
 Open access Journal Article DOI:10.1109/MIC.2004.58

Current solutions for Web service composition — Source link

Nikola Milanovic, Miroslaw Malek

Institutions: Humboldt University of Berlin

Published on: 01 Nov 2004 - IEEE Internet Computing (IEEE Educational Activities Department)

Topics: Web service, Web modeling, Service-oriented architecture, Semantic Web and Service delivery framework

Related papers:

 A survey of automated web service composition methods

 A survey on web services composition

 QoS-aware middleware for Web services composition

 Web Service Composition - Current Solutions and Open Problems

 DAML-S: semantic markup for web services

Share this paper:

View more about this paper here: https://typeset.io/papers/current-solutions-for-web-service-composition-
29t8xvgs71

https://typeset.io/
https://www.doi.org/10.1109/MIC.2004.58
https://typeset.io/papers/current-solutions-for-web-service-composition-29t8xvgs71
https://typeset.io/authors/nikola-milanovic-4fae50pxc1
https://typeset.io/authors/miroslaw-malek-tzk0rc1uxs
https://typeset.io/institutions/humboldt-university-of-berlin-1smin2jg
https://typeset.io/journals/ieee-internet-computing-20js71pi
https://typeset.io/topics/web-service-5jsci0pw
https://typeset.io/topics/web-modeling-l5k1w77n
https://typeset.io/topics/service-oriented-architecture-207q4zun
https://typeset.io/topics/semantic-web-26iimiju
https://typeset.io/topics/service-delivery-framework-hm4n4b8b
https://typeset.io/papers/a-survey-of-automated-web-service-composition-methods-54v17alhym
https://typeset.io/papers/a-survey-on-web-services-composition-kjfl4c5iws
https://typeset.io/papers/qos-aware-middleware-for-web-services-composition-x57gs4mhme
https://typeset.io/papers/web-service-composition-current-solutions-and-open-problems-28shc7qt1h
https://typeset.io/papers/daml-s-semantic-markup-for-web-services-2bz2kpfwet
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/current-solutions-for-web-service-composition-29t8xvgs71
https://twitter.com/intent/tweet?text=Current%20solutions%20for%20Web%20service%20composition&url=https://typeset.io/papers/current-solutions-for-web-service-composition-29t8xvgs71
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/current-solutions-for-web-service-composition-29t8xvgs71
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/current-solutions-for-web-service-composition-29t8xvgs71
https://typeset.io/papers/current-solutions-for-web-service-composition-29t8xvgs71

Spotlight

Current Solutions for
Web Service Composition

I
n service-oriented computing (SOC), develop-

ers use services as fundamental elements in

their application-development processes. Ser-

vices are platform- and network-independent

operations that clients or other services invoke. To

operate in an SOC environment, services must

overtly define their properties in a standard,

machine-readable format. SOC thus offers three

native capabilities: description, discovery, and

communication.1 Web services are a typical SOC

example: developers implement SOC native capa-

bilities using Web Services Description Language

(for description), Universal Description, Discov-

ery, and Integration (for discovery), and SOAP (for

communication).2

To create applications, SOC developers use ser-

vice composition, which they introduce on top of

SOC’s native capabilities. Developers and users can

then solve complex problems by combining avail-

able basic services and ordering them to best suit

their problem requirements. Service composition

accelerates rapid application development, service

reuse, and complex service consummation. Cur-

rently, however, service composition isn’t stan-

dardized, nor does it include definitions of the key

requirements that every composition approach

must satisfy (such as scalability, dependability, and

correctness). If the SOC paradigm is to succeed and

become the dominant architecture of future dis-

tributed systems, we must provide a stable and

dependable service composition solution.

Here, we offer a survey of existing proposals for

Web service composition, and compare them with

respect to four key requirements, which we discuss

in the next section. By offering this overview and

systematization of key properties, as well as a con-

structive critique of existing approaches, we hope to

help service-composition designers and developers

focus their efforts and deliver more usable and

durable solutions, while also addressing the tech-

nology’s critical needs.

Service
Composition Requirements
The complexities of distributed systems and

increasing trust barriers have influenced SOC evo-

lution at the hardware, operating system, and

application layers. Although modern operating sys-

tems can also be seen as sets of collaborating ser-

vices, in this survey, we focus on the application

layer. From the developer’s perspective, service

composition offers reuse possibilities. From the

user’s perspective, it offers seamless access to a

variety of complex services.

