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Gait and balance impairments are frequently considered as the most significant

concerns among individuals suffering from neurological diseases. Robot-assisted

gait training (RAGT) has shown to be a promising neurorehabilitation intervention

to improve gait recovery in patients following stroke or brain injury by potentially

initiating neuroplastic changes. However, the neurophysiological processes underlying

gait recovery through RAGT remain poorly understood. As non-invasive, portable

neuroimaging techniques, electroencephalography (EEG) and functional near-infrared

spectroscopy (fNIRS) provide new insights regarding the neurophysiological processes

occurring during RAGT by measuring different perspectives of brain activity. Due to

spatial information about changes in cortical activation patterns and the rapid temporal

resolution of bioelectrical changes, more features correlated with brain activation

and connectivity can be identified when using fused EEG-fNIRS, thus leading to a

detailed understanding of neurophysiological mechanisms underlying motor behavior

and impairments due to neurological diseases. Therefore, multi-modal integrations of

EEG-fNIRS appear promising for the characterization of neurovascular coupling in brain

network dynamics induced by RAGT. In this brief review, we surveyed neuroimaging

studies focusing specifically on robotic gait rehabilitation. While previous studies have

examined either EEG or fNIRS with respect to RAGT, a multi-modal integration of

both approaches is lacking. Based on comparable studies using fused EEG-fNIRS

integrations either for guiding non-invasive brain stimulation or as part of brain-machine

interface paradigms, the potential of this methodologically combined approach in RAGT

is discussed. Future research directions and perspectives for targeted, individualized

gait recovery that optimize the outcome and efficiency of RAGT in neurorehabilitation

were further derived.

Keywords: multi-modal approach, electroencephalography, functional near-infrared spectroscopy, robot-

assisted gait training, motor recovery, neurorehabilitation, brain-machine interface, brain stimulation

INTRODUCTION

According to the World Health Organization, over one billion people are affected by gait and
balance impairments due to neurological diseases that impact independent living and quality of life
(Stump, 2007; Turner et al., 2013; Calabrò et al., 2016). With respect to maladaptive brain functions
in the motor domain (e.g., following stroke), the brain has the remarkable capacity to repair itself to
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a certain extent. Such processes occur through functional
and structural changes during motor (re-)learning, which are
collectively termed neuroplasticity (Pascual-Leone et al., 2005;
Pascual-Leone et al., 2011; Kays et al., 2012; Chen et al., 2015). In
recent years, robot-assisted neurorehabilitation has been applied
in addition to manual-assisted therapy due to its provision of
early, intensive, task-specific, and multi-sensory training, which
is thought to be most effective for motor recovery by favoring
neuroplastic changes (Turner et al., 2013; Calabrò et al., 2016).
Indeed, current literature suggests that patients with neurological
diseases improved their walking ability (Calabrò et al., 2016),
walking speed (Benito-Penalva et al., 2012; Uçar et al., 2014),
leg muscle force (Beer et al., 2008), step length, and gait
symmetry (Husemann et al., 2007; Esquenazi et al., 2013) due to
robotic rehabilitation. Nevertheless, the science-based evidence
for improved gait recovery is mixed due to heterogeneous
study designs and methods, coupled with a lack of knowledge
regarding the underlying neurophysiological mechanisms of
robot-assisted gait training (RAGT) (Swinnen et al., 2010, 2015;
Knaepen et al., 2015).

New insights into brain activity during RAGT would allow the
improvement of robotic rehabilitation, however, it is a challenge
because of movement-related signal artifacts arising during the
interaction of robot systems with their users. In contrast to
stationary neuroimaging methods such as functional magnet
resonance imaging (fMRI) which do not allow the analysis
during movements (Gramann et al., 2011), wearable mobile
brain imaging (MoBI) systems provide an approach to fully inv
estigate how natural, varying behavior is guided by complex
neural dynamics (Makeig et al., 2009). EEG and fNIRS are non-
invasive, portable, and cost-effective methods representing the
MoBI approach by enabling the measurement of brain activity
in natural environments.

