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	 1	

Current	Prospects	And	Future	Challenges	For	Nasal	Vaccine	Delivery		1 

	2 

Abstract	3 

Nasal	 delivery	offers	many	benefits	 over	 traditional	 approaches	 to	 vaccine	 administration.	4 

These	 include	 ease	 of	 administration	without	 needles	 that	 reduces	 issues	 associated	with	5 

needlestick	injuries	and	disposal.	Additionally,	this	route	offers	easy	access	to	a	key	part	of	6 

the	immune	system	that	can	stimulate	other	mucosal	sites	throughout	the	body.	Increased	7 

acceptance	 of	 nasal	 vaccine	 products	 in	 both	 adults	 and	 children	 has	 led	 to	 a	 burgeoning	8 

pipeline	 of	 nasal	 delivery	 technology.	 Key	 challenges	 and	 opportunities	 for	 the	 future	will	9 

include	 translating	 in	vivo	data	 to	 clinical	outcomes.	Particular	 focus	 should	be	brought	 to	10 

designing	delivery	strategies	that	take	into	account	the	broad	range	of	diseases,	populations	11 

and	healthcare	delivery	settings	that	stand	to	benefit	from	this	unique	mucosal	route.		12 

	13 

Key-words	nasal,	vaccine,	needle-free,	influenza,	mucosal	14 

	15 

	16 

	 	17 



	 2	

In	 this	 review	the	current	 state	of	 the	art	 in	nasal	vaccine	delivery	will	be	described	along	18 

with	future	prospects.	A	brief	introduction	to	the	anatomy	and	physiology	of	the	nasal	cavity	19 

will	 highlight	 the	 advantages	 and	 disadvantages	 of	 the	 route.	 Encapsulation	 and	20 

presentation	methods	along	with	particular	 formulation	considerations	 for	 the	nasal	 route	21 

will	also	be	discussed.		22 

	23 

There	 are	 many	mucosal	 routes	 which	 have	 been	 regarded	 as	 potential	 sites	 for	 vaccine	24 

delivery	 such	as	oral,	 nasal,	 pulmonary,	 conjunctival,	 rectal	 and	vaginal	mucosa.	However,	25 

for	practical	and	cultural	reasons	researchers	have	tended	to	focus	only	on	oral,	nasal,	and	26 

pulmonary	 administration.
1
	 Needle-free	 vaccines	 offer	 many	 advantages	 over	 traditional	27 

vaccination	approaches	including	convenience,	cost,	ease	of	administration	and	disposal.		28 

There	 are	 several	 needle	 free	 methods	 of	 vaccination	 such	 as	 transdermal	 delivery	 and	29 

mucosal	delivery.
2,3
	Mucosal	immunization	has	been	successfully	used	in	human	vaccination.	30 

The	 human	mucosal	 immune	 system	 is	 large	 and	 specialized	 in	 performing	 inspection	 for	31 

foreign	 antigens	 to	 protect	 the	 surfaces	 themselves	 and	 of	 course	 human	 body	 interior.	32 

Since	 most	 infections	 affect	 or	 start	 from	 mucosal	 surfaces,	 using	 a	 mucosal	 route	 of	33 

vaccination	is	of	great	interest	and	provides	a	rational	reason	to	induce	a	protective	immune	34 

response.
3
		Nasal	delivery	of	vaccine	offers	an	easily	accessible	route	to	the	immune	system.	35 

The	 nose	 has	 the	 function	 of	 olfactory	 detection	 (sense	 of	 smell)	 and	 also	 filtration,	36 

humidification	 and	 temperature	 control	 of	 air	 as	 it	 enters	 the	 respiratory	 system.	Moving	37 

from	 front	 to	 back	 the	 areas	 of	 the	 nasal	 cavity	 are	 the	 nasal	 vestibule,	 the	 respiratory	38 

region,	and	the	olfactory	region.	The	nasal	cavity	 is	divided	by	the	septum	to	form	the	 left	39 

and	 right	 nares,	 which	 lead	 into	 the	 left	 and	 right	 choana	 before	 opening	 onto	 the	40 

nasopharynx	 at	 the	 top	 of	 the	 throat.	 	 The	 turbinates	 bound	 the	 nasal	 walls	 and	 are	41 

responsible	for	air	conditioning	and	the	large	mucosal	surface	area	of	the	nasal	cavity.	The	42 

nose	is	also	the	main	port	of	entry	for	many	pathogens.	The	first	barrier	to	foreign	bodies	is	43 

hair	at	the	entrance	to	the	nares,	the	nostrils,	which	successfully	keeps	out	larger	particles.	44 

The	 entire	 surface	 of	 the	 nasal	 cavity	 is	 covered	 in	 a	 mucus	 layer,	 which	 traps	 smaller	45 

particles.	Mucus	is	an	aqueous,	viscoelastic	and	adhesive	gel	
4
	that	contains	several	types	of	46 

mucins	 (abbreviated	 to	 MUC)	 MUC1,	 MUC4,	 MUC5A	 and	 MUC5B,	 MUC16,	 that	 are	47 

produced	by	either	goblet	cells	or	mucus	subglands.
5,	6
	Cilia	perform	a	mechanical	 clearing	48 

role	termed	mucociliary	clearance	by	beating	and	thus	transporting	the	mucus	blanket	with	49 

entrapped	pathogens	to	the	back	of	the	throat	at	a	rate	of	5-6	mm	per	minute,	either	to	be	50 

destroyed	 in	 the	 stomach	 or	 expectorated	 via	 sneezing	 and/or	 coughing.	 This	 function	51 
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minimises	the	amount	of	particles	able	to	enter	the	body	through	the	mucosal	surface.
7
	The	52 

nasal	 route	 has	 been	 used	 to	 deliver	 vaccines	 for	 respiratory	 infections	 and	 sexually	53 

transmitted	infections.
8
	The	rationale	for	targeting	mucosal	tissue	in	the	genital	tracts	can	be	54 

attributed	to	the	mucosal	immune	system.		55 

	56 

The	Mucosal	Immune	System	57 

The	 mucosal	 immune	 system	 provides	 local	 protection	 against	 pathogens	 that	 enter	 the	58 

body	through	the	mucosal	membranes.	The	mucosal	 immune	activities	are	associated	with	59 

lymphoid	 tissues,	 i.e.	 mucosa-associated	 lymphoid	 tissue	 (MALT),	 which	 is	 present	 in	60 

mucosal	 tissue	 in	 the	 nose,	 lungs,	 gastrointestinal	 tract	 and	 vaginal/rectal	 surfaces.
9
	 The	61 

