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Abstract

Retrieving spatial distribution of plasma emissivity from line integrated measurements on tokamaks presents a challenging

task due to ill-posedness of the tomography problem and limited number of the lines of sight. Modern methods of plasma

tomography therefore implement a-priori information as well as constraints, in particular some form of penalisation of

complexity. In this contribution, the current tomography methods under development (Tikhonov regularisation, Bayesian

methods and neural networks) are briefly explained taking into account their potential for integration into the fusion reactor

diagnostics. In particular, current development of the Minimum Fisher Regularisation method is exemplified with respect

to real-time reconstruction capability, combination with spectral unfolding and other prospective tasks.
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Introduction

Sufficient spatial resolution is required in experimental

studies of high-temperature plasma physics including the

fusion research and development. However, determining

the spatial behaviour is not straightforward due to the very

poor accessibility of fusion relevant plasmas. Active

diagnostic systems which determine plasma properties

from its interaction with a physical probe (e.g. laser light,

particle beam) offer an excellent spatial resolution in a very

specific region of plasma only. Majority of the passive

diagnostic systems, which can diagnose plasma from out-

side its border, allow for spatial resolution of the integral

plasma emission, i.e. of the plasma projections. The aim of

plasma tomography is to determine local plasma properties

from the measured projections.

Spatial resolution of the reconstructed plasma image is,

however, rather poor due to the sparse data caused by the

limited accessibility, with detector positions typically

confined to ports of the vacuum vessel. Implementation of

additional constraints (e.g. non-negativity of the emission,

zero border emission) and a-priori information (e.g.

increased smoothess along field lines) can improve the

resolution considerably. On the other hand, temporal res-

olution of the plasma tomography can be sufficiently high

for studies of rapid emissivity evolution [1–3].

Plasma tomography has been applied on several differ-

ent diagnostic systems. It is rather widespread with Soft

X-ray (SXR) diagnostics, often using linear pinhole cam-

eras, see e.g. [2, 4, 5]. Due to the high temporal resolution,

the SXR tomography can contribute to the MHD analyses

[2] and to the impurity transport studies [6]. At several

facilities, data from bolometric diagnostic systems are

regularly analysed using tomography, e.g. at the Joint

European Torus JET [1]. In the perspective of fusion

reactors the key application of tomography is linked to

analyses of data from the neutron cameras, see [7, 8],
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where it is expected to contribute substantially to regular

monitoring of the fusion power.

In this paper, our recent experience with the plasma

tomography development for fusion research (in particular

at JET) is summarised. In ‘‘Current Methods of Plasma

Tomography’’ section the main methods currently applied

in plasma tomography are outlined, with a focus on the

Tikhonov regularisation. In ‘‘Progress in the Minimum

Fisher Regularisation’’ section, the Minimum Fisher Reg-

ularisation method is briefly explained and its further

development into current applications, fostered by our

team, is presented. In particular, a novel approach to the

combined neutron tomography with spectral unfolding is

proposed. The key recommendations for tomography

applications and development in fusion reseach are reca-

pitulated in the conclusions.

Current Methods of Plasma Tomography

The aim of a typical two-dimensional tomographic recon-

struction is to retrieve spatial distribution of a scalar field in

a plane (e.g. emissivity cross-section image) from its line

integrated values (e.g. projections of the emissivity, pro-

vided the object is optically thin). Tomographic recon-

struction is a special case of an inversion task. Even with

the complete knowledge of the line integrals (for all angles

and distances) the inversion task is ill-posed. As a conse-

quence, a minor error in the data may result in substantial

errors in the reconstructed image. In order to mitigate this

issue, different regularisation methods are usually applied.

The regularisation process typically introduces some

a-priori knowledge, e.g. some restriction on the result

complexity (commonly enforcing smoothness of the

result).

In plasma tomography, however, the inversion task is

further complicated by the fact that the experimental con-

straints usually prevent measurements in arbitrary direc-

tions. Therefore, many plasma projections are missed, i.e.

data are sparse, making the tomographic inversion un-

derdetermined for any practical spatial resolution, see

Fig. 1. Semi-analytical inversion methods, e.g. based on

filtered backprojection (FBP) [1], encounter diverse diffi-

culties under these circumstances. Therefore, dedicated

methods with reliable and robust regularisation principles

had to be developed for plasma tomography.