Electroencephalography records the integrated and
synchronized activity of pyramidal neurons in the cerebral
cortex, either postsynaptic potentials associated with neural
activation [e.g., event-related potentials (ERPs)] or changes and
strengths of various oscillation frequencies (i.e., delta, theta,
alpha, mu, beta, and gamma) which are expressed as power
spectral density or coherence (Knaepen et al., 2015). In addition
to an excellent temporal resolution, reasonable spatial accuracy
can be ensured by new high-density systems (Robinson et al.,
2017) or statistical methods such as independent component
analysis (ICA) decompositions by reconstructing the origin of
EEG activity (Makeig et al., 2004; Onton et al., 2006; Gramann
et al., 2010). Furthermore, artifacts during walking due to head
movements, eye movements or neck muscle activity can be
detected with ICA (Gwin et al., 2010, 2011; Wagner et al., 2012;
Snyder et al., 2015) or artifact removal methods includingmoving
average and wavelet-based techniques (Kline et al., 2015), thus,
resulting in improved signal-to-noise ratio. Studies investigating
brain oscillations during walking (Petersen et al., 2012; Severens
et al., 2012; Solis Escalante et al., 2012; Wagner et al., 2012, 2016;
Sanctis et al., 2014; Seeber et al., 2014; Bulea et al., 2015) showed
sustained mu and beta desynchronization within sensorimotor
cortex (SMC; Severens et al., 2012; Wagner et al., 2012, 2014;
Seeber et al., 2014; Bulea et al., 2015) demonstrating that motor

cortex and corticospinal tract contribute directly to the muscle
activity in locomotion (Petersen et al., 2012).

In contrast to EEG, fNIRS relies on the principle of
neurovascular coupling measuring changes in regional cerebral
blood flow, oxygenated hemoglobin (Hboxy), and deoxygenated
hemoglobin (Hbdeoxy) induced by neuronal activation, which is
analogous to the blood-oxygenation-level-dependent responses
measured by fMRI (Ferrari et al., 2004). Both provide
information regarding the spatial location of the recorded
activity, whereas the temporal resolution is limited due to the
intrinsically slow processes of hemodynamic changes. Compared
to fMRI, fNIRS is – although with lower resolution (Koch
et al., 2008) affordable and easily implementable in a portable
system, thus facilitating a wider range of applications. Recently,
wearable and wireless systems were developed which allow the
topographical representation of hemodynamic responses over
the cortical surface due to high-density multi-distance channels
(Shin et al., 2017). Furthermore, they are lightweight and robust
to motion artifacts due to the absence of fiber-optic bundles
(Pinti et al., 2018). Despite advantages and developments,
the challenge remains to distinguish physiological changes
through brain activity from noise and artifacts. Various methods
have been proposed recently to correct for motion artifacts,
including principle component analysis, spline interpolation,
Kalman filtering, wavelet filtering and correlation-based signal
improvement, with the result that wavelet filtering seems be
the most promising and powerful technique for motion artifact
correction in fNIRS data (Brigadoi et al., 2014). Furthermore,
new short channels systems enable the detection of scalp-
hemodynamics contaminating the fNIRS signal which can be
removed from cerebral hemodynamics of long-channels using
general linear model to estimate brain activity (Sato et al., 2016).
In studies investigating brain activity in terms of Hboxy/Hbdeoxy
concentration changes during walking, healthy people had
significantly increased brain activity in SMC, premotor cortex
(PMC), supplementary motor area (SMA) as well as prefrontal
cortex (PFC) (Miyai et al., 2001; Hamacher et al., 2015). In
comparison, patients with neurological diseases and elderly
people showed increased PFC activity associated with low gait
capacity (Harada et al., 2009; Stuart et al., 2018). A standardized
method to identify and reduce motion as well as physiological
artifacts (e.g., heart rate, mayer waves, respiration) during
walking is missing so far (Vitorio et al., 2017).

Based on the independence between electrical and optical
measurements as well as the assets and drawbacks of each
neuroimaging technique, the multi-modal integration of EEG-
fNIRS can partially overcome the limitations encountered by
each individual modality (Merzagora et al., 2009; Muthalib
et al., 2013), which may help to more accurately characterize
the functional activity of neural networks involved in robotic
rehabilitation. However, although RAGT is the most frequent
robot-assisted intervention for neurological injuries, little is
known regarding the neural correlates of gait recovery in RAGT
(Kim et al., 2016). In order to determine optimal training
parameters for individualized gait therapy protocols, it is essential
to understand how robotic devices interact with their users,
and thus, how both locomotor control and gait recovery is
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characterized by brain signals (Solis Escalante et al., 2012;
Youssofzadeh et al., 2014, 2016).