MALT	 is	classified	 into	specific	subcompartments,	depending	on	the	 location,	 including	the	62 

gut-associated	 lymphoid	 tissue	 (GALT),	 nasopharynx-associated	 lymphoid	 tissue	 (NALT),
10
	63 

bronchus-associated	 lymphoid	 tissue	 (BALT).	 The	 mucosal	 routes	 commonly	 used	 for	64 

vaccination	strategies	are	depicted	in	Figure	1.	The	mucosal	immune	systems	are	protected	65 

by	 immune	 cells	 that	 populate	 the	 region	 along	 the	mucosal	 surfaces,	 and	 also	 epithelial	66 

cells	 and	 mucus	 that	 acts	 as	 physical	 barrier	 before	 the	 pathogen	 gain	 access	 to	 the	67 

underlying	tissues.		68 

	69 

[Figure	1	near	here]	70 

	71 

Respiratory	Epithelial	Cells	72 

The	 epithelial	 cell	 layers	 cover	 the	 mucosal	 surfaces	 including	 the	 respiratory,	73 

gastrointestinal	and	urogenital	tracts	exposed	to	the	outer	environments.	The	epithelial	cell	74 

layer	acts	as	a	barrier	 that	 is	equipped	with	some	supporting	elements	such	as	 the	mucus	75 

and	cilia	in	preventing	penetration	of	pathogens	(Figure	2).		76 

Furthermore,	 the	 epithelial	 cells	 can	 detect	 and	 uptake	 pathogenic	 organisms	 and/or	77 

antigenic	 components	 by	 performing	 nonspecific	 endocytosis	 or	 interacting	 with	 pattern	78 

recognition	receptors	such	as	Toll-like	receptors	(TLRs).
11-14

	The	epithelial	cells	together	with	79 

lymphocytes	 and	 underlying	 antigen	 presenting	 cells	 (e.g.	 dendritic	 cells	 (DCs)	 and	80 

macrophages),	 cytokines	 and	 chemokines	 perform	 an	 innate,	 non-specific	 and	 adaptive	81 

immune	 response	 to	 encounter	 the	 invasion	 of	 pathogenic	 organisms	 or	 immunogenic	82 

substances.
	14,15

		83 

	84 

[Figure	2	near	here]	85 
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Nasopharynx-Associated	Lymphoid	Tissue	(NALT)	86 

The	NALT	can	be	simply	defined	as	organized	mucosal	immune	system	in	the	nasal	mucosa	87 

that	 consist	of	 lymphoid	 tissue,	B	cells,	T	 cells	and	antigen	presenting	cells	 (APCs)	and	are	88 

covered	 by	 an	 epithelial	 layer	 containing	 memory	 (M)	 cells.
16
	 M	 cells	 are	 present	 in	 the	89 

epithelial	 cell	 layers	 and	 have	 specialization	 in	 transporting	 antigen	 across	 the	90 

epithelium.
17,18

		91 

	92 

Whenever	the	nasal	mucosa	 is	exposed	to	pathogens	or	antigenic	substances,	the	 intruder	93 

will	 interact	with	the	mucosal	 immune	system.	The	type	of	 interaction	 is	highly	dependent	94 

on	the	characteristics	of	the	antigen.	The	pathogen	or	immunogenic	substances	may	be	able	95 

to	pass	through	the	nasal	epithelium	and	 interact	with	the	APCs	such	as	macrophages	and	96 

DCs.	 These	 APCs	 will	 process	 the	 antigen	 and	 migrate	 to	 the	 lymph	 node	 where	 the	97 

immunogenic	 portion	 will	 be	 presented	 to	 the	 T	 cells.	 This	 marks	 the	 activation	 of	 the	98 

immune	 response	 cascade.	 A	 soluble	 antigen	 might	 be	 recognized	 by	 the	 APCs,
19
	 while	99 

particulate	antigen	is	generally	taken	up	by	the	M	cells	and	transported	to	the	NALT.
20
	The	100 

NALT	 is	 also	 drained	 to	 the	 lymph	 node	 where	 further	 antigen	 processing	 will	 occur.	 A	101 

schematic	representation	of	 this	process	 in	more	detail	mechanisms	 is	presented	 in	Figure	102 

3
21
.		103 

[Figure	3	near	here]	104 

	105 

Immunoglobulin	A	(IgA)	106 

In	 addition	 to	 the	 MALT,	 the	 mucosal	 immune	 system	 also	 produces	 the	 antibody	107 

immunoglobulin	 A	 (IgA),	 that	 plays	 an	 important	 role	 in	 mucosal	 immunity	 at	 mucosal	108 

surfaces.
22
	 IgA	constitutes	up	to	15	%	of	the	total	 immunoglobulin,	which	is	predominantly	109 

present	in	external	secretions	including	the	mucus	in	the	bronchial,	urogenital	and	digestive	110 

tracts,	saliva	and	tears.
23
	It	was	found	that	the	production	of	IgA	in	humans	could	be	over	1	111 

mg/ml	 in	 secretions	associated	with	 the	mucosal	 surfaces.
18
	A	 small	amount	of	 IgA	can	be	112 

found	 in	 the	 serum	 while	 most	 of	 the	 IgA	 is	 located	 in	 external	 secretions	 known	 as	113 

secretory	IgA	(sIgA).
24
	IgA	consist	of	a	dimer	or	tetramer,	a	joining	J-chain	polypeptide	and	a	114 

polypeptide	chain	called	the	secretory	component.	
24,	25

	IgA	has	several	functions	in	mucosal	115 

defense	including	the	entrapment	of	antigens	or	pathogens	in	mucus	to	prevent	them	from	116 

direct	 contact	 with	 the	 mucosal	 surface.
15,	26

	 In	 addition,	 sIgA	 may	 also	 block	 or	 provide	117 

steric	 hindrance	 to	 surfaces	 of	 pathogenic	molecules	 that	may	 inhibit	 their	 attachment	 to	118 

the	epithelium.
27
	119 
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The	 predominance	 of	 IgA	 in	 mucosal	 areas	 is	 a	 result	 of	 mutual	 collaboration	 between	120 

plasma	cells	and	epithelial	cells.	The	activated	plasma	cells	in	the	lamina	propria,	adjacent	to	121 

mucosal	 surfaces	 produce	 polymeric	 IgA	 (pIgA),	 while	 the	 epithelial	 cells	 in	 the	 mucosal	122 

surfaces	 express	 an	 Ig	 receptor	 called	 the	 polymeric	 Ig	 receptor	 (pIgR).	 The	 released	 pIgA	123 

from	activated	plasma	cells	binds	to	pIgR,	and	is	then	taken	up	into	the	cell	via	endocytosis.	124 

IgA	 is	 transported	 across	 mucosal	 epithelial	 cells	 before	 being	 released	 onto	 the	 luminal	125 

surface	of	the	epithelial	cells.	Proteolysis	cleavage	of	the	pIgR	allows	IgA	to	be	secreted	into	126 

mucosal	secretions.	
15,	25,	28

		127 

	128 

Mucosal	Vaccines		129 

New	vaccine	formulations	should	be	able	to	induce	innate	and	adaptive	immune	response;	130 

involving	antigen-specific	memory	T	and	B	cells	that	will	respond	effectively	to	the	invading	131 

pathogens.
29,	30

	 Interaction	with	pathogens	or	antigens	can	produce	the	IgA	secretion	as	an	132 

antibody	 response.
31
	 Intracellular	 antigens,	 can	 be	 produced	 by	 invading	 viruses	 that	133 

replicate	within	 the	 host	 cell,	 or	 derive	 from	 cytoplasmic	 bacteria,	 while	 the	 extracellular	134 

antigens	 include	 bacteria,	 parasites,	 and	 toxins	 in	 the	 tissues.	 Intracellular	 antigens	 are	135 

generally	processed	in	the	host	cells,	coupled	to	a	major	histocompatibility	complex-I	(MHC-136 