In order to process digitised projection data, FBP or

Fourier transform based approaches to tomography inver-

sion implement digitisation of the analytical inversion, i.e.

of the inverse Radon transform. However, given sparse

data, digitisation of the unknown image prior to the

tomography inversion proves to be better adapted to

implementation of a-priori knowledge [1]. Therefore, in a

large majority of current computer codes for plasma

tomography, the unknown emissivity distribution gðrÞ is

decomposed into basis functions bjðrÞ. The basis functions

can be global, each covering the whole size of the recon-

structed image (e.g. special functions) or local, decom-

posing the image into regions (e.g. square pixels), see [1].

Consequently, the plasma tomography task is reduced to

finding the amplitudes gj:

gðrÞ ¼
X

1

j

gjbjðrÞ ; ð1Þ

While with infinite series the image can be (in principle)

reconstructed to full perfection, in practice the sum is

truncated. In other words, the choice of a limited amount of

basis functions gj ; j ¼ 1; . . .;N contribute to the regulari-

sation of the task. In this respect, implementing any other

additional information, in particular the magnetic field

geometry directly into the shape of the basis functions is

discouraged. Indeed, knowledge of the magnetic field

geometry is burdened with errors and, consequently, any

adapted shape of the basis functions enhances artefacts.

Notice that this holds in particular for the notorius Abel

inversion (see e.g. [9]), where the unfolding procedure

stems from the unprecise knowledge of the magnetic axis

position. In the current plasma tomography, it is recom-

mended to apply standard 2D tomography with preferential

smoothness along magnetic flux surfaces (see ‘‘Progress in

the Minimum Fisher Regularisation’’ section, Eq. 11)

instead of the 1D Abel inversion.

In the vast majority of diagnostic methods, the projec-

tions are determined for a finite number of chords (lines of

sight, views) fi ; i ¼ 1; . . .;P which will be further referred

to as the line integrated measurements, although in general

the chords need not be strictly linear in the projection plane.

Actually, the real width of the chords is often evaluated

within the tomographic algorithms. A simple relation

between the finite number of amplitudes gj and the finite

number of projection measurements fi can then be proposed:

fi ¼
X

N

j

Tijgj þ ni; i 2 1; . . .;P; ð2Þ

where Tij stands for elements of the contribution matrix

(sometimes referred to as the geometric matrix) and ni for

misfits which compensate, in a real experimental setup,

both systematic errors and noise.

Different regularisation methods are applied in algo-

rithms of tomographic codes in order to find unknown gj

from sparse data fi. A reliable performance of the algo-

rithm, with sufficient precision, robustness against artefacts

caused by ni, low demand on CPU etc. is usually requested

from any applicable tomography method. Some of the

methods will actually find a reconstruction matrix M:
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gj ¼
X

P

i

Mjifi ; ð3Þ

Tikhonov regularisation is probably the most widespread

method where the reconstruction matrix M is derived. In

the Tikhonov regularisation

Mji ¼
X

N

k

X

P

l

TT
klTlj þ kHkj

 !�1

TT
ki

ð4Þ

where k is the regularisation factor which sets the relative

strength of the regularisation, and the regularisation matrix

H is given, in the simplest case, by

Hkj ¼
X

N

m

BT
kmBmj ; ð5Þ

where the smoothing matrix B corresponds to numerical

differentiation, for details see e.g. [2]. The regularisation

factor k can be determined iteratively with the Pearson’s v2

test:

v2 ¼
1

P

X

P

i

n2i
r2i

! 1 ; ð6Þ

where ni is given by Eq. 2 and ri represents expected data

errors (standard deviations of the projection data fi), see

e.g. [2]. Figure 2 gives a flowchart of the Tikhonov regu-

larisation as implemented in practice. Another efficient and

reliable implementation of the Tikhonov regularisation can

be made using the Generalised Singular Value Decompo-

sition (GSVD), see e.g. [10].

