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ABSTRACT

An approximate normal mode analysis of plasma current diffusion 1in
tokamaks 1is presented. The work is based on numericai solutions of the
current diffusion equation ir cylindrical geometry. Eigenvalues and
eigenfunctions are shown for a broad range of plasma conductivity profile
shapes. Three classes of solutions are: considered which correspond ta three
types of tokamak operation. Convenient approximations to the three Llowest
eigenvalues in each class are presented and simple formulae for the current

relaxation time scales are given.
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I. INTRODUCTION

The time scale for current diffusion is often the longest plasma time
scale in a tokamak. It therefore plays an important role in large tokamak
design and operztion. In the TFCX preconceptual uesign sr_udy,1 for example,
the lengchs of the lower-hybrid-driven current rampup and ignited burn phases
were determined by current diffusion time scales.

An understanding of current relaxation is also required {n interpreting
the results of noninductive current drive experiments where purely external
measurements of the toroidal electric field are used to infer the inductively
driven current inside the plasma. Such a procedure is valid only if the
induccively driven current has reached its equilibrium value.

The current relaxation time scale is often referred to as the "skin
time." The purpose of the present work is to endaw that phrase with
quantitative meaning in the context of typical tokamak operation. This is
done by solving a normal mode problem for each of three types of tokamak
operation; the eigenvalues of the normal modes sre then related to the current
relaxation time scales.

The normal mode problem is defined in Sec. II. A dimensionless
eigenvalue equation is derived from the cylindrical current diffusion
equation, and three classes of boundary conditions are derived for three types
of tokamak operation. Analytic solutiens (invelving Bessel functions)} are
presented in Sec. III for the special case of spatially constant plasma
conductivity.

The numerical solution of the eigenvalue problem with more realistic
conductivity prefiles is described in Sec. IV, and the results are presented
in Sec. V. Convenient approximations for the current relaxation time scales
are presented in Sec. V.D. A brief discussion of the effects of sawteeth is

given in Sec. VI.



IT. FORMULATION OF THE DIMENSIONLESS DIFFUSION EQUATION AND BOUNDARY

CONDITIONS

The equation for the radial diffusion of the toroidal current density is

derived from Maxwell's equations and an Ohm's law. We start with
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where the displacement current has been dropped from the second equation,
Tokamak geometry is approximated throughout this work by cylindrical geometry;
toroidal mode-coupling, elonga-ion, and triangularity, etc., are ignored. The
“toroidal™ current density is assumed to be related to the "toreidal® electric

field by a simple Ohm's law:

j{r,t) = jd(r) + E(r,t) o(c) , (3)

where we restrict attention to cases in which the noninductively driven
current, jd, and the conductivity, g, are constant in time.

We have implicitly assumed that the driven current is insensitive to
changes in the electric field, a condition met by neutral beam current drive,
but frequently not met by lower hybrid current drive. Taking the time

derivative of Eq. (2) and eliminating j and B, we find that
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One class of general solutions of Eq. {4) may be expressed as
E(c,t) = E, *+ Z 'En(r) exp[—t/tn) , {5)

n=1

where E is constant in space and time (the other time-independent sclution, E

= agin r, is unphysical at the origin). Using the relations
x = rl/a,
alx) = 0(r=a)/uo R

where ¢, = o(r = 0), Eq. (5) becomes

-]
E(r,t) = E_ + 2_ £ F, () exp["t/rn] . (6)
n=1
where
dF
d 2 ~
o™ {x ~EE) tk oxF =0, ("
and
K = us_a“/t_ . (8)
D o n

Note that the differential operator of Eq. (7) is Hermitian, and thus: (i) the
eigenvalues are real, (ii) the eigenfunctions are orthogonal, and (iii} the
eigenfunctions form a complete set of basis Ffunctions, and can be used to

represent any solution of Eg. (7). We require F!(0) = 0 [this follows from



the finiteness of j{0}], and the normalization of the éigenfunctions is fixed
by requiring that Fn(O) = 1. The second boundary condition which is required
to complete the mathematical statement of the problem depends on the physical
situation which is being treated. Three commonly occurring types of tokamak
operation are discussed next and suitable boundary conditions are given for

each case.