I),	a	cell	surface	molecule,	and	transported	to	the	cell	surface.
32,32

	The	presence	of	MHC-I	on	137 

the	 cell	 surface	will	 lead	 to	 activation	 of	 CD8+	 T-cells	 to	 become	 cytotoxic	 T-lymphocytes	138 

(CTLs).	 Extracellular	 antigens	 are	 endocytosed	 and	 presented	 on	 MHC-II	 molecules	 for	139 

activation	of	CD4+	T-helper	(Th)	cells.
32-34

		140 

	141 

The	activation	of	Th	cells	will	release	a	specific	set	of	cytokines	that	modulate	the	B	cell	and	142 

CD8+	CTL	immune	response,	depending	on	the	nature	of	the	stimulant.
35
	Th	cell	types	Th-1,	143 

Th-2	 or	 Th-17	 will	 be	 induced	 accordingly.	 A	 Th-1	 response	 develops	 in	 the	 presence	 of	144 

interleukin	12	(IL-12),	which	is	in	turn	synthesized	primarily	by	DCs	and/or	natural	killer	(NK)	145 

cells	in	the	presence	of	bacteria	or	virus.	The	Th-1	response	is	marked	by	the	production	of	146 

the	Th-1	cytokines	e.g.	interferon-gamma	(IFN-γ)	and	tumour	necrosis	factor-beta	(TNF-b).	A	147 

Th-2	 response	 is	 driven	 by	 the	 presence	 of	 IL-4	 and	 results	 in	 the	 production	 of	 specific	148 

cytokines	 IL-4,	 IL-5,	 IL-9	and	 IL-13.
36
	 It	 can	be	seen	 that	 the	production	of	 IL-4	generates	a	149 

feedback	loop	that	results	in	increased	generation	of	a	Th-2	response	at	the	local	site.		150 

	151 

Nasal	 vaccination	 can	 also	 result	 in	 stimulation	 of	 Th-17	 CD4+	 cells.	 Th-17	 cells	 are	152 

responsible	for	the	secretion	of	the	proinflammatory	interleukins	IL-17A	and	IL-22,	as	well	as	153 
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IL-17F	 and	 IL-21.	 It	 Is	 known	 that	 the	 Th-17	 family	 of	 cytokines	 respond	 to	 extracellular	154 

bacterial	and	fungal	pathogens,	and	Th-17	cells	enhance	generation	of	Th-1	cells	through	an	155 

increased	 IFN-g	 activation	 giving	 rise	 to	 a	 Th-1/Th-17	 immune	 response	 that	 activates	156 

macrophages	 and	 other	 innate	 responses.
36-38

	 Stimulation	 of	 epithelial	 cells	 by	 the	 Th-17	157 

family	of	cytokines	can	aid	tissue	repair	and	secretion	of	antimicrobial	peptides,	which	can	158 

exert	a	protective	effect	in	pulmonary	infection.
39
	There	is	contradictory	evidence,	however,	159 

regarding	 the	 role	 of	 Th-17	 response	 in	 nasal	 immunization.	 Early	work	 on	 the	 role	 of	 Th	160 

polarization	 in	 nasal	 immunization	 indicated	 that	 this	 route	 always	 promotes	 a	 Th-17	161 

response. 
40
	 Later	 research	 has	 indicated	 that	 the	 response	 is	 more	 nuanced,	 with	 some	162 

contradictory	evidence	regarding	advantages	and	disadvantages	of	IL-17A	induction.
41,42,	43

 163 

Predominance	of	one	set	of	cytokines	over	the	other	is	generally	indicative	of	polarization	of	164 

Th	responses,	for	example	the	presence	of	IL-4	and	absence	of	IFN-γ	indicate	a	classical	Th-2	165 

polarized	 immune	 reaction
44
	 although	 these	 cytokines	 can	 also	 be	 released	 at	 the	 same	166 

time.
45,46,	 47

	 The	 varying	 cytokine	 profiles	 related	 to	 CTL	 and	 antibody	 production	 are	167 

fundamental	 in	 affording	 protection	 against	 a	 specific	 pathogen.	 Specific	 macrophage	168 

activation	was	found	to	play	a	crucial	role	in	the	eradication	of	Mycobacterium	tuberculosis	169 

bacterial	 infections,
48
	 showing	that	 the	 induction	of	specific	 immune	responses	may	play	a	170 

key	role	in	determining	whether	a	given	vaccine	product	is	effective.	171 

	172 

The	 recently	discovered	 innate	 lymphoid	 cells	 (ILCs)	 act	 as	 an	early	 source	of	 cytokines	 to	173 

regulate	and	direct	mucosal	immune	responses. 
49
	Unlike	B	or	T	cells,	however,	they	do	not	174 

exhibit	 antigen	 specificity.	 Group	 1	 ILCs	 (ILC1s)	 include	 NK	 cells	 and	 produce	 Th-1	 type	175 

cytokines	IFN-γ	and	tumor	necrosis	factor-α	(TNF-α	);	group	2	ILCs	(ILC2s)	produce	Th-2	type	176 

cytokines	 IL4,	 IL-5	and/or	 IL-13,	while	group	3	 ILCs	 (ILC3s)	 include	 lymphoid	 tissue	 inducer	177 

cells	that	produce	Th-17	type	cytokines	IL-17	and/or	IL-22.	Both	ILC1s	and	ILC3s	have	been	178 

implicated	 in	 type	 1	 and	 Th17	 cell-mediated	 immunity	 and	 disease.
50
	 Because	 they	 are	179 

involved	in	early	release	of	cytokines	at	mucosal	sites,	ILCs	have	been	implicated	in	directing	180 

immune	response	at	the	mucosal	surface,	as	shown	by	a	number	of	recent	studies.	
51,	52

	NK	181 

cells	 and	 ILC1-like	 cells	 damped	 the	 immune	 response	 after	 vaginal	 administration	 of	182 

ovalbumin	 and	 cholera	 toxin	 to	 mice.
53
	 NK	 cells	 have	 been	 shown	 to	 enhance	 Th	183 

proliferation	through	IFN-γ	production,	
54
	while	ILC2s	play	a	role	in	directing	Th-2	response.