Besides the Tikhonov regularisation, considerable

efforts in plasma tomography have been invested into the

development and application of reconstruction methods

based on Bayesian approach, see e.g. [5, 11]. At present,

the Maximum likelihood (ML) tomography represents

application of a probabilistic method where systematic

expertise in experimental data analyses has been collected,

see [12]. It is a nonlinear iterative algorithm that attempts

to find the estimate of the emissivity distribution that is

most consistent with the measured tomographic projections

in the sense of maximizing the likelihood (conditional

probability of the data given the parameters). The emission

is considered to be a Poisson process and therefore fi pre-

sents a sample from a Poisson distribution, whose expected

value is f. Consequently, the probability of obtaining the

measurement f ¼ fiji ¼ 1; . . .;P from the emissivity g ¼

gjjj ¼ 1; . . .;N is given by the likelihood function:

Fig. 1 The Soft X-ray

tomography setup at tokamak

TCV [3]. While number of the

measured line integrated

projections is rather high (left,

with R the radius and z the

vertical coordinate) the actual

coverage in the projection space

is still quite sparse (right, with h

the angle and and p distance of

lines from the vessel centre at

R ¼ 0:88m; z ¼ 0m)
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Lðf=gÞ ¼
Y

i

1

fi!
ðf Þfi � expðf Þ ð7Þ

The ML estimate is obtained by maximizing the above

expression:

gML ¼ argmaxgLðf=gÞ ð8Þ

The mathematical basis for a broadly applicable algorithm

has been first applied to images by Richardson [11] and

Lucy [13] but the method has been started to be used

extensively in tomography only after the introduction of an

iterative solution for finding the ML estimate by Shepp and

Vardi [14] and, independently, by Lange and Carson [15]:

g
ðkþ1Þ
j ¼

g
ðkÞ
j

sj

X

i

fi
P

m Timg
ðkÞ
m

Tij ð9Þ

where k indexes the iterations and sj ¼
P

i Tij is the prob-

ability that emission originating in pixel n will be recorded

in a projection bin.

As already mentioned the tomography problem is a

highly undetermined inversion leading to an ill-posed

mathematical problem. In order to obtain realistic and

robust solutions, it is therefore strongly recommended also

for the ML method to introduce a regularisation procedure

which consists of imposing smoothness along the magnetic

surfaces, given by the plasma equilibrium. The ML method

uses 1-D average filtering on a sliding window, which

moves along the magnetic contour lines. The iterative

reconstruction formula 9 has a particular form, which is

advantageous with respect to modelling of the projection

noise propagation. In other words, it is possible to retrieve

a variance image which accompanies the reconstructions.

Accurate modelling of the projection noise propagation is

important for both qualitative interpretation and quantita-

tive analysis of the reconstructed images. Following the

ideas first introduced by Barret [16] two approximations

can be introduced for obtaining the variance image: to

consider that the noise is small compared to the mean value

of the reconstruction and to assume that the convergence of

the ML algorithm is fast enough, so that the projection of

the current estimate is close to the noise-free projection.

Details of the implementation for JET tomography are

given in [17].

In JET, the ML method has been applied for gamma and

neutron tomography (see e.g. [12, 18] for representative

examples). More recently it has been implemented also for

bolometry [19], where the evaluation of the uncertainties

accompanying the reconstruction is particularly important,

allowing the estimation of the confidence intervals for the

radiated power (Fig. 3).

The tomographic inversion process can also be per-

formed with neural networks. A first attempt at doing this

involved the use of a neural network to find the parameters

of a two-dimensional gaussian distribution that would best

fit the measurements of a horizontal and a vertical soft

X-ray camera [20]. This assumed that the plasma profile

could be approximated by a 2D gaussian shape, and the

neural network would learn to predict the amplitude, the

horizontal/vertical position, and the horizontal/vertical

width of the gaussian distribution.

Later, the assumption that the plasma profile had a

particular shape was relaxed to allow for models with more

degrees of freedom. Namely, a model was developed to

take into account—among other parameters—ellipticity,

triangularity and the Shafranov shift [21]. A neural network

C
P

S
1

8
.5

4
-2

c

0 0, ,f g

evaluateM

eq. (4)

evaluate

eq. (6)

g = Mf

2

2 1 0.05<

less than ten

iterations ?

g

estimate from

g and g0 e.g. via 

Newton’s method

set g0 = g

set 0 = 

Print warning

test did not

converge

2

yes

no

no

yes

Fig. 2 Flowchart of algorithm solving the Tikhonov regularisation,

including the implemented value of the convergence threshold of the

Pearson’s test and the typical maximum number of iteration loops
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was used to learn the parameters of this model from

measurements of a horizontal and a vertical neutron camera

[22]. In this case, the neural network could learn up to 16

model parameters.