Therefore, we (1) surveyed neuroimaging studies focusing on
RAGT (summarized in Table 1) with the aim to contribute to
the understanding of neurovascular coupling phenomena and (2)
inferred the potential of multi-modal integration of EEG-fNIRS
in robotic gait rehabilitation (see section Future Prospects for
Fused EEG-fNIRS in RAGT).

REVIEW CRITERIA

The present mini review article focuses on studies addressing
EEG or fNIRS during RAGT, thus investigating oscillatory
and hemodynamic activity during robot-assisted gait were the
decisive criterions. We followed the Preferred Reporting Items
for Systematic Reviews statements (Moher et al., 2009) to identify
and screen the articles. Figure 1 presents the search strategy
as well as the selection criteria in detail. A total of 14 articles
matched the inclusion criteria. All relevant data extracted and
summarized from the screening process were shown in Table 1.

NEURAL CORRELATES OF RAGT

Based on 113 studies identified through database searching, 27
studies were deemed eligible for full-text assessment based on

abstract reviewwith 14 studiesmeeting our final inclusion criteria
(see Figure 1). Twelve studies used EEG, two studies measured
with fNIRS (see Table 1).

In EEG studies, the Lokomat (Hocoma, Switzerland) was
used most frequently (Lapitskaya et al., 2011; Wagner et al.,
2012; Seeber et al., 2013, 2014, 2015; Knaepen et al., 2015)
whereas the active leg exoskeleton (ALEX; Youssofzadeh et al.,
2014, 2016) was used in two studies and the gait assistance
robot (GAR; Nakanishi et al., 2014), H2 exoskeleton (Villa-
Parra et al., 2015; Contreras-Vidal et al., 2018) or the wearable
EksoTM (Calabrò et al., 2018) in one study only. Changes
in electrophysiological activity due to RAGT were analyzed
by investigating either event-related potentials, power-spectral
densities as well as coherence. Examinations were carried
out either with healthy volunteers or in three studies with
neurologically ill patients.

In healthy subjects, Wagner et al. (2012) investigated spectral
patterns during active and passive robot-assisted walking and
showed significantly suppressed mu (8–12 Hz) and beta (18–
21 Hz) rhythms in central midline areas during active walking
that also depend on gait cycle phases. These results have been
underpinned by suppressed mu (10–12 Hz) and beta (18–
30 Hz) oscillations (Seeber et al., 2013) as well as increased
gamma amplitudes (24–40 Hz) during robot-assisted walking
compared to standing (Seeber et al., 2015) or reduced power
in alpha and beta bands during active participation due to

FIGURE 1 | Flowchart of the article selection process.
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TABLE 1 | Overview of studies investigating the neurophysiological mechanisms underlying RAGT using EEG and fNIRS.

Author(s) Title Robotic system Method EEG/fNIRS device Parameter Sample Outcome Conclusion

Calabrò et al.,

2018

Shaping

neuroplasticity by

using powered

exoskeletons in

patients with

stroke: a

randomized clinical

trial

EksoTM Prospective,

pre-post,

randomized clinical

trial; 1st group:

EGT and OGT; 2nd

group: OGT; Study

design: 45 min per

session, five times a

week over 8 weeks

EEG Brain Quick

SystemPLUS

(Micro-med;

Mogliano Veneto,

Italy); 21 electrodes

Sampling rate:

512 Hz; Electrode

placement: 10–20

system; Additional:

sEMG & TMS

EEG: FPEC EMG:

gait performance

based on the 10 m

walking test, gait

cycle, muscle

activation muscles;

TMS: CSE and SMI

from both M1

Stroke patients;

Hemiparesis

caused by stroke in

a chronic phase;

Number of

participants: 40

patients, 20 each in

a group; Age: ≥55

years

FPEC: significant

strengthening of

EGT group; CSE:

significant

improvement in

EGT group on the

affected side; SMI:

significant

improvement in

EGT group on

affected side; 10 m

walk test:

significant

improvement in

EGT group;

General walking

quality: significant

improvement; Hip

and knee muscle

activation:

significant

improvement

EGT seems, in addition

to OGT, also promising

in gait rehabilitation for

patients after a stroke.