55
	184 

There	 is	 also	 evidence	 that	 ILCs	 can	 act	 as	 APCs,	 although	 this	 may	 be	 specific	 to	 the	185 

lymphoid	 tissue	 site	 involved	 and	 is	 thought	 to	 occur	 to	 a	 lesser	 extent	 than	 through	 the	186 

professional	 APCs.
55
	 Finally	 the	 regulatory	 T-cells	 (Tregs)	 play	 a	 role	 in	 ILC	 and	 Th	187 
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communication,
54
	 as	 well	 as	 helping	 to	 directly	 control	 Th	 response,	 which	 is	 particularly	188 

important	in	autoimmune	dysfunction	discussed	later.
56
		189 

	190 

Advantages	of	nasal	vaccine	delivery		191 

The	nasal	route	has	great	potential	for	vaccination	due	to	the	organized	immune	systems	of	192 

the	nasal	mucosa.	The	nasal	epithelium	encloses	follicle-associated	lymphoid	tissues	that	are	193 

important	 in	 inducing	mucosal	 immune	response.	The	 immune	cells	 such	as	nearby	B-cells	194 

can	 produce	 IgA	 at	 the	 mucosal	 sites	 where	 the	 respiratory	 pathogens	 invade.
57
	 Many	195 

published	 studies	 have	 shown	 that	 nasally	 administered	 vaccines	 induce	 serum	 IgG	 and	196 

mucosal	 IgA	 that	 are	 important	 for	 deliberating	 enhanced	 efficacy	 of	 vaccine.
57,	 58

	 The	197 

enhanced	 induction	of	mucosal	 IgA	antibodies	has	been	shown	to	play	a	significant	role	 in	198 

neutralizing	 pathogens	 such	 as	 Streptococcus	 pneumonia
59
	 	 and	 measles	 viruses

60
	 and	199 

preventing	further	 infection.	Moreover,	 intranasal	 immunization	has	also	been	reported	to	200 

induce	cross-reactive	antibodies	that	might	be	indicative	of	cross-protection.
61,	62

	This	effect	201 

can	make	 vaccines	more	 efficient	 by	 reducing	 the	 number	 of	 vaccinations	 required	 since	202 

cross-protective	 vaccines	may	produce	 cross-reactive	 antibodies	 that	 recognize	more	 than	203 

one	antigen.	Given	the	high	cost	of	many	antigen	production	systems	this	offers	a	distinct	204 

advantage	over	other	routes.			205 

	 	206 
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	207 

Therapeutic	vaccines	208 

While	 much	 of	 the	 work	 on	 nasal	 vaccine	 delivery	 is	 currently	 focused	 on	 prophylactic	209 

vaccines,	the	access	that	the	nasal	route	provides	to	the	mucosal	 immune	system	also	has	210 

relevance	 for	 therapeutic	 vaccines	 used	 to	 treat	 rather	 than	 prevent	 disease.	 Nasal	211 

immunotherapy	 for	 treatment	of	various	cancers	and	Alzheimer’s	are	currently	generating	212 

much	interest.	
63,64

	A	particular	focus	is	the	use	of	therapeutic	vaccines	for	the	treatment	of	213 

autoimmune	diseases	such	as	type	I	diabetes,	atherosclerosis,	multiple	sclerosis,	rheumatoid	214 

arthritis,	 lupus	 and	 Crohn's	 disease.	 These	 are	 caused	 by	 unchecked	 immune	 response	 to	215 

molecules,	termed	self-antigens,	that	are	capable	of	inducing	an	immune	response	in	a	host	216 

but	 should	 not	 induce	 an	 immune	 response	 in	 a	 healthy	 individual	 that	 produces	 them,	217 

whereas	 undesirable	 response	 to	 innocuous	 environmental	 antigens	 gives	 rise	 to	 allergy.	218 

The	autoimmune	and	inflammatory	response	is	governed	by	regulatory	T-cells	(Tregs),	with	219 

poor	 function	 or	 reduced	 numbers	 of	 Tregs	 being	 associated	 with	 autoimmune	 disease.	220 

Treatments	 for	 this	 family	of	diseases	are	often	non-specific,	or	use	 immune	suppressants	221 

that	increase	susceptibility	to	infection.	Development	of	effective	therapeutic	vaccine	would	222 

correct	 the	 inappropriate	 immune	 response	 through	 generation	 of	 tolerance	 to	 the	 self-223 

antigen(s).
	65		

Treg	cells	 that	express	 the	 forkhead	box	P3	 transcription	 factor	are	known	as	224 

FoxP3+T-cells,	with	dysfunction	of	this	subset	of	Tregs	being	implicated	in	a	range	of		chronic	225 

inflammatory	disorders.
66	
It	has	long	been	known	that	oral	delivery	is	effective	in	generating	226 

antigen	tolerance,	through	deliberate	introduction	of	the	antigen	to	food.
67
		More	recently	it	227 

has	been	shown	that	a	similar	tolerance	induction	can	be	achieved	via	nasal	delivery	through	228 

activation	of	the	DCs	in	the	draining	lymph	nodes		to	enhance	induction	of	FoxP3+T-cells. 
68
		229 

Examples	of	 successful	nasal	delivery	 include	 immunization	 to	 suppress	atherosclerosis
69,70

	230 

and	arthritis. 
71
	The	effect	of	adjuvant	on	tolerance	is	discussed	in	a	later	section.	231 

	232 

Formulation	approaches		233 

Current	 nasal	 formulations	 include,	 solutions	 (drops	 or	 sprays),	 powders,	 gels	 and	 solid	234 

inserts. 
72
	Solutions	are	often	described	in	the	literature	as	they	are	both	the	easiest	way	of	235 

formulating	a	vaccine	for	an	in	vivo	study	or	clinical	trial,	and	are	the	easiest	to	administer	236 

for	example	 in	mice	where	 the	 liquid	 is	often	pipetted	directly	 into	 the	nostril.	 In	humans	237 

this	often	means	that	the	subject	either	has	to	remain	laying	down	or	with	their	head	held	238 

back	 for	 a	period	of	 time	after	 administration,	which	 is	 not	 realistic	 in	 a	mass	 vaccination	239 

setting.	Sprays	are	easier	to	administer	and	deliver	vaccine	further	into	the	nasal	cavity,	but	240 
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may	still	 leak	out	of	 the	nostril	or	drip	 into	 the	oral	cavity.	 Including	a	gelling	agent	 in	 the	241 

formulation	 that	 is	 either	 mucoadhesive	 or	 able	 to	 penetrate	 through	 mucus	 offers	242 

increased	residence	time,	while	advantages	of	solid	formats	such	as	powders	or	solid	inserts	243 

include	 ease	 of	 manufacture	 and	 stability,	 while	 liquids	 are	 more	 prone	 to	 degradation.	244 

Taste	may	also	be	a	 factor	 as	 formulations	may	 travel	 into	 the	oral	 cavity,	 although	given	245 

that	 vaccines	 tend	 to	 be	 administered	once	or	 twice	only,	 this	 is	 less	 of	 an	 issue	 than	 for	246 

medicines	that	are	taken	on	a	regular	basis.			247 

	248 

A	 range	 of	 naturally-occurring,	 synthetic	 and	 semi-synthetic	 polymers	 have	 been	249 

investigated	 as	 gelling	 agents	 in	 nasal	 delivery	 of	 vaccine.	 Administering	 as	 a	 gel	 should	250 

improve	 retention,	 although	 there	 is	 ongoing	 debate	 as	 to	 whether	 positively	 charged	 or	251 

anionic	 polymers	 offer	 better	 uptake.	 Those	 that	 have	 the	 ability	 to	 adhere	 to	 mucosal	252 

surfaces	and	selectively	target	M	cells	or	APCs,	should	be	the	most	effective.	
18,	26