Service composition requirements differ from

those of mainstream component-based software

development. In place of access to documentation

or code (either source or binary), SOC application

developers and users have access only to WSDL’s

rudimentary functional descriptions. Services exe-

cute in different containers, separated by firewalls

and other trust barriers. A composition mechanism

IEEE INTERNET COMPUTING 1089-7801/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society NOVEMBER • DECEMBER 2004 51

Web service composition lets developers create applications on top of service-

oriented computing’s native description, discovery, and communication

capabilities. Such applications are rapidly deployable and offer developers reuse

possibilities and users seamless access to a variety of complex services. There are

many existing approaches to service composition, ranging from abstract methods

to those aiming to be industry standards. The authors describe four key issues for

Web service composition.

Editor : Siobhán Clarke • s iobhan .c la rke@cs . t cd . i e

Nikola Milanovic and Miroslaw Malek • Humboldt University, Berlin

must therefore satisfy several requirements: con-

nectivity, nonfunctional quality-of-service prop-

erties, correctness, and scalability.

Every composition approach must guarantee

connectivity. With reliable connectivity, we can

determine which services are composed and reason

about the input and output messages. Because Web

services are based on message passing, however,

developers must also address nonfunctional QoS

properties, such as timeliness, security, and depend-

ability. Composition correctness requires verifica-

tion of the composed service’s properties, such as

security or dependability. Finally, because compli-

cated business transactions are likely to involve

multiple services in a complex invocation chain,

composition frameworks must scale with the num-

ber of composed services.

We can illustrate the need for such require-

ments with two examples. First, suppose we have a

trusted and an untrusted service, where the service

architecture defines trust. What happens when we

compose these services in sequence? Is this com-

position trusted, untrusted, or something in

between? It’s crucial that we know whether our

application is secure and dependable. And what

happens when we compose two trusted services?

Do we assume that the composition of trusted ser-

vices will also be trusted?

Another example that demonstrates the need for

nonfunctional properties is a composition’s timeli-

ness. Suppose we have a simple handshaking

example with two partner services, in which one

wants to invoke a method on the other. The client

service expects to be notified when it can apply

(invoke a method), while the provider service

expects to be notified that the client wants to uti-

lize its service. Unless its developers understand

such requirements in advance, the composition will

not produce useful or expected results.

Web Service
Composition Approaches
Once Web services’ native capabilities were fully

developed, service composition approaches began

emerging. Because the first-generation composi-

tion languages — IBM’s Web Service Flow Lan-

guage (WSFL) and BEA Systems’ Web Services

Choreography Interface (WSCI) — were incompat-

ible, researchers developed second-generation lan-

guages, such as the Business Process Execution

Language for Web Services (BPEL4WS, or BPEL for

short), which combines WSFL and WSCI with

Microsoft’s XLANG specification. Nonetheless, the

Web Services Architecture Stack still lacks a

process-layer standard for aggregation, choreog-

raphy, and composition (www.w3.org/2002/ws).

Here, we examine several of the proposals for Web

services composition, comparing how they meet

requirements for connectivity, nonfunctional prop-

erties, correctness, and scalability.

BPEL

BPEL (www.ibm.com/developerworks/library/

ws-bpel) is an XML language that supports process-

oriented service composition.3 Developed by BEA,

IBM, Microsoft, SAP, and Siebel, BPEL is currently

being standardized by the Organization for the

Advancement of Structured Information Standards

(www.oasis-open.org). (Sun Microsystems recently

joined the OASIS technical committee as well.)

BPEL composition interacts with a Web services’

subset to achieve a given a task. In BPEL, the com-

position result is called a process, participating ser-

vices are partners, and message exchange or inter-

mediate result transformation is called an activity.

A process thus consists of a set of activities. A

process interacts with external partner services

through a WSDL interface.

To define a process, we use

• a BPEL source file (.bpel), which describes

activities;

• a process interface (.wsdl), which describes

ports of a composed service; and

• an optional deployment descriptor (.xml), which

contains the partner services’ physical locations

(a partner service’s implementation and loca-

tion can be changed without modifying the

source file).