With the advent of deep learning [23], it became pos-

sible to train neural networks with many more layers and

with a much larger number of parameters. One of the most

successful applications of deep learning was image clas-

sification using convolutional neural networks (CNNs),

where a 2D input image is transformed into a 1D output

vector of class probabilities. By reversing the architecture

of a CNN, it is possible to devise a deconvolutional neural

network for plasma tomography, where a 1D input vector

of bolometer measurements is transformed into a 2D output

reconstruction of the plasma profile [24].

In this case, the neural network was trained to reproduce

each single pixel of the tomographic reconstruction. For

reconstructions with a resolution of 200� 120 pixels, the

network had 24,000 outputs, and was able to achieve a

similarity score above 90% on previously unseen data. The

main advantage is that, once trained, such network can

compute hundreds or even thousands of reconstructions per

second, making it possible to visualise the plasma profile

over the course of an entire discharge [25] and, potentially,

in real-time applications.

To conclude, the neural network tomography is the

fastest among the three methods presented above, however,

it is critically dependent on the quality and range of the

training data. The Tikhonov regularisation is highly ver-

satile, robust and independent on previous knowledge.

Although it requires more computation time than the

network tomography, it is considerably faster than any

proper implementation of the Bayesian approach, including

ML. The ML tomography represents the most sophisticated

method which in various tests results in higher accuracy

of tomographic reconstructions than the Tikhonov

Fig. 3 Illustration of the ML

bolometric tomography at JET:

reconstruction (top-left), image

variance (top-right) and

radiation profile versus the

normalised W coordinate with

the estimate of the uncertainties

in the emitted power (bottom)
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regularisation [26] and allows for semi-analytic calculation

of the projection noise propagation. In this context it

should be reminded that any tomographic method solves an

ill-posed task, so that its accuracy can be significantly

damaged by minor systematic errors including detector

misalignments or varying sensitivities of individual

detectors.

Progress in the Minimum Fisher
Regularisation

The Minimum Fisher Regularisation (MFR) presents a

widespread method of tomography in current tokamak

research. It relies on Tikhonov regularisation with an

iterative optimisation of the results so that the Fisher

information of the reconstructed image is minimised:

IF ¼

Z

X

2

i;j¼1

ogðx1; x2Þ

oxi

ogðx1; x2Þ

oxj

1

gðx1; x2Þ

�

�

�

�

�

�

�

�

dx1 dx2 : ð10Þ

In plasma tomography on tokamaks, x1 and x2 correspond

to the R and z coordinates (Figs. 1, 3). Optimisation

according to Eq. 10 allows—in simple terms—for better

spatial resolution (less smoothness) in regions with high

levels of emissivity. The MFR method was first developed

and applied at TCV [2] and at present it is implemented

and updated, among others, at JET [9], COMPASS [4] and

Tore Supra [27].

The first major extension of the MFR aimed at a pos-

sibility of rapid analyses of large amounts of data via

temporal averaging of the smoothess matrix, see [3].

Nowadays the temporal averaging is hardly ever applied in

practice due to the substantial increase in the CPU per-

formance of the computers. With robust and rapid perfor-

mance of MFR, further efforts have been invested into the

development of real-time relevant version of MFR. As a

result the idea of a rolling iteration was introduced, see

[28]. In the rolling iteration, the time index of analysed

data is increased by one with every new round of the

iterative process. This allows for sufficient precision in the

case of smooth, slowly evolving data from line integrated

measurements. Importantly, in [28] it is demonstrated that

the artefacts linked to sudden changes in data have also

rather low and rapidly decreasing amplitude in MFR, i.e.

the rolling iteration is stable. It can be concluded that a

real-time version of the MFR is foreseeable.