	Chitosan	253 

has	 been	 much	 investigated,	 and	 is	 a	 polysaccharide	 manufactured	 from	 chitin	 found	 in	254 

crustacean	shells	or	fungi	by	a	deacetylation	process.	 	Because	of	the	range	of	sources	this	255 

polymer	is	available	in	a	range	of	molecular	weights,	but	all	are	made	up	of	repeating	units	256 

of	 glucosamine	 and	 N-acetylglucosamine	 and	 bear	 a	 positive	 charge	 making	 it	257 

mucoadhesive.	Varying	the	degree	of	deacetylation	affects	the	charge,	as	does	methylation.		258 

Methylating	chitosan	offers	some	advantages	for	mucosal	delivery.		259 

	260 

Powder	formats	have	the	advantage	of	increased	stability	over	their	liquid	counterparts	and	261 

ability	to	target	further	 into	the	nasal	cavity.	An	example	of	this	 is	the	Anthrax	spray-dried	262 

powder	 formulation	 suitable	 for	 mass	 vaccination	 in	 developed	 and	 developing	 world	263 

settings.
73
	Possible	disadvantages	of	powders	include	the	ease	and	cost	of	administration	if	264 

specialist	 applicators	 are	 required.	 Solid	 inserts	 are	 tablets	 designed	 to	 dissolve	 when	 in	265 

contact	with	mucus	 and	 have	 been	 investigated	 for	 vaginal	 delivery	 in	 humans	 and	 nasal	266 

delivery	in	livestock	animals,	
74,75

	and	have	many	similarities	with	sublingual	formulations.	267 

	268 

Soluble	 antigens	 tend	 to	 be	 less	 immunogenic	 than	 particulate	 formulations,	 additionally	269 

encapsulating	 antigen	 into	particles	may	 improve	 the	 transport	of	 the	antigens	 across	 the	270 

nasal	 mucosa.	 For	 this	 reason	 there	 has	 been	 a	 great	 interest	 in	 developing	 particulate	271 

systems	 as	 carriers	 for	 vaccine	 products.
76-78

	 Aspects	 such	 as	 vaccine	 formulations	 and	272 

delivery	strategies	are	important	in	designing	new	vaccines	so	that	efficient	induction	of	the	273 

innate	and	adaptive	immune	response	can	be	obtained	according	to	the	target	pathogen.
18,	

274 
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26
	Particulate	delivery	 systems	 that	can	 imitate	pathogens	 such	as	polymeric	nanoparticles	275 

and	liposomes	are	considered	a	promising	approach	for	nasal	vaccine	delivery.	276 

Nanoparticles	 are	 particles	 in	 the	 nanometer	 1x10
-9
	 m	 size	 range	 and	 can	 be	 made	 of	277 

polymers	such	as	chitosan,	alginate	or	synthetic	co-polymers	such	as	poly(lactic-co-glycolic	278 

acid	 (PLGA).	Varying	 the	molecular	weight	and/or	 ratio	of	 lactic	 to	glycolic	acid	affects	 the	279 

rate	of	degradation	enabling	rate	of	release	to	be	controlled.	But	PLGA	nanoparticles	bear	a	280 

negative	 charge,	 which	 is	 not	 compatible	 with	 mucosal	 delivery,	 hence	 the	 plethora	 of	281 

papers	 investigating	 various	 coatings	 or	 modifications	 to	 adjust	 this.	 Those	 with	 positive	282 

charge	and	enhanced	residence	have	tended	to	give	the	best	immunological	responses	with	283 

high	 serum	antibody	 titers	 and	 sIgA	 levels.
79	
Poly(lactic	 acid)	 (PLA)	 and	polyethylene	glycol	284 

(PEG)	 can	 also	 be	 combined	 to	 form	 co-block	 polymers	 able	 to	 incorporate	 antigen	
80
,		285 

varying	the	molecular	weight	of	the	PEG	and/or	ratio	of	PEG	to	PLA	alters	physicochemical	286 

characteristics,	release	and	hence	efficacy.
81
	287 

Other	 polymers	 investigated	 include	 pullulan,	 a	 naturally	 occurring	 polysaccharide	288 

copolymer	 made	 up	 of	 maltotriose	 subunits	 from	 fungus;
82
	 pectin,	 a	 naturally	 occurring	289 

polysaccharide	found	in	fruits;	and	the	biodegradable	synthetic	polymer	polycaprolactone.	
83
	290 

Liposomes	are	nano-	or	micrometre	 sized	particles	made	up	of	one	or	more	 lipid	bilayers,	291 

which	 have	 the	 ability	 to	 incorporate	 antigen	 at	 their	 surface	 or	 inside	 the	 aqueous	 core.	292 

There	 are	 numerous	 examples	 of	 coated	 and	 un-coated	 liposomal	 formulations	 used	 to	293 

deliver	vaccine	 intranasally	 in	a	range	of	 formats.
84-90

	Chen	showed	that	trimethylchitosan-294 

coated	 liposome	 powders	 offered	 improved	 uptake	 in	 ex	 vivo	 nasal	 penetration	 studies	295 

when	 compared	 with	 the	 same	 liposomes	 coated	 in	 chitosan.
91
	 Liposomes	 that	 also	296 

comprise	 lipid	or	other	material	derived	 from	virus	are	known	as	virosomes,	with	material	297 

from	influenza	virus	such	as	hemagglutinin	(HA)	and	neuraminidase	being	commonly	used.	298 

92-102
		299 

Currently	 there	 is	 more	 evidence	 to	 support	 the	 hypothesis	 that	 particles	 smaller	 than	300 

300nm	are	 the	most	 effective	 at	 crossing	mucus,	
103
	 but	 there	 is	 also	 evidence	 to	 suggest	301 

that	 larger	 particles	 are	 also	 able	 to	 penetrate.	 Results	 from	 intranasal	 administration	 of	302 

mucoadhesive	 microparticles	 suggest	 that	 penetration	 of	 the	 entire	 particle	 may	 not	 be	303 

necessary	to	 induce	an	immune	response.
104
	 It	 is	 likely	that	the	overall	combination	of	size	304 

and	 charge	 are	 key	 to	 achieving	 maximum	 immunological	 effect.	 Some	 examples	 of	305 

particulate	delivery	systems	investigated	for	nasal	delivery	of	vaccine	are	shown	in	Table	1.		306 

	307 

[Table	1	near	here]	308 
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	309 

Adjuvants	310 

Some	materials	 added	 to	 form	 gels	 or	 particles	 may	 act	 as	 adjuvants	 as	 well	 as	 delivery	311 

vehicles.	 Alternatively,	 adjuvants	 may	 be	 added	 as	 a	 separate	 component	 to	 a	 vaccine	312 

product.	Adjuvants	are	materials	added	to	a	vaccine	to	boost	the	immune	response	and	may	313 

also	 reduce	 the	 amount	 of	 antigen	 required	 to	 elicit	 an	 immune	 response.	 Alum	 is	 often	314 

used	 in	 traditional	 vaccines	 but	 is	 not	 effective	 when	 administered	 mucosally.	 Judicious	315 

choice	of	adjuvant	can	direct	the	arm	of	the	immune	system,	as	described	previously.	Often	316 

particulate	delivery	systems	are	believed	to	confer	both	 the	benefits	of	optimised	delivery	317 

across	 mucus/mucosal	 tissue	 and	 inherent	 adjuvanting	 effects.	 Many	 studies	 have	318 

investigated	 these	 abilities	 and	ascribed	 immune	boosting	 response	 to	one,	 other	or	both	319 

qualities.
26
	320 

Mucosal	 adjuvants	 that	 have	 been	 tested	 for	 intranasal	 vaccine	 delivery	 including:	 MF59	321 

emulsion	(containing	squalene	oil,	the	surfactants	Span	85	and	Tween	80	and	citrate	buffer)	322 