BPEL has several element groups, but the basic

ones are

• process initiation: <process>

• definition of services participating in compo-

sition: <partnerLink>

• synchronous and asynchronous calls:

<invoke>, <invoke>... <receive>

• intermediate variables and results manipula-

tion: <variable>, <assign>, <copy>

• error handling: <scope>, <faultHandlers>

• sequential and parallel execution:

<sequence>, <flow>

• logic control: <switch>

As an example, we’ll model the composition of

52 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

three services. Service A is called synchronously

and starts a process. Two asynchronous services,

B and C, are then called in parallel using Service

A’s output as their input. The process waits for

their completion and then makes a decision based

on the results. The stripped BPEL code for this

composition follows (for clarity, we’ve omitted

much of the code and assumed that all services

offer only one operation at one port):

<process name=“test”>

<partnerLinks>

<partnerLink name=“client”/>

<partnerLink name=“serviceA”/>

<partnerLink name=“serviceB”/>

<partnerLink name=“serviceC”/>

</partnerLinks>

<variables>

<variable name=“processInput”/>

<variable name=“AInput”/>

<variable name=“AOutput”/>

<variable name=“BCInput”/>

<variable name=“BOutput”/>

<variable name=“COutput”/>

<variable name=“processOutput”/>

<variable name=“AError”/>

</variables>

<sequence>

<receive name=“receiveInput” vari-

able=“input”/>

<assign><copy>

<from variable=“processInput”/>

<to variable=“AInput”/>

</copy></assign>

<scope>

<faultHandlers>

<catch faultName=“faultA” fault-

Variable=“AError”/>

</faultHandlers>

<sequence>

<invoke name=“invokeA” partner-

Link=“serviceA”

inputVariable=“AInput” output-

Variable=“AOutput”/>

</sequence>

</scope>

<assign><copy>

<from variable=“AOutput”/>

<to variable=“BCInput”/>

</copy></assign>

<flow>

<sequence>

<invoke name=“invokeB” partner-

Link=“serviceB”

inputVariable=“BCInput”/>

<receive name=“receive_invokeB”

partnerLink=“serviceB”

variable=“BOutput”/>

</sequence>

<sequence>

<invoke name=“invokeC” partner-

Link=“serviceC”

inputVariable=“BCInput”/>

<receive name=“receive_invokeC”

partnerLink=“serviceC”

variable=“COutput”/>

</sequence>

</flow>

<switch><case>

<!— assign value to processOutput —>

</case></switch>

<invoke name=“reply”

partnerLink=“client”

inputVariable=“processOutput”/>

</sequence>

</process>

Researchers recently released BPELJ (www

-106.ibm.com/developerworks/webservices/library/

ws-bpelj/), a combination of BPEL and Java that

lets developers include Java code inside BPEL

code. Developers can thus use Java “snippets” to

perform intermediate transformations such as

value calculations within documents; document

construction and deconstruction using informa-

tion from other documents and variables; and

value calculations for flow controls. They can

also perform side-effects without creating sepa-

rate Web services. A snippet can assume it’s run-

ning inside a J2EE container. It has access to all

variables and partner links that are in its loca-

tion’s scope. We can use a snippet, for example,

to write the <switch> construct omitted from the

previous example:

<bpelj:snippet>

<bpelj:code>

if (OutputB > OutputC)

processOutput = outputB;

else

processOutput = outputC;

</bpelj:code>

</bpelj:snippet>

Developers can use BPEL with two other

specifications:

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 53

Web Services Composition

• Web Services-Coordination (www-106.ibm.

com/developerworks/library/ws-coor/) coordi-

nates Web services’ actions when a consistent

agreement must be reached on the service

activities’ outcome.

• Web Services-Transaction (www-106.ibm.

com/developerworks/library/ws-transpec/)

defines Web services’ transactional behavior.

There are several BPEL orchestration server imple-

mentations for both J2EE and .NET platforms,

including IBM WebSphere (www-306.ibm.com/

software/info1/websphere), Oracle BPEL Process

Manager (formerly Collaxa BPEL Server; see www.

oracle.com/technology/products/ias/bpel/), Mic-

rosoft BizTalk 2004 (www.microsoft.com/biztalk),

OpenStorm ChoreoServer (www.openstorm.com),

and Active BPEL (www.activebpel.org).

