicate errors outside of this range. (A) Median 
error in heart rate (HR) by continuous HR telemetry
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Several consumer-friendly, smartphone-connected hand-
held or wearable PPG monitors of the HR and heart rhythm 
from the finger, face, and wrist have been approved recently 
[144, 154, 155].

In fact, no specific standards must be followed or medi-
cal approval obtained for wearable physiological devices. 
The manufacturers of heart rate and pulse rate monitors do 
not have to obtain approval for their devices, and thus do 
not have to follow specific standards. However, most manu-
facturers follow the American National Standards Institute/
Association for the Advancement of Medical Instrumenta-
tion (ANS/AAMI) EC13 standards. The disruption of EC13 
2002 is used to acquire or display electrocardiographic sig-
nals with the primary purpose of continuous detection of 
cardiac rhythm. The accuracy criterion in the ANS/AAMI 
EC13:2002 (R2007) standard is a root mean square error 
(RMSE) ≤ 5 beats/min or ≤ 10%.

HR detection by the Cardiio smartphone application 
[156] was accurate at rest and after moderate- and vigor-
ous-intensity exercise in healthy young adults. Contact-free 
facial PPG detection is more convenient but less accurate 
than finger PPG due to body movements after exercise 
[154]. Testing of contact PPGs (Instant Heart Rate ver. 
3.0.1; Azumio, Palo Alto, CA, USA; and Heart Fitness ver. 
2.0.3; Senscare SAS, France) and noncontact PPGs (What’s 
My Heart Rate ver. 1.0; Vitrox Technologies, Malaysia; and 
Cardiio ver. 2.0; Cardiio, Cambridge, MA, USA) showed 
that the two contact photoplethysmography-based applica-
tions had superior feasibility and accuracy for HR measure-
ment than the two non-contact photoplethysmography-based 
applications.

Measurement of the HR during rest and exercise by most 
wrist monitors is highly accurate [144, 157]. HR monitoring 
would be valuable to ensure that AF patients are adequately 
rate-controlled, to mitigate symptoms and decompensation 
[158, 159]. These technologies show promise for long‐term 
noninvasive monitoring of AF.

However, a major concern regarding widespread use 
of AF-detection algorithms is lack of specificity, as other 
rhythms that create irregularity (e.g., premature atrial or 
ventricular contractions, supraventricular tachycardia, and 
atrioventricular block) could be misclassified as AF. Arti-
ficial intelligence, neural networks, and machine learning 
have been applied to overcome this limitation of mHealth 
devices [160, 161].

Studies comparing Holter ECG and continuous pulse 
rates, using commercial software to determine R–R inter-
vals and HR variability, have used a Markov model. Under 
the normalized absolute deviation (NAdev) and normal-
ized absolute difference (NADiff), and the coefficient of the 
sample entropy features (COSen), AF detection was com-
pared. With and without the Markov model, the specificities 
were 95, 89, 92, and 88%, respectively. As a result, the AI 

algorithm improved the specifications, comparable with the 
Food and Drug Administration-approved ECG-based Alive-
Cor automated AF detector [159].

Wearable devices can also be used to monitor the PR of 
individuals undergoing cardiac rehabilitation [162] and for 
diabetes management [163].

In clinical practice, physicians tend to accept mobile and/
or wearable devices that are simple to operate and inexpen-
sive. Therefore, prior to their widespread clinical applica-
tion, PPG devices require standardization in terms of their 
handling and accuracy at rest and during exercise.

3  Pulse oximetry

PPGs can be used for pulse oximetry; i.e., for continuous 
noninvasive monitoring of the oxygen saturation of hemo-
globin. Oxygen saturation is dependent on oxygen availabil-
ity; i.e., gas exchange in the lungs. Oxygen availability is an 
important parameter for evaluating gas exchange (oxygen 
and carbon dioxide), particularly during anesthesia and post-
operatively. Oxygen saturation is typically expressed as a 
percentage rather than an absolute reading.

A pulse oximeter measures the oxygen saturation of 
arterial blood  (SpO2%) noninvasively via a clip-like sen-
sor attached to a fingertip. The  SpO2% is calculated from 
the amplitude of transmitted R and IR light, and the PR is 
determined from the PPG wave.

3.1  Principle of the pulse oximeter

Traditionally, the oxygen saturation of arterial blood was 
measured by drawing blood from an artery (e.g., the radial 
or femoral artery) and subjecting it to blood-gas analysis. To 
measure oxygen saturation noninvasively, Dr. Takuo Aoyagi 
invented pulse oximetry in 1974 [164].