A. Free current decay

If the toroidal plasma current changes there will be an induced electric

field in the directiaon of the curreant of magnitude
E(r=a) = -L__ [ /27R_, ()
ext p [}
vhere R, is the major radius of the torus and the external inductance is

Ly, = R, [en(BR_/a] - 2] .
A toroidal electric field may alse be induced by time-varying currents in the
ohrmic heating and equilibrium field coils. If the changes in the plasma's
poloidal beta and internal inductance can be neglected, then the equilibrium
field will change in proportion to changes in ihe plasma current.? The
electric field produced by the changing equilibrium field will cancel a
portion of the self-induced field given by Egq. (9), thereby reducing the
effective external inductan~e of the torus. Thus, if the current in the ohmic
heating coils 1s consctant, the plasma current will resistively decay and,

under the above conditions, the electric field at the plasma surface will be



E(r=a) = ~lextulp/21 , (10)
where
i =1L /uRD , (11

and Lth is the effective external inductance after correcting for the effects
of the equilibrium field described above (typically, 0.5 < Eixt < 1),
The current driven by mode A (generic F, +~ A  for class A) is

1

2 - N S 2
aly = 2mato ann(x) of{x) xdx = -2ra“o A {x 1)/Akn . (12)

Now the boundary condition, Eg. (10), can be expressed

o kil
= - = - ! =
Ax=1) =2 u RIVICLIRN 2 P (x=1) (13)

Xt

and E, in Eq. (5) must be zero.

B. cConstant surface voltage
We find another set of usaeful solutions in the case of constant surface
voltage, e.g., the electric field at the plasma surface is constant in time.

The surface electriec field is E and the boundary condition for the

o’

eigenfunctions in this case is (Fn - Bn)

B (x=1}) = 0, (14)
n .
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The eigenfunctions and eigenvalues here are identical to those of case A in

the limit that Loyt ™ 0.

C. Constant plasma current

It is common practice in tokamak operation to maintain a constant plasma
current during part of each discharge. This is accomplished by means of
feedpack controls on the ohmic heating and equilibrium field coils, During

' the currvent profile and the surface voltage relax to

the "current flat-top,’
their equilibrium values. The boundary condition for these eigenfunctions is
obtained from the requirement that the integrated current driven by each
eigenfunction be zero; following Egq. (12) we have (An + C )

n

¢l (x=1) = 0. (13)

The equilibrivm electric field which drives the constant current is, of

course, EO.

III. ANALYTIC SOLUTIONS
If the conductivity is uniform across the plasma, the solutions of Eg.
are

(7) are Bessel functions: Fn(x) = Jo(knx). The eigenvalues, kg,

determined by the boundary conditiecns discussed below.

A, Free current decay

From Eq. (13), we nave

Jo(AknJ - ext ext I(A n



The eigenvalues for various values of ﬂ:xt are givon in Table I, Aki is given

to facilitate the caleulation of the 1 from Egs. (8} and (17).

B. Constant surface wvgltage

From Eq. (14), we have

Jo[Bkn] =0.
The gk are thus the nth roots of I, ()t 2.405, 5.520, 8.654, etc.

C. Constant plasma current
From Eq. (15), we have

1 —_ —
JU{Ckn] =0= JI[Ckn

The k. are thus the nth roots of J,{x}: 3.832, 7.016, 10.174, etc.

IV, NUMERICAL SOLUTION ALGORITHM

The conductivity profile in a typical tokamak is centrally peaked so the
preceding analytic solutions are more useful in checking the numerical work
described below than in understanding actual tokamaks.

The results of the next section were generated by the "shooting" methods
of solving the two-point boundary value problem posed in See, II.