Semantic Web (OWL-S)

The Semantic Web vision is to make Web resources

accessible by content as well as by keywords. Web

services play an important role in this: users and

software agents should be able to discover, com-

pose, and invoke content using complex services.

The DARPA Agent Markup Language (DAML)

extends XML and the Resource Description Frame-

work (RDF) to provide a set of constructs for cre-

ating machine-readable ontologies and markup

information. The DAML program’s Semantic Web

contribution is the Web Ontology Language for

Services (www.daml.org/services). OWL-S (previ-

ously known as DAML-S) is a services ontology

that enables automatic service discovery, invoca-

tion, composition, interoperation, and execution

monitoring.4

OWL-S models services using a three-part

ontology:

• a service profile describes what the service

requires from users and what it gives them;

• a service model specifies how the service works;

and

• a service grounding gives information on how

to use the service.

The process model is a service model subclass that

describes a service in terms of inputs, outputs, pre-

conditions, postconditions, and — if necessary —

its own subprocesses. In the process model, we can

describe composite processes and their dependen-

cies and interactions. OWL-S distinguishes three

types of processes: atomic, which have no sub-

processes; simple, which are not directly invoca-

ble and are used as an abstraction element for

either atomic or composite processes; and com-

posite, which consist of subprocesses. Constituent

processes are specified using flow-control con-

structs: sequence, split, split+join,

unordered, choice, if-then-else, iterate, and

repeat-until.

OWL-S would orchestrate the previous section’s

example as follows (again, using only the most

important commands):

<daml:Class rdf:ID=“test”>

<daml:subClassOf

rdf:resource=“Process.CompositeProcess”/>

<daml:subClassOf>

<daml:Restriction>

<daml:onProperty

rdf:resource=“Process#composedOf”/>

<daml:toClass>

<daml:Class>

<daml:intersectionOf rdf:parse-

Type=“daml:collection”>

<daml:Class

rdf:about=“process:Sequence”>

<daml:Restriction>

<daml:onProperty

rdf:resource=“Process#components”/>

<daml:toClass>

<daml:Class>

<process:listOfInstancesOf

rdf:parseType=“daml:col-

lection”>

<daml:Class rdf:about=“#ser-

viceA”/>

<daml:Class

rdf:about=“process:Split”>

<daml:Restriction>

<daml:onProperty

rdf:resource=“Process#components”/>

<daml:toClass>

<daml:Class>

<process:listOfInstancesOf

rdf:parseType=“daml:col-

lection”>

<daml:Class

rdf:about=“#serviceB”/>

<daml:Class

rdf:about=“#serviceC”/>

</process:listOfInstance-

sOf>

</daml:Class>

. . .

54 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Researchers have proposed methods for transfer-

ring OWL-S descriptions to Prolog5 and Petri-net-

based notation6 to further analyze verification. In

the Prolog approach, the developer manually

translates an OWL-S description to Prolog, which

makes it possible to find an adequate plan for

composing Web services for a target description.

That is, for a given pool of available Web services,

it’s possible to use logical inference rules to auto-

mate service allocation for the required task. In the

Petri-net approach, an OWL-S description is auto-

matically translated into Petri nets. Developers use

this representation to automate tasks such as sim-

ulation, validation, verification, composition, and

performance analysis.

Web Components

The Web component approach treats services as

components in order to support basic software-

development principles such as reuse, specializa-

tion, and extension.7 The main idea is to encapsu-

late composite-logic information inside a class

definition, which represents a Web component. A

Web component’s public interface can then be

published and used for discovery and reuse.

Composition logic comprises composition type

and message dependency. Composition type can

take two forms:

• Order determines whether a component can

execute constituent services sequentially or in

parallel.

• Alternative execution indicates whether a com-

ponent can invoke alternative services until

one succeeds.

Message dependency defines input and output

message mapping. There are three types of

dependency:

• Synthesis generates a composed service’s out-

put message by combining the output messages

of constituent services.

• Decomposition binds the composed service’s

input messages into the input messages of con-

stituent services.

• Message mapping allows custom mapping

between constituent services’ inputs and out-

puts.