Hemoglobin can be divided into normal hemoglobin, 
which is capable of binding  O2, and dyshemoglobins, which 
are not. The normal hemoglobins include RHb and  O2Hb, 
while the dyshemoglobins include carboxyhemoglobin 
(COHb), methemoglobin (MetHb), and sulfhemoglobin 
(SHb) (Fig. 1). The total hemoglobin concentration (tHb) 
is expressed as:

SHb is rare and can be omitted from the calculation. In 
normal circumstances, only oxygen-carrying hemoglobin is 
considered. Thus, the hemoglobin oxygen saturation, S, is:

The transmitted signal amplitude of arterial blood is 
measured using light at 660 nm (R) and 940 nm (IR).

tHb = O
2
Hb + RHb + Met Hb + COHb + SHb

S = O
2
Hb∕

(

O
2
Hb + RHb

)
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The light absorption, A, of a blood sample is defined by the 
Beer-Lambert law as:

where  I0 is the incident light intensity, I is the transmitted 
light intensity, E is an extinction coefficient (dL/g/cm), C is 
the concentration (g/dL), and D is the thickness (cm).

The structure of the finger (Fig. 6) consists of tissue, venous 
blood, and arterial blood. The change in the systolic and dias-
tolic phases in arterial blood is shown as the thickness, ΔD, 
of arterial blood. The transmitted light intensity difference 
between the systolic and diastolic phases (Fig. 6) is expressed 
in ΔI. Thus, the absorbance difference ΔA is expressed by the 
Lambert–Beer law as:

where Hb (g/dL) is the hemoglobin concentration, Eh (dL/g/
cm) is the extinction coefficient of Hb, and ΔD (cm) is the 
change in the thickness of the arterial blood. At 660 and 
940 nm, which are used for pulse oximeter measurements, 
the absorbance of other tissues in blood is ignored, except 
for oxy and deoxy Hb.

Using Eq. (2), the 660 nm (R) to 940 nm (R) light ratio is 
expressed as:

(1)A ≡ log

(

I0

I

)

= E ⋅ C ⋅ D

(2)ΔA ≡ log
I

I − ΔI
= Eh ⋅ Hb ⋅ ΔD

(3)= ΔI∕
(

I −
ΔI

2

)

=
AC

DC

(4)� =
ΔA

660

ΔA
940

=
AC

660
∕DC

660

AC
940

∕DC
940

This equation clearly expresses the characteristic of the pulse 
oximeter, which measures arterial blood without considering 
variations in blood pulsation or hemoglobin concentration.

Eh, the extinction coefficient of tHb (RHb plus  O2Hb), 
can be calculated as the weighted average of Eo and Er, 
which corresponds to the concentration ratio:

Eo660: Extinction coefficient of  O2Hb at 660 nm;  Er660: 
Extinction coefficient of RHb at 660 nm;  Eo940: Extinction 
coefficient of  O2Hb at 940 nm;  Er940: Extinction coefficient 
of RHb at 940 nm

where:

From Eqs. (4) and (5),

where  Eo660,  Er660,  Eo940, and  Er940 are constants. Then, ϕ 
is used to calibrate the standard curve according to S. Thus, 
we can calculate S from ϕ, which can be measured.

3.2  Electrical circuit

Figure 7 shows a block diagram of a typical pulse oxime-
ter. Light at 660 and 940 nm transmitted through tissue is 
received by PDs, which measure the intensity of the two 
colors of pulse waves. The instrument next calculates the 
ΔA (= AC/DC) of the two colors of pulse waves to obtain 
ϕ, which is the ratio of ΔA between R and IR light, and 
converts ϕ to  SpO2.

The current signal of the PD is detected as a voltage and 
then converted to a digital signal by an A/D converter, with 
most of the processing being performed digitally. With the 
availability of high-speed AD converters, high-performance 
signal processors, and large memories, it has become pos-
sible to carry out logarithm calculations easily with a digital 
processor, as opposed to the approximate calculation of AC/
DC in Eq. (2).

The current system-on-a-chip (SOC) technology has been 
applied to a simple AFE platform of pulse oximeter [165].

3.3  Portable and wearable pulse oximeters

The first portable pulse oximeter (ZB-831P) was developed 
by Nihon Kohden in 1994, and had a power consumption of 
only 15 mW. It can provide approximately 3 days of con-
tinuous monitoring with two AA alkaline battery cells, and 

(5)Eh = (Eo ⋅ S + Er ⋅ (1 − S))

S = O2Hb∕(O2Hb + RHb)

O2Hb + RHb = 1

(6)� ≡

ΔA
660

ΔA
940

≅

AC
660

DC
660

AC
940

DC
940

=
Eo

660
⋅ S + Er

660
⋅ (1 − S)

Eo
940

⋅ S + Er
940

⋅ (1 − S)

Fig. 6  Optical model of the fingertip
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it satisfies the ISO 80601-2-61 standard for measurement 
accuracy.

The portable pulse oximeter has subsequently become 
even smaller. NONIN Medical (Minneapolis, MN, USA) 
released the world’s first finger pulse oximeter, the Onyx 
9500, in 1995. All components, measurement circuits, indi-
cators, and batteries are contained in one unit that attaches 
to a fingertip. This product meets the measurement accuracy 
demanded of medical pulse oximeters in ISO 80601-2-61. It 
operates on two AAA alkaline batteries for approximately 
1600 spot checks or up to 18 h of continuous operation.