105,	 106
,	 lipopolysaccharide,	

84,	 107
	 TLR	 agonists,

41,108,109
	 chitosan,	

110
	 trimethylchitosan,

91
	
110
	323 

bacterial	 outer	 membrane	 protein
111
	 and	 cholera	 toxin

112
	 or	 heat-labile	 enterotoxin	 (LT)	324 

from	E.coli.
113
	Some	side	effects	have	been	found	with	the	use	of	bacterial	toxin	when	given	325 

intranasally,	 including	 Bell’s	 palsy	 (Facial	 paralysis)	 and	 other	 adverse	 events	 related	 to	326 

disorders	of	 the	 facial	nerves.
114-116

	 It	has	been	 suggested	 that	 the	 central	nervous	 system	327 

was	 involved	 in	 the	palsy	as	 the	bacterial	 toxin	was	re-directed	 into	 the	brain.	
115,	117

	Thus,	328 

the	use	of	 LT	as	 vaccine	adjuvant	 is	no	 longer	 recommended.	Mast	 cell	 activators	 such	as	329 

compound	 48/80	 (C48/80)	 have	 shown	 promise	 in	 Anthrax	 vaccine.
73
	 As	 described	330 

previously,	adjuvants	can	help	to	polarize	immune	response	and	this	effect	should	be	taken	331 

into	account	when	considering	adjuvant	for	a	particular	vaccine	type.	Mice	immunized	with	332 

an	influenza	vaccine	adjuvanted	with	a	synthetic	TLR-4	agonist	via	the	nasal	route,	exhibited	333 

a	transient,	enhanced	 IL-17A	pathology,	characterised	by	weight	 loss	and	morbidity,	which	334 

was	significantly	greater	than	observed	in	mice	given	no-adjuvanted	antigen.
41
	The	effect	of	335 

adjuvants	on	induction	of	tolerance	has	also	been	noted;	an	intranasal	co-administration	of	336 

hen	 egg	 lysozyme	with	 a	 TLR2	 ligand	 enhanced	 Th1-type	 antibodies	 in	 one	 case, 
118
	while	337 

another	TLG2	 ligand,	Pam3Cys,	was	 shown	to	 increase	 the	 risk	of	developing	autoimmune	338 

disease	
119
	 PLGA	 nanoparticles	 have	 been	 shown	 to	 boost	 tolerance	 in	 suppression	 of	339 

arthritis	
120
	and	further	research	by	the	same	group	has	shown	that	they	are	responsible	for	340 

generation	of	enhanced	Treg	cell	induction.
68
			341 

	342 
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	343 

Current	nasal	vaccine	products	344 

Licensed	 intranasal	 vaccines	 for	 humans	 include	 the	 influenza	 vaccines	 FluMist/Fluenz™	345 

(MedImmune,	 MD,	 USA)
121
	 	 and	 the	 Nasovac™	 live	 attenuated	 influenza	 nasal	 spray	346 

manufactured	 by	 the	 Serum	 Institute	 of	 India,	 which	 was	 developed	 alongside	 its	 live	347 

attenuated	 A(H1N1),	more	 commonly	 known	 as	 swine	 flu.
122
	 No	 serious	 side	 effects	 have	348 

been	 reported	 associated	 with	 the	 administration	 of	 Nasovac	 indicating	 its	 safety,
123
	349 

although	 its	 efficacy	 data	 are	 not	 sufficiently	 available	 yet.
124
	 Until	 recently	 FluMist	 was	350 

considered	 one	 of	 the	 most	 successful	 intranasal	 vaccines,	 it	 is	 well	 tolerated	 and	 had	351 

exhibited	 good	 efficacy.
125
	 A	 runny	 nose/nasal	 congestion	 has	 been	 reported	 as	 the	most	352 

common	adverse	events	of	Flumist,	with	mild	 to	moderate	 in	 severity.
121
	However	The	US	353 

CDC	 (Centre	 for	 Disease	 Control)	 Advisory	 Committee	 on	 Immunization	 Practices	 (ACIP)	354 

recently	 voted	 that	 	 the	 Flumist	 nasal	 spray	 live	 attenuated	 influenza	 vaccine	 (LAIV)	 (sic),	355 

should	 not	 be	 used	 during	 the	 2016-2017	 flu	 season,	 based	 on	 “data	 showing	 poor	 or	356 

relatively	lower	effectiveness	of	LAIV	from	2013	through	2016”.
126
	At	the	time	of	writing	no	357 

further	detail	was	available.	It	should	be	noted	that	a	nasal	Live	Attenuated	Influenza	Virus	358 

(LAIV)	influenza	vaccine	has	been	used	for	over	50	years	in	Russia	and	previously	the	USSR.	359 

Data	 published	 from	 a	 study	 using	 the	 Russian	 intranasal	 vaccine	 showed	 better	 herd	360 

immunity	for	 intranasal	LAIV	than	 inactivated	vaccine.
127
	Herd	 immunity	 is	a	crucial	 impact	361 

of	mas	vaccination	programs;	it	 is	the	immunity	given	to	the	whole	population,	even	those	362 

who	 have	 not	 received	 a	 vaccine,	 because	 enough	 of	 the	 population	 (the	 herd)	 have	363 

received	 the	 vaccine	 that	 the	 infection	 cannot	 effectively	 spread.	 However,	 it	 should	 be	364 

noted	that	the	Russian	LAIV	is	administered	in	2	doses	3	weeks	apart,	which	increases	cost	365 

and	has	the	possibility	of	reducing	compliance.		366 

Targeting	school	age	children	for	influenza	has	two	benefits,	first	this	age	group	tend	to	have	367 

the	highest	rates	of	 influenza	 infection.	Secondly	targeting	children	reduces	 infection	rates	368 

in	 through	 transmission	 from	 this	 group,	 although	 transmission	 rates	 can	 vary.
128
	 In	 the	369 

European	Union	an	intranasal	influenza	vaccine	was	licensed	in	2011.	Damm	et	al	explored	370 

the	possible	effect	of	 introducing	 this	product	 in	Germany	and	concluded	 that	 introducing	371 

the	 vaccine	 to	German	 schoolchildren	would	 lead	 to	 a	 “substantial	 reduction	 in	 influenza-372 

associated	 disease	 at	 a	 reasonable	 cost	 to	 the	 German	 statutory	 health	 insurance	373 

system”.
129
	 Researchers	 looking	 into	 the	 same	 question	 for	 Thailand	 reached	 similar	374 

conclusions	with	provisos	based	on	willingness	to	pay	and	contact	between	age	groups.	
130
	375 