The Web component approach supports several

basic composition constructs: sequential,

sequential alternative, parallel with result syn-

chronization, and parallel alternative. They are

augmented with condition and while-do con-

structs. A Web component class definition for

our example is

class BC is paraWithSyn{

public Msg BCInput, BCOutput;

public operation(Msg)->Msg;

private void compose(B.operation,

C.operation);

private void

messageDecomposition(BCInput, BInput,

CInput);

private void messageSynthesis(BOutput,

COutput, BCOutput);

}

class test us sequ {

public Msg processInput, processOut-

put;

public operation(Msg)->Msg;

private void compose(A.operation,

BC.operation);

private void messageDecomposition(pro-

cessInput, AInput);

private void messageSynthesis(proces-

sOutput, BCOutput);

private void messageMapping(AOutput,

BCInput);

}

We can specify a Web component in two isomor-

phic forms: a class definition and an XML specifi-

cation described in Service Composition Specifica-

tion Language. The SCSL specification consists of

the composite service’s interface and the composi-

tion logic. Composition logic is specified as follows

in SCSL for the class test (defined above):

<construct>

<composition type=“sequ”>

<activity name=“A”>

<input message=“AInput”/>

<output message=“AOutput”/>

<performedBy serviceProvider=“A”/>

</activity>

<activity name=“BC”>

<input message=“BCInput”/>

<output message=“BCOutput”/>

<performedBy serviceProvider=“BC”/>

</activity>

<messageHandling>

<messageDecomposition>

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 55

Web Services Composition

<source message=“processInput”/>

<target message=“AInput”/>

</messageDecomposition>

<messageSynthesis>

<source message=“BCOutput”/>

<target message=“processOutput”/>

</messageSynthesis>

<messageMapping>

<source message=“AOutput”/>

<target message=“BCInput”/>

</messageMapping>

</messageHandling>

</composition>

</construct>

Web components offer both compatibility and con-

formance checking. Two services, S1 and S2, are

compatible when S1 is at least as capable as S2,

and when S1 can substitute for S2. Service S1 con-

forms to service S2 when we can combine S1 and

S2 so that S1’s output can be taken as S2’s input.

In our example, service A conforms to B and C,

whereas B and C are compatible.

Algebraic Process Composition

Algebraic service composition aims to introduce

much simpler descriptions than other approaches,

and to model services as mobile processes to

ensure verification of properties such as safety,

liveness (correct termination, for example), and

resource management.

Mobile-processes theory is based on ��

calculus,8 in which the basic entity is a process

— it can be an empty process; a choice between

several I/O operations and their continuations; a

parallel composition; a recursive definition; or a

recursive invocation. I/O operations can be input

(receive) or output (send). For example, x(y)

denotes receiving tuple y on channel x; x
_
[y]

denotes sending tuple y on channel x. Dotted

notation specifies an action sequence, such as

c
_
[1,d].d(x,y,z).c

_
[x+y+z], in which a process sends

tuple [1,d] on channel c, then receives a tuple at

channel d whose components are bound to the

variables x, y, and z, and finally sends the sum

of x+y+z to channel c. Parallel process composi-

tion is denoted with A|B. Several processes can

execute in parallel and communicate using com-

patible channels.

Describing services in such an abstract way lets

us reason about the composition’s correctness.9

Using ��calculus, we can describe our example

composition as

A(processInput).B
_
[AOutput].C

_
[AOutput]|

B(BInput).out
__

[BOutput]|

C(CInput).out
__

[COutput]|out(processOutput)

Using simple reduction, we can see that the com-

position’s only possible outcomes are either

processOutput=BOutput or processOutput=

COutput, which means that this composition guar-

antees lock freedom. In a finite number of steps,

the composition will produce the desired result.

Apart from verifying liveness, we can treat

other relevant properties by assigning behavioral

types to processes. There are at least two possible

ways to type processes: we can type only port sub-

sets or type the entire process. In the first case, we

can proscribe the type or shape of data that can be

exchanged via two ports. In our example, this

would create additional message limitations. We

could, for example, require that both AOutput and

BInput follow some pattern (type) to make reduc-

tion B
_
[AOutput]|B(BInput) possible. In our current

example, processes A and B can exchange any

kind of message, but if we type the messages

(ports), we could limit the exchange. In the second

case, we type the entire process and the type

notion becomes a homomorphic image of the

process. In many such systems, process and type

are synonyms.