Specifically, a trial wvalue for kg is chosen and Eq, (7) is integrated from

x=0 to x=1 where the appropriate function of boundary values - G = A+
sztAé, or By, or C) - is evaluated {see Eq. (13-15)]. A modified regula

falsi algorithm is used to obtain a new trial value of kﬁ to be used in



integrating Eq. (7); the procedure is repeated until the absolute value of G
. -4
is less than 10 .

The integration is performed by dividing Eq. (8) into a coupled pair of
first order differential equations (for F_ and F!}, and integrating the pair
simultaneously using the Euler predictor-corrector method with a fixed step
size of 8x = 107°. The analytic results for the eigenvalues with constant g

were reproduced to within 0.01% by the numerical algorithm.

V. NUMERICAL RESULTS

The major parametric dependences of the eigenvalues have been distilled
from numerical integrations of Eq. (7) employing a wide variety of
conductivity profiles. The results are presented as functions of easily
measurable characteristies of the conductivity profile: the average
conduetivity, the peakedness of the conductivity, and an internal inductance
parameter.

In the results presented here, three one-parameter families of functions
were used to represent the conductivity profile shapes. The three slowest
eigenfunctions for each boundary condition class are shown for one family of
conductivity profiles. The three lowest eigenvalues for each boundary
condition class and all three conductivity families are caompared to simple
approximate fits, thereby displaying both the approximation error and the
family to family variation of the results.

Three one-parameter functions are used below to generate three families

of conductivity profile shapes (see Fig. 1):
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where

o,{pyx) = {1+ [x/u)%}l\*l/P .

"peaked" and "flat'" profile

Families [I and III are frequently referred to as
shapes {Ref, [3]). The results for the intermediate "broad" shape (p=2) are
not presented herz, bur they are similar to those for EI'

Within each family, we may vary the peakedness ot the profile (Fig. L) as
measured by
. 1 - -1 .
q = o°/<o> = |2 Io o(x) xdx] "~ . (16)
In equilibrium ){xr)/o{r) = E is a constant function of radius and, hence,
qx = gq{a)/qfo) .
The edge safety factor, q{a), is known from external measurements, and :f

sawteeth are present, then we may assume q{o) ~ 1. (See Sec. VI for moure

discussion of the effects of sawteeth.} Thus, we typicaliy have the estimatez

g ~ qlad/qlo) ~ qla) .
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This is not strictly correct (equilibrium is prevented by sawteeth), but it is
a reasonable estimate of q* in the absence of any direct measurement of the
plasma conductivity. The alternative method of measuring T, (r) and Zeff(r)
and assuming a theoretical expression for the conductivity is Likely ta be
more uncertain.

In equilibrium the central conductivity is related co the measurable
average conduccivity by

- <>:-.’.'
o q <o g 2 IPROf[VSa

° 2

’ n
where Ip ig the inductively driven plasma current, R, is the plasma major
radius, and v, is the surface voitage.
Another useful measure of the peakedness of the conductivity profile is
(Fig, 1)
0572 = Y 185 (x)/B (x=1)]? xdx, (18)
1 o P P
where
B (x) = (1/x) [* 5(u) udu.
P o]
In equilibrium, this reduces to

2./2 =./2,
1 1

which is the usual internal inductance parameter.2
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We «can now relate theoretically important, but rcarely measured,
characterisrics of the conductivity profile to measurable quantittes. It must
be remembered that these relations can be applied only when there is reason to
believe that the conductivity profile itself has not substantially changed
between the equilibrium and nonequilibrium phases of a discharge.
Fortunately, this is frequently the case a notable exception being lower

hybrid current drive experiments.

A. Free current decay

The first eigeanfunction, Al(x), is shown in Fig. 2 for ¢ = op.
Loqc = 045, 1 Ay(x) and A3(x} are shown only for E:xt = 1. As dictated.by the
boundary condition, Eg. (13), the edge values An(x=l) decreage as lzxt is
lowered; for 1th = 0 the A {(x) are identical to the B_(x) discussed next.
Another prominent feature of the solutions is the existence of n-1izeros of

An(x) inside the plasma.