Furthermore, preferential smoothness of the recon-

structed image along the flux surfaces was introduced at

JET due to the low number of the lines of view. As a result,

the reconstructed image features slowly changing emis-

sivity along the flux surfaces, while the emissivity gradient

in plasma radius may be steep. This corresponds to the

expected plasma emissivity behaviour. In oder to enforce

this smoothness anisotropy, a new recipe for the regulari-

sation matrix was implemented instead of Eq. 5:

Hkj ¼ SðgÞ
X

N

m

BT
kkmwmBkmj þ Sð�gÞ

X

N

m

BT
?kmwmB?mj ;

ð11Þ

In this set of equations, Bk is the smoothing matrix in the

direction parallel to the magnetic field, B? the smoothing

matrix in the direction perpendicular to the magnetic field,

the weights wm allow e.g. for implementation of the Min-

imum Fisher Information according to Eq. 10 (see [2] for

details), and the function SðgÞ controls the anisotropy

amplitude. In practice, the logistic sigmoid function SðgÞ ¼

ð1þ e�gÞ�1
is applied. This amendment of the matrix H

proved so reliable and beneficial [9] that it is nowadays

applied as a routine feature in MFR.

Due to the non-linear character of the Minimum Fisher

Information and to the sophisticated smoothing procedure

it is not possible to determine analytically the error trans-

mision from line integrated data to the emissivity distri-

bution like in the ML method, see ‘‘Current Methods of

Plasma Tomography’’ section. Instead, the Monte Carlo

method was introduced, which tests statistically the MFR

reconstruction response to random errors in data. The

method was first used in extensive studies of the MFR

performance at JET [29]. In this work it was shown that the

MFR is stable against artefacts and that a Gaussian noise in

data transmits with a good precision to a Gaussian noise in

the reconstruction. Recently MFR contributed to detailed

evaluation of accuracy and precision of the ITER neutron

profile reconstruction from the simulated Radial Neutron

Camera (RNC) data. The studies proved high robustness of

the MFR method and acceptable level of precision of the

neutron profiles with a sufficient temporal resolution, in

particular in the high performance discharges [8].

Besides plasma tomography, MFR was successfully

applied in unfolding of neutron spectra Uj from the pulse

height data Wi measured by neutron scintillation detector

with detailed knowledge of its response function with

matrix elements Rij, for details see [30] :

Wi ¼
X

j

RijUj; ð12Þ

Unlike in plasma tomography, in the case of unfolding the

task need not be underdetermined so that the L-curve

principle based on data statistics can be employed in search

of the value of the regularisation factor k instead of the v2

Pearson’s method, see [30, 31]. Notice that the unfolding is

still an ill-posed problem with a tendency to create arte-

facts, therefore a reliable calibration of the response matrix

R was indispensable.
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Based on the observed robustness of the MFR method as

well as on experience with spectral unfolding, a new

approach to analyses of spatially resolved pulse height data

from the RNC scintillation detectors at ITER can be pro-

posed. In contrast to the step-by-step approach presented in

[32], where tomography analyses is run for separate energy

bins, it is recommended to directly combine the contribu-

tion (i.e. geometric) matrix and the response matrix of the

energy calibrated detectors into a single inversion problem

as follows:

• Denote fik elements of a matrix of data where the rows

correspond to i ¼ 1; . . .;P line integrated measure-

ments from the P scintillation spectrometers and the

columns to k ¼ 1; . . .;C pulse height measurements

from each spectrometer.

• Seek elements of a matrix of spectrally resolved

emissivities gjl, where the rows j ¼ 1; . . .;N correspond

to the pixel index in the spatially resolved mesh of

pixels, and the columns l ¼ 1; . . .;B to discrete bins of

the unfolded neutron energies.

• The double inversion problem is described—according

to Eqs. 2 and 12—by the following set of equations

fik ¼
X

B

l

Rkl

X

N

j

Tijgjl þ nik; ð13Þ

• This set of equations can be re-indexed so that a

standard regularisation procedure (e.g. the MFR code)

can be applied

fa ¼
X

B�N

b

Sabgb þ nb ! gb ¼
X

C�P

a

Gbafa ð14Þ

The main advantage of the proposed procedure is that

the combined tomography and spectral unfolding problem

is treated as a single ill-posed task, so that the amplification

of artefacts is prevented.