The study suggests

that Ekso could be

useful to promote the

mobility of people with

stroke, thanks to the

mechanisms of brain

plasticity and

remodulation of

connectivity that are

specifically carried

along by the robotic

system compared to

conventional OGT.

Contreras-Vidal

et al., 2018

Neural Decoding of

Robot-Assisted

Gait during

Rehabilitation after

Stroke

H2 Exoskelett Study design: 12

training sessions, 4

weeks Meanwhile,

no additional

therapy; Walking

speed: preset and

comfortable for the

test persons, could

be adjusted while

walking

EEG BrainAmpDC,

Brain Products,

Germany; 64

electrodes

Sampling rate:

1000 Hz

Changes in power

spectra for the

0.1–3 Hz (delta)

band; Additional:

walking speed,

walking distance

Stroke patients

Chronic

hemiparesis after a

stroke Number of

test persons: 5;

Exclusion: 1

Suppression of the

delta frequency

when walking in the

occipital scalp area.

Increase in delta

frequency

suppression in the

frontal and central

scalp regions.

Improvement of

walking distance

and walking speed,

which correlated

with increased

accuracy of offline

decoding.

Proof of the feasibility of

neuronal decoding of

gait kinematics from the

EEG during RAGT in

chronic stroke patients.

Since motor intention

recognition from EEG

signals is synchronized

with motion feedback

generated by

exoskeleton-assisted

movements of the

lower extremities, the

BMI-H2 system can

promote brain

reorganization through

motor learning,

presumably due to

activity-dependent

brain plasticity. First

step in the

development of a

brain-machine interface

to control driven

exoskeletons.

(Continued)
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TABLE 1 | Continued

Author(s) Title Robotic system Method EEG/fNIRS device Parameter Sample Outcome Conclusion

Knaepen et al.,

2015

Human-Robot

Interaction: Does

Robotic Guidance

Force Affect

Gait-Related Brain

Dynamics during

Robot-Assisted

Treadmill Walking?

Lokomat Stratified randomization

4 gait conditions of

5 min each: 1st

condition at the

beginning without

Lokomat. Condition

2–4 with Lokomat with

3 levels of managers.

Speed: 2 km/h;

Conditions: Unassisted

treadmill walking as well

as during

robot-assisted treadmill

walking GF: 30, 60,

and 100% BWS: 0

EEG BrainAmp DC

& BrainVision

Recorder, Brain

Products GmbH,

Germany; 32

electrodes

Sampling rate:

1000 Hz Band

pass: 0.5–100 Hz;

Electrode

placement: 10–20

system

Examination of

ERSPs and PSDs

during RATW at 30,

60, and 100% GF

No health

impairments;

Number of test

persons: 11;

Exclusion: 7; Male:

3; Female: 9; Age:

28.2 ± 4.0 years;

Weight:

64,7 ± 7,7 Kg

Gait-related spectral

modulations in the mu-,

beta- and lower

gamma bands above

the SMC, related to

certain phases of the

gait cycle. Mu and beta

rhythms were

suppressed in the right

primary sensory cortex

during treadmill walking

compared to 100%

robot-assisted treadmill

training, indicating

significantly greater

involvement of the

sensorimotor area

during treadmill walking

compared to

robot-assisted treadmill

walking. Minor

differences in the

spectral performance of

mu, beta and lower

gamma bands between

robotic treadmill

walking with different

guidance strengths.

High leadership

strength and thus

less active

participation in the

movement should

be avoided during

robot-supported

treadmill training.

This will optimize

the participation of

the sensorimotor

cortex, which is

known to be

essential for motor

learning.

(Continued)

F
ro

n
tie

rs
in

H
u
m

a
n

N
e
u
ro

sc
ie

n
c
e

|w
w

w
.fro

n
tie

rsin
.o

rg
5

Ju
n
e

2
0
1
9

|V
o
lu

m
e

1
3

|A
rtic

le
1
7
2

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


B
e
rg

e
r

e
t

a
l.