The eigenvalues can be appreximated by

2 -2 * x £
aK1 ~ Ak = 2.04q /(a,ext + zilz] ,
2 ~2 _ *
ag kg T3
2 .7
Ak3 ~ Akl =40 q .
1
Note that with a typical Eth ~ 1, Ak% is much lower than all ather

eigenvalues of types A,B, or C except Bk%.
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B. Constant surface voltage

As a consequence of the boundary conditionm, Eq. (14), the nth node of
B (x) occurs at x=1 (Fig. 3). Both the An(x) and B (x) have approximately
canstant, nanzero slopes in the outer region aof the plasma where k% xa{x) <<
1. as q° rises and o{x) becomes more centraily peaked, the oscillatory region
of the eigenfunctions becomes more centrally concentrated.

The eigenvalues can be approximated by

2 ~2 _ [ b

gk - g% = 1-Ba /[zilz] .
2 ~2 - ¥

gy " gk T %00
2 ~2 o %

Bk3 ~ Bk3 =30 q .

C. Constant plasma current

The boundary conditien, BEg. (15),.1is C;(x=1) = 03 %he rggion of small i
Chlx) extends from the boundary to the point where kﬁxc%x) is sufficiently .
large to generate curvature in C (x)} (Fig. 4). As a consequence, the nth zero
of Cn(x) is Located well inside the plasma boundary.

The eigenvalues can be approximated by

2 ~2 _ =
Ltk T 2a
S S
CkZ - Ckz =40 q ,
K2 i =80 q* .
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D. Time constants

Combining Egs. (8), (16), and (17), we find that

"
i

+* 2
T4 /kn , {19)
where

T =1 <g¥ 32 = 2 quRO/VS (20)

[}

I R

“pyr_cyrVolt
2.51 sec (MA][ m}[—v——] .
Using the E% approximations to the true eigenvalues produces the following
approximaticns to the time constants:

. o+
Class A: Free current decay
4

! ; K (Qext * 21/2]/2’ (21a)
aT2 = 10/15, (21b)
A?3 = 1 /40, (21c)

Class B: Constant surface voltage

-
n

ro[zflzjll.a , (222)

A
1]

mofzo , (22b)
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gty = 70150 . (22¢)

Class C: Constant plasma current

1 < 10/12 ’ (23a)
¢y = 10/50 , (23B)
ety = Y, /80 (23¢)

These approximate expressions differ from the true expressions by a

correction factor R, defined by
T =R T_ . (24)

This correction Eéctgr is shown for all three families of conductivity
profiles in case A (Fig. 5) and cases B and C (Fig. 6). Generally, the

approximations T,, are within 20% of the 7.

VI. EFFECTS OF SAWTEETH

The current redistribution believed to be associated with "sawtnoth"
internal disruptions4 takes place on a time scale much shortzr than those
discussed above, although it affects only the region near the center ¢f the
plasma where g ~ 1. There are two effects of sawteeth discussed here.

The redistribution of plasma during a sawtooth disruption "flattens" the

electron temperature - and, hence, the conductivity - profile. This was found
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te be insignificant in the sense that the approximate time scales, T_, well

n’
represented the results of numerical solutions using conductivity profiles
which had been flattened to radii as large as r = a/2.