The method was tested on phantom functions with

random noise. The contribution matrix T was based on

geometry of the JET neutron emissivity profile monitor

[12], and the response matrix R had values of the well

calibrated liquid scintillation detector that was successfully

tested at JET as a neutron spectrometer [33]. One of the test

functions and the resulting reconstruction is exemplified in

Fig. 4. In this example, a simple gaussian profile of neutron

emissivity was used as a phantom function on the grid of

10� 15 pixels, with 100 energy bins in each. The phantom

neutron spectrum was based on the DT neutron emission

(14.1 MeV) with Doppler broadening corresponding to a

parabolic plasma temperature profile. As a result, the

combined procedure resulted in considerably improved

precision of reconstruction (by approx. 15%) compared to

the step-by-step unfolding and tomography. It can be

concluded that the preliminary results are promising.

Since its introduction more than 20 years ago, the MFR

also went through several code remakes and numerical

optimisations. The most important extension happened in

2012 when the original MatLab MFR package was ported

to the Python platform with new numerical options inclu-

ded [9]. The Python version was significantly refactored

again in 2017, with a new streamlined hierarchic module

structure and Mercurial version control. In the version

currently maintained for the JET tomography, a new

implementation of the anisotropic smoothness matrix based

on gradient of the poloidal magnetic flux (instead of the

flux surface interpolation) was introduced, see Fig. 5.

Besides, the same mesh of pixels was pre-defined for the

three JET tomography diagnostic systems: the neutron, the

soft X-ray and the bolometry cameras, and a new simple

access to JET data is under development. A new graphical

user interface (GUI) was introduced, which allows, among

Fig. 4 Preliminary results of the combined tomography and unfolding

MFR code, with phantom functions in left column and combined 2D

tomography and unfolding results in the right column. In the top row,

the spatial distribution of the DT neutron emissivity is shown, while

the bottom row presents the model temperature profile and the

unfolded temperature distribution, based on spectral width of the DT

neutron energy. The simulation was run for the JET neutron

emissivity profile monitor geometry [12]

464 Journal of Fusion Energy (2019) 38:458–466
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others, to evaluate evolution of radiation in between

regions of interest pre-defined by the user, profiting from

data of all the three diagnostic systems.

The MFR method was also applied in reconstruction of

data from fast 2D matrix cameras with tangential view of

the plasma in the visible region (based on the plasma axial

symmetry) on the COMPASS tokamak, see e.g. [34], and

tentatively to unfolding in analyses of the data from the

activation probes at JET, see [35]. Its potential to recon-

struct the plasma current density from the magnetic data is

under discussion. Last, but not least a possible merger of

the MFR with the neural networks can be considered in

future, as proposed in [36]. According to this scheme, MFR

regularisation parameters in Eqs. 4 and 11 would be

determined by a trained neural network, combining

robustness of MFR with the real-time relevance of the

neural networks.

Conclusions and Outlook

In this contribution, research and development efforts in

plasma tomography were presented. Particular focus was

given to the large number of applications that a reliable

method resolving the inversion problem may offer in

fusion data analyses. Indeed, the potential of the tomog-

raphy development for fusion is still to be exploited. At

present, several methods with their advantages and disad-

vantages compete, in which a rich set of constraints may

(but need not) be applied. Importantly, the JET contributors

involved in tomography analyses have been currently

working on quantitative comparison of performance of the

three methods presented in the second part of this

contribution. The conclusions are yet to be drawn, how-

ever, the preliminary results demonstrate that (1) with

sparse data, the room for improvement is limited so that in

this respect, augmented data precision is rather called for,

and (2) the correct attitude is to maintain a few different

inversion methods in order to be able to critically compare

their results in analyses of important data events.

For future fusion reactors, it will be instrumental to

develop a real-time tomography algorithm with low sus-

ceptibility of developing major artefacts. This task is of a

particular importance in determination of the fusion neu-

tron emissivity distribution. In this respect, several works

and conceptual studies based on Minimum Fisher Regu-

larisation method were also presented in this contribution.

Obviously, similar ideas can be also anticipated in other

plasma tomography methods.
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