With algebraic process composition, the gener-

al question is what information to type. Typing too

little can make it impossible to verify some prop-

erties, such as security. On the other hand, typing

too much creates a complexity that renders verifi-

cation unusable or impractical.

Petri Nets

Petri nets are a well-established process-modeling

approach. A Petri net is a directed, connected, and

bipartite graph in which nodes represent places

and transitions, and tokens occupy places. When

there is at least one token in every place connect-

ed to a transition, that transition is enabled. An

enabled transition might fire by removing one

token from every input place, and depositing one

token in each output place.

We can model services as Petri nets by assign-

ing transitions to methods and places to states.10

Each service has an associated Petri net that

describes service behavior and has two ports: one

input place and one output place. At any given time,

a service can be in one of the following states: not

instantiated, ready, running, suspended, or com-

pleted. After we define a net for each service, com-

56 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

position operators perform composition: sequence,

alternative (choice), unordered sequence, iteration,

parallel with communication, discriminator, selec-

tion, and refinement. These operators guarantee the

closure property. Thus, by composing two or more

Web services, we produce another service.

Let � be a sequence operator, for example, and

||� be a parallel operator with communication. We

can then write our example as A � (B ||� C). We use

a parallel operator with communication to compare

and select between outputs of services B and C.

Graphically, our service would look like Figure 1.

After specifying composition with a Petri net,

we can use it to prove some algebraic properties,

such as absence of deadlocks or livelocks (whether

composition will terminate in a finite number of

steps). Correct termination is very important for

composed service; we verify this property by deter-

mining whether the Petri net is live and bounded.

Model Checking and Finite-State Machines

Other approaches for Web service composition

include model checking, modeling service composi-

tion as Mealy machines (described below), and auto-

matic composition of finite-state machines (FSMs).

Model checking is used to formally verify

finite-state concurrent systems. We describe sys-

tem specification using temporal logic, then tra-

verse and check the model to see whether the spec-

ification holds. We can apply model checking to

Web service composition by verifying correctness

inside a workflow specification. Among the prop-

erties we can check are data consistency, unsafe

state avoidance (deadlock), and business-con-

straint satisfaction.11

Researchers have also proposed the conversa-

tion specification for Web service composition.12

According to this approach, understanding con-

stituent services’ local behavior and the composed

service’s global behavior are important to verify-

ing and guaranteeing correctness. The approach

models services as Mealy machines, which are

FSMs with input and output. Services communi-

cate by sending asynchronous messages, and each

service has a queue. A global “watcher” keeps

track of all messages. The conversation is intro-

duced as a sequence of messages. By studying and

understanding conversation properties, the method

provides new approaches for designing and ana-

lyzing “well-formed” service composition.

Automatic Web services composition is the

ultimate goal of most composition efforts. Berardi

and colleagues present a framework that describes

a Web service’s behavior as an execution tree and

then translates it into an FSM.13 They propose an

algorithm that checks a composition’s existence,

and returns one if it exists. In the process, the

composition is proved correct and the algorithm’s

computational complexity characterization is

given, ensuring that the automatic composition

will finish in the finite number of steps.

Method Comparison
We can now compare the various solutions with

respect to our four service-composition require-

ments. We also discuss the possibility of auto-

matic service composition. Table 1 summarizes

our results.

Connectivity and Nonfunctional Properties

All approaches offer services connectivity.

Although the services themselves are modeled in

various ways, at the lowest level, the connection

comes down to mapping and orchestrating input

and output messages between the partner services’

service ports. Most approaches neglect specifica-

tion of nonfunctional QoS properties such as secu-

rity, dependability, or performance. Only OWL-S

lets users define some nonfunctional properties

(namely, quality of service), but that capability has

yet to be fully specified.

Composition Correctness

Verifying correctness depends on the service and

composition specifications. BPEL and OWL-S pro-

vide no way to verify correctness. BPEL is a Turing-

complete language dealing more with implementa-

tion than specification, and thus it’s difficult to

provide a formalism to verify the correctness of

BPEL flows. All other approaches support verifica-

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 57

Web Services Composition

Figure 1. Petri net composition. To connect Petri nets representing
services B and C, we use a parallel operator with communication,
and then connect this composition with a Petri net representing
service A using a sequence operator.