A large number of fingertip-type oximeters are commer-
cially available, but few meet the ISO 80601-2-61 measure-
ment accuracy standards. Thus, we must use pulse oximeters 
very carefully. Examples of oxygen saturation meters that 
meet ISO are the MightySat and Pulsox (Fig. 7).

Several trials have examined watch-type oximeters with 
a finger senor. The watch is worn on the wrist and used as 
an interface instead of a standalone display device. Some 
wearable sensors are reflected types [166, 167]. A finger-
free pulse oximeter was tested without wires or a fingertip 
probe. A reflective PPPG sensor was mounted on the bottom 
of the watchcase. The sensor consists of two or more LEDs 
and one or more PDs located side by side on the substrate 
(oCoare TM Pro 100, Taiwan Biophotonic, Taiwan) (Fig. 8). 

3.4  Standards and accuracy

The ISO 80601-2-61 standards were established in 2011 to 
ensure the safety and basic operation of pulse oximeters. 
These standards require accuracy testing by a person, and the 
root mean square (rms) of the difference between the  SpO2 
and  SaO2 measured from arterial blood must be less than 
4% in the range of 70–100%  SpO2. The main factors that 
influence the accuracy are the LED wavelength, measure-
ment site, signal strength, movement artefacts, and abnormal 
hemoglobin in the blood.

The difference in LED wavelengths greatly influences 
the value of ϕ in measurements. The fingertip is the most 
frequently used measurement site because it has a large num-
ber of capillaries; the forehead (using a reflectance sensor) 
and earlobe are also used. The influence of venous blood, 
the difference in optical passage between R and IR light, 
and the shunted light that reaches the detector without pass-
ing through blood-perfused tissues can cause measurement 
errors with reflectance sensors. If the earlobe is used, the 
patient’s hands remain free [168–170].

Pulse oximeters measure the light transmitted from liv-
ing tissue and calculate ΔA from the ratio of the DC compo-
nent and the AC (pulsatile) component. The AC amplitude is 
much smaller than the DC amplitude, and the AC/DC ratio 

Fig. 7  Block diagram of a recent pulse oximeter

Fig. 8  Wearable-type pulse oximeters. From left to right: MightySat™ Rx (Masimo), Onyx Vantage GO2 (Nonin), and Pulsox-310 (Konica 
Minolta)
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is distributed between about 0.01% and 10%. The noise of 
the AC signal needs to be reduced if it is to be used for  SpO2 
measurement.

Body movements, electric circuit noise, ambient light, and 
ambient electromagnetic noise can cause errors in  SpO2 meas-
urements. Wearable sensors must be carefully attached to the 
body to reduce motion artefacts (see Sect. 2.4.4).

COHb and MeHb affect oxygen delivery to the tissues, and 
their levels can be measured using a multi-wavelength pulse 
oximeter. For example, the Radical7 pulse oximeter (Masimo) 
can measure  SpO2, COHb, and MetHb simultaneously using 
light of eight wavelengths. Most hemoglobin measuring 
devices measured the tHb, COHb and MeHb in the case of 
low perfusion [171–177]

With wearable pulse oximeters, there is little need to meas-
ure the levels of abnormal hemoglobins, but measurement of 
COHb is used to monitor carbon monoxide levels during fire-
work displays.

3.5  Future perspectives

Oximeters are needed for oxygen management of patients 
receiving artificial respiration, surgery, or intensive care unit 
treatment, as well as for at-home oxygen management of 
respiratory diseases such as chronic obstructive pulmonary 
disease. Current wearable pulse oximeter designs are not sat-
isfactory for performance of daily activities. Pulse oximeters 
incorporated in polysomnographs are used to diagnose sleep 
apnea syndrome (SAS) and hypoxemia. The use of pulse oxi-
meters for at-home SAS screening would improve patient qual-
ity of life. In addition, morning surge can be estimated using 
a pulse oximeter, preferably a wearable one.

Such wearable pulse oximeters could even reduce the inci-
dence of SAS by improving the rate of detection at low cost. 
This method would greatly contribute to public health and 
the medical device industry and would consequently be used 
widely. Confirmation that diseases can be prevented by daily 
measurement of blood oxygen saturation will promote the use 
of wearable pulse oximeters.

Pulse oximeters used for medical purposes outside of a hos-
pital must meet the ISO 80601-2-61 accuracy standards. Sev-
eral wearable oximeters that can be inaccurate are available, so 
users of such devices should first confirm their accuracy. The 
demand for high-end, medical-grade pulse oximeters remains, 
but new markets for cheaper, lower-end commoditized devices 
may appear in the future. Also, further applications of oxime-
ters for home healthcare must be discussed.

4  Conclusion

The wearable PPG sensor and oximeter are popular devices 
for at-home healthcare and in the clinical setting, and can 
now be used to detect cardiovascular disease. Many chal-
lenges remain before the goal of effective mHealth interven-
tions can be realized. Further work should focus on formu-
lating scientific guidelines for proper handling of wearable 
PPG devices and establishing standards. Moreover, discus-
sions among experts and regulatory bodies, funding agen-
cies, and industry are needed to promote the development 
of accurate wearable devices.
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