The direct redisctribution of current during a sawtooth disruption,
however, can grzatly speed up the global relaxation time scale if it affects a
large fraction of the plasma. To illustrate this, the currear relaxation
during current "flat-top" after current “ramp-up" was simulated using the

5

BALDUR tokamak transport code, with and withour a sawtooth current

redistribution model. The tokamak parameters are representative of TFTR: By
=4 T, Ry =25 m a = 085 m, Zyee = 2.0, T (c) = 2 keV [1=(x/2)2]%3, ani
neoclassical resistiviCy6 was used. In each of four simulations, the plasma
current was ramped from half its final value to Ip = 1.93, 2.10, 2,31, and
2.57 MA in 1.5 sec and held constant for 2 sec. The final q(a) were 3.9,
2.75, 2.5, and 2.25, respectively. The simulated surface voltages during the
2 sec flat-top are shown in Fig., 7 for simulations with and without sawteeth
(only the two lowest q(a) simulations are shown, in the other two, the
cawtooth model had no discernible effect on the surface voltage). The
sawtooth period was fixed at 40 msec, and the self~consistently determined
sawtooth mixing radii were 0.32, 0.37, 0.44, and 0.51 m for the curreats
listed above., It is clear that for g(a) > 3 the sawrooth effecrs are modest,
while for qfa) ¥ 2 the; are very large. Evidently, the periodic current
redistribution caused by the internal disruptions effectively "shorts out"
some of the internal inductance of the plasma, and the relaxation time scale
is reduced accordingly.

This qualitatively explains why the observed relaxation time scales in

TFTR are much less than given by Eq. (23a) for discharges with q(a) < 2.5.
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VII. SUMMARY

The time scales for current relaxation in torcidal plasmas have been
calculated for three types of tokamak operation, These types are, in order of
descending time scale, free decay of the plasma current, coanstant surface
voltage, constant plasma current. These time scales are well represented over
a wide range of plasma conductivity profiles by simple approximations (see
Sec. V.D).

The principle limitations of this study are the neglect of (l) the
effects of ''sawtocth" internal disruptions, {2) time-varying plasma
conductivity, and (3) toroidal and ncacircular geometrical corrections to the
cylindrical current diffusion equation. Experimental evidence and the
calculations described in Sec. VI suggest that when the sawtooth mixing region
extends to half the plasma minor radius or more, the relaxation time scale is

greatly reduced; but if q(a) > 3, sawteeth have little effect.
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TABLE 1.

Free Current Decay Eigenvalues for o(r)} = constant

2 2 2 2
Lext ak1 ak2 a3
D.3 3,641 21.18 56.55
1.0 1.577 16.64 51.21
2.0 0.885 15.67 50.22
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FIGURE CAPTIONS
The three families of conductivity profile shapes for q° = 1.5,
2,3,4, and 6: (a) &, (b} G7py (c) EIII' The "internal inductance,"
1?/2, is shown in (d) as a function of q* for each conductivity
family.
Free current decay eigenfunctions for &y, q* = 1.5,2,3,4,5, and Qth
= 15 (a) Aj(x), (b) Ayx), (€] Ag(x), (d) Aj(x) For 27, = 0.5. &s

wa

q rises, the eigenfunctions are progressively steeper for x ~ 0.
Constant surface voltage eigenfunctions for SI, and qL =
1.9,2,3,4,6:  (a) Bj{x), (b) By(x), (c) By(x). As q* rises, the
eigenfunctions are progressively steeper for x ~ 0,

Constant  plasma current eigenfunctions for &y, and q* =
1.5,2.3,4,6:  (a) €y(x}, (b) Cplxy, (c) Cz{x). 4s 4" rises, the
eigenfunctions are progressively steeper for x ~ 0.

Correction factor R, [Eq. {24)] for E:xt = 0.5 (a) ,T;. (B) A7y,
(c) A?3; and for E:xt =1: {(d) A?l’ {e) Aty (£) aT3e Curve label
denotes the conductivity family.

Correction factor R, [Eq. (24)}: (a) B?l’ (b) aT2s (c) aTys (d) Ty,
(e) C;Z’ (£) gi3+ Curve label denotes the conductivity family.

The simulated surface voltage during curtent "“flat-top” after ''ramp-
up" for: (a) q(a) = 2.5, and (b} gfa) = 2.25 ésee Sec. VI for

details).
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