E
E

G
-fN

IR
S

in
R

o
b

o
tic

G
a
it

R
e
h
a
b

ilita
tio

n

TABLE 1 | Continued

Author(s) Title Robotic system Method EEG/fNIRS device Parameter Sample Outcome Conclusion

Lapitskaya

et al., 2011

Robotic gait training in

patients with impaired

consciousness due to

severe traumatic brain injury

Lokomat Prospective,

controlled,

non-randomized

study. Single

training session:

Speed:

1.5 ± 0.1 km/h

(patients),

1.61 ± 0.08 km/h

(healthy subjects);

Training time:

17.1 ± 1.3 min

(patients),

17.15 ± 0.11 min

(healthy volunteers);

Walking distance:

427.3 ± 38.6m

(patients),

451.36 ± 15.02m

(healthy volunteers);

conditions:

Recovery phases

and RAGT; GF:

100%; EEG

recording in sitting

position

EEG Nervous

system

(Taugagreining hf,

Reykjavik, Island)

19 electrodes

placement: Fz, Cz

and Pz; ECI

Electro-Cap

SystemTM,

International, Inc.,

Eaton, OH,

United States; SEP

measurement:

’VikingQuest’

(Viasys Healthcare,

San Diego, CA,

United States)

Sensory nerve

tracts were

evaluated with the

help of sensory

ERPs. Global DAR

and the latency of

the P300

component of the

event-related

potentials before

and after a training

session.

Patients with TBI

disturbances of

consciousness;

Sample size: 12;

Male: 9; Female: 3;

Age: 40.8 ± 18.2

years; Control

group: 14 healthy

male subjects; Age:

47.3 ± 14.5 years

Basic

measurement:

Impaired SEPs in

most patients and a

significantly larger

DAR in patients

compared to

healthy ones; After

RAGT: Reduction of

DAR in healthy

subjects, but not in

patients. No

changes in P300

latency after

training in patients

or healthy subjects.

The study showed

that robotic gait

training induces

measurable

changes in the EEG

performance

spectrum in healthy

individuals, while no

changes were

observed in

patients with severe

TBI. The absence

of changes in the

EEG power

spectrum after

RAGT in the patient

may be an indicator

of the severity of

the injury.

Nakanishi et al.,

2014

Rapid changes in arousal

states of healthy volunteers

during robot-assisted gait

training: a quantitative

time-series

electroencephalography

study

GAR Conditions:

Standing versus

passive RAGT

Standing: 30 s with

eyes closed and 30

s with eyes open;

RAGT: 6 min. at 3

conditions: (1) sinus

wave noise

stimulation, (2)

verbal noise

stimulation, (3) no

noise stimulation;

Speed: 0.11 m/s

EEG Polymate II

AP216, TEAC,

Tokyo, Japan

Sampling rate:

1000 Hz; Electrode

placement: 10–20

system

The PSD of the

theta, alpha-1 and

alpha-2 bands

were calculated as

indicators of

objective

drowsiness.

No health

impairments;

Sample size: 12; All

male Age:

39.3 ± 1.8 years;

Weight:

64.9 ± 2.3 kg;

Body height:

168.4 ± 0.8 cm

Increase power

density in theta

(4.0–7.9 Hz) and

alpha bands (ERS).

EEG-measured

excitation values

during RAGT

decreased within a

short time but can

be restored and

maintained by

intermittent warning

tone stimulation.

(Continued)
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TABLE 1 | Continued

Author(s) Title Robotic system Method EEG/fNIRS device Parameter Sample Outcome Conclusion

Seeber et al.,

2013

Spatial-Spectral

Identification of µ and β

EEG Rhythm Sources

During Robot-Assisted

Walking

Lokomat Conditions: 3 runs

standing upright,

3 min each; 4 runs

active walking,

6 min each

EEG 120

electrodes

Sampling rate:

2.5 kHz; High pass:

0.1 Hz; Low pass:

1000 Hz; Electrode

placement: 10–20

system

Power spectra

(ERD); Functional

brain topography

No health

impairments;

Sample size: 8;

Male: 5; Female: 3;

Age: 26.3 ± 3.5

years

Individual mu and

beta ERD activities

in SMC. The

beta-ERD is more

focal and

consistent among

the test persons in

the foot area than

the mu-ERD.

A method capable

of considering

individual slight

differences in the

rhythms mu and

beta and locating

the ERD activity of

these rhythms at

the cortical level.

Maximum

frequencies of ERD

were successfully

identified for each

subject in the

frequency range

mu and beta. The

resulting spectral

peaks lead to mu

and beta

topographies for

these frequencies.