Service A

Service C

Service B

tion in some way. Even OWL-S, when combined

with Prolog or Petri nets, allows reasoning about

correctness. However, the extent to which correct-

ness is verified varies.

Web components offer a simple way to check

for compatibility and conformance. �-calculus

offers powerful algebraic verification for deter-

mining liveness, security, and quality of service.

However, applying such verification depends on

what is typed when you model services as process-

es. Petri nets use elaborate algebra for verification.

We can check whether composition has deadlocks

by determining whether the corresponding Petri

net is live and bounded. Model checking’s verifi-

cation methods are comparable with �-calculus.

Many methods are available for proving that a

composed service’s specification conforms to the

model. The issue is deciding what needs to be spec-

ified for model checking to produce useful results.

Another problem is computing resources (such as

CPU time or storage space); given the vast state

space you must examine, you can run out of

resources and still not know whether the compo-

sition conforms to the model.

Automatic Composition

Many composition approaches aim to automate

composition, which promises faster application

development and safer reuse, and facilitates user

interaction with complex service sets. With auto-

mated composition, the end user or application

developer specifies a goal (a business goal

expressed in a description language or mathe-

matical notation) and an “intelligent” composi-

tion engine selects adequate services and offers

the composition transparently to the user. The

main problems are in how to identify candidate

services, compose them, and verify how closely

they match a request. So far, modeling services as

FSMs is the most promising automatic composi-

tion approach.

Composition Scalability

All composition approaches support Web services

connectivity through message passing via ports.

Composing two services, however, is not the same as

composing 10 or 100. In a real-world scenario, end

users will typically want to interact with many ser-

vices — consider the classic holiday booking scenario

— while enterprise applications will invoke chains of

possibly several hundred services. Therefore, one of

the critical issues is how the proposed approaches

scale with the number of services involved.

In BPEL, multiple service composition is some-

what tedious because XML files start to grow.

Because BPEL composition is recursive, we can

modularize composition. Unfortunately, BPEL has

no standard graphical notation. Some orchestration

servers offer graphical representation, and there are

proposals to use UML-like notation for descriptions.

Graphic notations are not formal, however, and they

don’t map one-to-one to BPEL’s complex language

constructs. OWL-S has similar issues.

The Web component approach achieves good

scalability with class definitions, but requires addi-

tional time for mapping and synchronization

between class definitions and XML. The �-calculus

approach offers concise notation with powerful

reduction mechanisms, which facilitate specification

of complex services. The Petri net approach’s scala-

bility is reduced by complexity issues, since Petri nets

are not a very scalable modeling technique. Finally,

judging the scalability of model checkers and FSM

models depends on the checker type and machine

state operations. This discussion is outside our sur-

vey’s scope, but with careful modeling, it’s likely that

a model checkers’ scalability will be better than Petri

nets and comparable to �-calculus.

Conclusion
Service composition approaches range from those

aspiring to become industry standards (BPEL and

OWL-S) to more abstract methods. An ideal

58 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Table 1. Comparing service composition requirements.

Service Nonfunctional Composition Automatic Composition

connectivity properties correctness composition scalability

BPEL √ Average

OWL-S √ √ Average

Web components √ √ Low

�-calculus √ √ Good

Petri nets √ √ Low

Model checking/FSM √ √ √ N/A

approach would cover all four key requirements

that we identified. The main problem with “indus-

trial” approaches is correctness verification. Ser-

vice composition is sometimes called “program-

ming in the big,” yet it seems that industry is

unaware that even “programming in the small” is

plagued by numerous problems when formal

specification and verification are lacking. We

can’t expect an open paradigm with such varying

granularity as Web services to succeed based on

implementation languages alone. On the other

hand, formal approaches are often difficult to

apply in real-world enterprise environments, and

some face scalability problems. From the correct-

ness viewpoint, it’s beneficial to analyze Web ser-

vice properties using elaborate mathematics; how-

ever, to realize these benefits, we must be able to

translate from WSDL and SOAP to elegant math-

ematical solutions.

The Web service composability problem will

likely be around for a while. Given this, our

short-term goal should be to adopt an industry

standard. A long-term goal must be to incorpo-

rate verification mechanisms that both scale well

and let developers and users perform everyday

chores using Web services — without having to

worry about whether the process will deadlock,

consume all the memory, disclose confidential

corporate data, or send a credit-card number to

an unknown recipient.