This	 study	 raised	 the	 issue	of	effectiveness	across	countries	where	healthcare	systems	are	376 
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either	 new	 or	 emerging	 and	 differences	 in	 rates	 and	 timing	 of	 seasonal	 outbreaks.	 These	377 

findings	 highlight	 the	 differences	 between	 high	 and	 low-	 to	middle-income	 countries	 and	378 

demonstrate	 the	 need	 to	 carefully	 evaluate	 the	 target	 population	 and	 seasonal	 factors	379 

before	designing	or	selecting	a	vaccine	product.		380 

	381 

[Table	2	near	here]	382 

	383 

A	 recent	 review	 describes	 most	 of	 the	 commonly	 encountered	 nasal	 delivery	 devices	384 

currently	 on	 the	 market.	
72
	 Additionally,	 there	 is	 a	 range	 of	 nasal	 delivery	 strategies	 at	385 

various	 stages	 along	 the	 pre-clinical-clinical	 pipe-line,	 some	 of	 these	 may	 be	 suitable	 for	386 

vaccine	delivery	either	in	their	current	formats	or	with	some	adaptation.	A	selection	of	these	387 

is	 shown	 in	 Table	 2	 and	 will	 be	 described	 briefly.	 Criticalsorb	 is	 a	 penetration	 enhancing	388 

formulation	 based	 on	 PLGA	 and	 PLA,	 developed	 by	 a	 spin-out	 from	 University	 of	389 

Nottingham,	UK,	currently	there	are	no	details	for	vaccine	application.	The	web-site	of	μco™	390 

System	 (Muco	 System)	 shows	 data	 for	 a	 nasal	 flu	 vaccine	 in	 a	 non-human	 primate	391 

immunogenicity	 study,	 stating	 that	 more	 sIgA	 was	 produced	 in	 the	 mucosal	 membrane	392 

compared	 to	 injection	 and	nasal	 liquid	 spray.	 and	4-times	 greater	 sIgA	 than	 a	 nasal	 liquid	393 

spray.
131
	Optinose	is	a	breath-actuated	device	for	delivering	powder	or	liquid,	a	schematic	of	394 

the	 device	 has	 been	 published	 in	 the	 literature,
132
	 as	 has	 data	 on	 the	 use	 of	 sumitriptan	395 

delivered	via	 the	Optinose	device
133,	134

.	Kurve	 is	a	device	 for	delivering	 liquid	 formulations	396 

“via	a	controlled,	turbulent	flow”, 
135
	the	makers	have	published	results	of	a	pilot	clinical	trial	397 

detailing	their	intranasal	insulin	therapy	for	Alzheimer’s	disease	and	amnestic	mild	cognitive	398 

impairment	 A,
136
	 while	 Archimedes	 Pharma	 developed	 a	 chitosan-based	 formulation,	399 

ChiSysâ	,	that	achieved	good	success	in	a	clinical	trial	for	a	Norovirus	vaccine.
137
	Because	of	400 

the	proprietary	and	often	pre-approval	nature	of	the	devices	described	(with	the	exception	401 

of	 Flumist/Fluenz	 and	 MAD	 Nasal),	 there	 is	 a	 paucity	 of	 information	 regarding	 design	 of	402 

some	 of	 the	 devices	 described	 in	 this	 section.	 The	 interested	 reader	 is	 referred	 to	 the	403 

relevant	 company	 web-sites	 (Table	 2),	 which	 will	 offer	 more	 current	 information	 than	 is	404 

possible	in	this	review.		405 

	406 

Conclusion	407 

Safety	profiles	are	yet	to	be	established	in	humans	for	many	of	the	formulation	approaches	408 

described	 in	 this	 review.	However,	 the	ever-increasing	 range	of	 clinical	 trials	 indicates	 the	409 

accepted	need	 for	 nasal	 vaccines	 that	 are	 easy	 to	 administer	 and	offer	 improved	benefits	410 
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over	other	mucosal	routes	in	terms	of	cost	of	formulation	and	need	for	skilled	personnel	to	411 

administer.	The	obvious	benefits	of	directly	stimulating	 the	mucosal	 immune	response	are	412 

clear,	but	as	yet	have	not	been	fully	realized	with	the	exception	of	those	for	influenza,	which	413 

demonstrate	 the	 efficiency	 of	 this	 route.	 The	 recent	 US	 CDC	 press	 release	 will	 no	 doubt	414 

impact	on	the	pharmaceutical	industry	view	of	riskiness	of	nasal	formats.	But	with	increased	415 

need	 to	 immunize	 large	 populations,	 potentially	 in	 swift	 response	 to	 pandemics	 such	 as	416 

avian,	 swine	 flu	 and	 Ebola	 there	 is	 a	 clear	 need	 to	 have	 strategies	 in	 place.	 The	 interplay	417 

between	 formulation	 or	 carrier	 and	 adjuvant	 in	 directing	 immune	 response	 should	 be	418 

investigated.	 Unfortunately,	 the	 high	 cost	 of	 clinical	 trials	 and	 issues	 with	 correlating	419 

immune	 responses	 in	 animal	 models	 with	 humans	 have	 created	 a	 bottleneck.	 There	 is	 a	420 

growing	body	of	evidence	to	suggest	that	genetic	material	can	be	successfully	delivered	via	421 

this	 route,	 while	 recent	 studies	 have	 also	 demonstrated	 the	 advantages	 associated	 with	422 

combining	 the	 nasal	 with	 other	 routes	 of	 delivery	 or	 even	 combining	 vaccine	 with	423 

microbicide.
138
	 	 This	 review	 has	 focused	 primarily	 on	 prophylactic	 vaccines	 but	 there	 is	424 

encouraging	evidence	that	nasal	delivery	will	have	a	role	to	play	in	the	design	of	therapeutic	425 

vaccines	for	e.g.	cancers	Alzheimer’s	and	autoimmune	diseases.	The	role	of	presentation	is	426 

also	 important	when	designing	pre-clinical	 studies	–	 instillation	of	drops	 is	 relatively	 facile	427 

even	 in	mice,	while	more	 advanced	 formulations	 require	more	 careful	 consideration	 than	428 

those	 administered	 via	 pipette.	 The	 design	 of	 ex	 vivo,	 cell	 culture	 or	 tissue	 models	 that	429 

provide	better	prediction	of	response	in	humans	is	extremely	desirable.	A	“one	size	fits	all”	430 

approach	 is	not	appropriate	for	vaccine	design	where	factors	relating	to	target	population,	431 

disease	 type	 and	 mode	 of	 infection,	 will	 all	 impact	 on	 both	 formulation	 and	 antigen	432 

optimization.		433 

	 	434 
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Table	1	Examples	of	particulate	formulations	with	published	in	vivo	data.	435 

	436 

Particle	type	 Vaccine	 Study	type	 Key	findings	 Literature	

source	

Chitosan	and	HSA	

(human	serum	

albumin)	

Hepatitis	B	

Plasmid	DNA	

Female	C57/BL	

mice	compared	

with	plasmid	

DNA	alone	and	

protein	antigen	

humoral	and	

mucosal	immune	

response	

Lebre	et	al	

2016
139
	

	

polycaprolactone	

/chitosan	

	

Hepatitis	B	

surface	antigen	

(HBsAg)	

C57BL/6	mice	

IN	only.	Varying	

doses	of	HBsAg	

no	comparator	

formulations	

	

Dose-independent	

serum	IgG	and	nasal	

IgA	

Jesus	et	al	

2016
83
	

TMC	 ovalbumin	

compared	with	

PLGA	and	TMC-

coated	PLGA		

Female	Balb/c	

compared	with	

PLGA	and	TMC-

coated	PLGA	

(IM	and	IN)	

Serum	IgG	superior	

to	other	IN	but	

inferior	to	all	IM	

Slutter	et	al	

2010	
79
	

	

chitosan	and	

glycol	chitosan	

	coated	PLGA	

HBsAg	

	

Female	BALB/c	

mice	compared	

with	chitosan	

coated	PLGA	

and	PLGA,	

HBsAg-Alum	

sub-cut.		