References

1. M.P. Papazoglou and D. Georgakopoulos, “Service Orient-

ed Computing,” Comm. ACM, vol. 46, no. 10, 2003, pp.

25–28.

2. F. Curbera et al., “Unraveling the Web Services Web: An

Introduction to SOAP, WSDL, and UDDI,” IEEE Internet

Computing, vol. 6, no. 2, 2002, pp. 86–93.

3. F. Curbera et al., “The Next Step in Web Services,” Comm.

ACM, vol. 46, no. 10, 2003, pp. 29–34.

4. A. Ankolekar et al., “DAML-S: Web Service Description for

the Semantic Web,” Proc. Int’l Semantic Web Conf. (ISWC),

LNCS 2342, Springer-Verlag, 2002, pp. 348–363.

5. S. McIlraith and T.C. Son, “Adapting Golog for Composi-

tion of Semantic Web Services,” Proc. Int’l Conf. Princi-

ples of Knowledge Representation and Reasoning (KRR 02),

2002, pp. 482–493.

6. S. Narayanan and S. McIlraith, “Simulation, Verification

and Automated Composition of Web Services,” Proc. Int’l

World Wide Web Conf. (WWW2002), 2002, pp. 77–88.

7. J. Yang and M.P. Papazoglou, “Web Component: A Sub-

strate for Web Service Reuse and Composition,” Proc. 14th

Conf. Advanced Information Systems Eng. (CAiSE 02),

LNCS 2348, Springer-Verlag, 2002, pp. 21–36.

8. R. Milner, “The Polyadic �-Calculus: A Tutorial,” Logic and

Algebra of Specification, F.L. Bauer, W. Brauer, and H.

Schwichtenberg, eds., Springer-Verlag, 1993, pp. 203–246.

9. L.G. Meredith and S. Bjorg, “Contracts and Types,” Comm.

ACM, vol. 46, no. 10, 2003, pp 41–47.

10. R. Hamadi and B. Benatallah, “A Petri-Net-Based Model for

Web Service Composition,” Proc. 14th Australasian Data-

base Conf. Database Technologies, ACM Press, 2003, pp.

191–200.

11. X. Fu, T. Bultan, and J. Su, “Formal Verification of E-

Services and Workflows,” Proc. Workshop on Web Services,

E-Business, and the Semantic Web (WES), LNCS 2512,

Springer-Verlag, 2002, pp. 188–202.

12. T. Bultan et al., “Conversation Specification: A New

Approach to Design and Analysis of E-Service Composi-

tion,” Proc. Int’l World Wide Web Conf. (WWW 2003), ACM

Press, 2003, pp. 403–410.

13. D. Berardi et al., “Automatic Composition of E-Services that

Export Their Behavior,” Proc. 1st Int’l Conf. Service-

Oriented Computing (ICSOC 03), LNCS 2910, Springer-

Verlag, 2003, pp. 43–58.

Nikola Milanovic is a research fellow and PhD candidate at the

Institute for Informatics, Humboldt University, Berlin. His

research interests include component- and service-based

environments, service composition, ubiquitous computing,

ad hoc networking, and wireless communication.

Milanovic received a Dipl. Ing. in electrical engineering

from the University of Belgrade. Contact him at

milanovi@informatik.hu-berlin.de.

Miroslaw Malek is a professor and chair of computer architec-

ture and communication at Humboldt University, Berlin.

His research focuses on high-performance responsive com-

puting, including parallel architectures, real-time systems,

networks, and fault tolerance. Malek received a PhD in

computer science from the Technical University of Wro-

claw, Poland. He is a member of the ACM. Contact him at

malek@informatik.hu-berlin.de.

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2004 59

Web Services Composition

Write for Spotlight

Spotlight focuses on emerging technologies, or new aspects of existing

technologies, that will provide the software platforms for Internet

applications.

Spotlight articles describe technologies from the perspective of a devel-

oper of advanced Web-based applications. Articles should be 2,000 to 3,000

words.Guidelines are at www.computer.org/internet/dept.htm.

To check on a submission’s relevance, please contact department edi-

tor Siobhán Clarke at siobhan.clarke@cs.tcd.ie.