GC-PLGA	NPs	could	

induce	significantly	

higher	systemic	and	

mucosal	immune	

response	than	other	

IN	nanoparticles.	

Pawar	et	al	

2013
140
	

PEG-PLA	 HBsAg	

	

BALB/c	mice	

compared	with	

PLA	

nanoparticles	

and	

conventional	

alum-HBsAg	

based	vaccine	

Higher	systemic	and	

mucosal	response	

than	PLA			

Jain	et	al	

2009
80
	

Liposomes	 Influenza	

plasmid	DNA	

(H1N1)	

hemagglutinin	

(HA)	

BALB/c	mice	

challenge	study	

IN	compared	

with	IM	DNA	

alone	(IN	and	

IM)	

Protective	effect	

against	challenge		 	

Wang	

et	al	

2004
85
	

	

Esterified	

hyaluronic	acid	

microparticles	

Commercial	

Influenza	H1N1	

HA	and	LTK63	

or	LTR72	

adjuvants	

	

mice,	rabbits	

and	micro-pigs	

IN	compared	

with	soluble	HA	

+	LTK63,	or	IM	

with	HA	

	

	

Significantly	

enhanced	serum	IgG	

responses	and	

higher	

hemagglutination	

inhibition	(HI)	titers	

than	other	groups	

	

Singh	et	al	

2001
104
	

Glycol	chitosan	

coated	liposomes	

Hepatitis	B	

Plasmid	DNA	

BALB/c	mice	

prime	boost	

Humoral	mucosal	

and	cellular	

Khatri	et	al	

2008	
141
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compared	with	

DNA	alone	(IN)	

and	HBsAg	

protein	(IM)	

response	higher	

than	DNA	alone.	

Cellular	response	

better	than	IM	

protein	antigen	

	

Liposomes/	

hyaluronic	acid	

Yersinia	pestis	

(plague)	

C57BL/6	mice	

No	IM	

comparison	

Th1/Th2	humoral	

immune	response	

Fan	et	al	

2015	
90
	

	

Chitosan-coated	

PLGA		

foot-and-

mouth	disease	

plasmid	DNA		

Challenge	study	

in	cattle	

Higher	mucosal,	

systemic,	and	cell-

mediated	immunity	

than	Chitosan	-	

Inactivated	antigen	

nanoparticles	

Pan	et	al	

2014
142
	

Cationic	

cholesteryl-

group-bearing	

pullulan	

Clostridium	

botulinum	

type-A	

neurotoxin	

subunit	antigen	

BALB/c	mice	 Strong	tetanus-

toxoid-specific	

systemic	and	

mucosal	immune	

responses	

Nochi	et	al	

2010	
82
	

	 	437 
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	438 

Table	2	Currently	Marketed	Technology	for	Nasal	Delivery		439 

Name	 Company	 Presentation	 Drug	type	 Regulator

y	status	

Markete

d	

products	

Company	

web-site	

Criticalsorb	 Critical	

Pharmaceuti

cals	

Powder	or	

aerosol		

Small	

molecule	–	

peptide,		

HGH,insuli

n	

GRAS	

status?	

None	 www.crit

icalphar

maceutic

als.com	

µco™	 Nasal	

Delivery	

System	

Business	

Powder-

based	

mucoadhesi

ve	drug	

carrier	plus	

device	

Anti-

emetic		

Migraine,	

flu	vaccine	

Phase	II,		

	

Phase	I,	

pre-

clinical	

None	 www.snb

l-

nds.co.jp

/en/	

Optinose	 Optinose	 Powder	or	

liquid	plus	

device	

Small	

molecule	

Clinical	

trials	

(various)	

None	 optinose.

com/	

Kurve	 Kurve	 Liquid	plus	

device	

Includes	

Alzheimer’

s		

vaccine	

Phase	II		 None	 www.kur

vetech.c

om	

MAD	nasal	 Teleflex	 Liquid	plus	

device	

Attachme

nt	for	

syringe	to	

atomize	

liquids	

Device	

only/	not	

vaccines	

Markete

d	as	

stand-

alone	

device	

www.tel

eflex.co

m	

None	 Drug	

Delivery	

International	

Solid	insert	 Small	

molecules	

&		insulin	

None	

found	

None	

found	

www.bd

dpharma	

Flumist	

Fluenz	

MedImmune		

(AstraZeneca

)	

Nasal	gel	 Flu	vaccine	 FDA	&	

EMA	

Flumist	

Fluenz	

www.flu

mistquad

rivalent.c

om/	

Bacterial	S	

antigen	

pores	

Tufts	

University	-	

US	

Oral/nasal	

format	not	

stated	

Tetanus	

toxin		

and		

rotavirus	

VP6	

antigen	

None	 None	 www.tuft

s.edu/	

Vaccinetab	 Queen’s	

University	

Belfast,	UK	

Liposomal	

liquid,	

powder	or	

nasal	insert	

Small	

molecules	

and	

antigen	

GRAS	 None	 www.vac

cinetab.c

om	

ChiSys	 Archimedes	

Pharma	

Nasal	gel		 Small	

molecules	

and	

antigen	

Phase	I,	

pre-

clinical	

Small	

molecul

e	
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	442 

Figure	Captions	443 

Figure	 1.	 Routes	 of	 mucosal	 vaccination	 within	 the	 mucosa-associated	 lymphoid	 tissue	444 

(MALT),	 with	 several	 subcompartments	 including:	 the	 nasopharynx-associated	 lymphoid	445 

tissue	 (NALT),	 bronchus-associated	 lymphoid	 tissue	 (BALT),	 gut-associated	 lymphoid	 tissue	446 

(GALT)	and	genital	tract-associated	lymphoid	tissue,	reproduced	from	Lycke	et	al,	2012.
125
	447 

Figure	 2.	 Structure	 and	 function	 of	 respiratory	 epithelial	 cells;	 equipped	with	mucus	 layer	448 

(not	shown)	and	ciliated	cells,	reproduced	from	Grassin-Delyle	(2012)
143
.	449 

Figure	3.	Pathways	demonstrating	how	particulate	antigen	triggers	local	immune	response	in	450 

the	 nasal	 mucosa	 and	 systemic	 immune	 response	 via	 the	 NALT,	 adapted	 from	 Csaba	451 

(2009)
21
.	452 
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