Seeber et al.,

2014

EEG beta suppression

and low gamma

modulation are different

elements of human

upright walking

Lokomat Conditions: 4 runs

active walking

6 min each, 3 runs

upright standing

3 min each. Speed:

1.8 km/h -

2.2 km/h (constant,

adapted to the test

persons) BWS:

<30% GF: 100%

EEG BrainAmp,

Brain-products,

Germany; 4×

32-channel

amplifiers

combined to 120

channels; Sampling

rate: 2.5 kHz Band

pass: 0.1–1000 Hz;

Electrode

placement: 10–20

system (EasyCap,

Germany)

Amplitude

Modulation &

Power Spectra

(ERD)

No health

impairments;

Sample size: 10;

Male: 5; Female: 5;

Age: 25.6 ± 3.5

years

During active

walking, mu

(10–12 Hz) and

beta (18–30 Hz)

oscillations were

suppressed (ERD)

compared to

standing upright.

Significant beta

ERD was visible in

9/10 subjects in

central

sensomotoric

areas. Low gamma

(24–40 Hz)

amplitude were

modulated in

relation to the gait

cycle phase.

Persistent mu and

beta ERD reflect a

motion-related

state change in

cortical excitability,

while gait-phase

modulations in the

lower gamma

represent the

motion sequence

time during

walking.

(Continued)
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TABLE 1 | Continued

Author(s) Title Robotic system Method EEG/fNIRS device Parameter Sample Outcome Conclusion

Seeber et al.,

2015

High and low gamma

EEG oscillations in

central sensorimotor

areas are conversely

modulated during the

human gait cycle

Lokomat Randomized 8 runs

RAGT 6 min each

(4 with active

walking and 4 with

passive walking), 3

runs standing

upright. 3 min rest

between the runs.

Speed: 1.8 km/h -

2.2 km/h; GF:

100%; BWS:

<30%

BrainAmp amplifier,

Brain-products,

Germany; 4× 32

channel amplifiers

combined to 120

channels. Sampling

rate: 2.5 kHz; Band

pass: 0.1–1000 Hz;

Electrode

placement: 10–20

system (EasyCap,

Germany);

Additional: EMG

Temporal dynamics

of EEG oscillations

in the source space

by using

time-frequency

decomposition;

Amplitude

differences

between walking

and standing in mu

(10–12 Hz), beta

(18–30 Hz, gamma

(60–80 Hz) and low

gamma 24–40 Hz),

high gamma

(70–90 Hz)

No health

impairments;

Sample size: 10;

Male: 5; Female: 5;

Age: 25.6 ± 3.5

years right-handed

Increased gamma

(60–80 Hz)

amplitudes in

central SMC and

modulation of high

gamma during

walking compared

to standing; High

gamma and low

gamma amplitudes

are both modulated

in relation to the

gait cycle, but

conversely to each

other

Altered synchrony

state during

walking compared

to standing due to

static increase of

gamma amplitudes;

Dynamic, amplitude

modulations at

70–90 Hz during

gait cycle may

reflect gait phase

dependent

interactions in

locomotor network;

Distinction of high

and low gamma

amplitudes in

walking

experiments due to

its negative

correlation

Villa-Parra

et al., 2015

Toward a robotic knee

exoskeleton control

based on human

motion intention

through EEG and

sEMGsignals

H2 Exoskelett

Additional: UFES’s

Smart Walker

Conditions: Sit

down/stand up;

Knee

flexion/extension;

60 trials per 10 s,

3 min rest between

conditions

EEG BrainNet BNT

36 electrodes;

Additional sEMG

EEG: HMI analysis

using: ERD/ERS &

ERP (slow cortical

potentials); sEMG:

myoelectric pattern

classification with

regard to the lower

limb

No health

impairments;

Sample size: 4; All

male

Highest beta ERD

in the range from

20 to 24 Hz;

Highest beta ERS

in the range from

16 to 22 Hz

Combination of

EEG/sEMG signals

can be used to

define a control

strategy for the

robot system

(Continued)
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TABLE 1 | Continued

Author(s) Title Robotic system Method EEG/fNIRS device Parameter Sample Outcome Conclusion

Wagner et al.,

2012

Level of participation in

robotic-assisted

treadmill walking

modulates midline

sensorimotor EEG

rhythms in able-bodied

subjects

Lokomat Randomized 8 runs

RAGT 6 min each

(4 with active

walking and 4 with

passive walking), 3

runs standing

upright. 3 min rest

between the runs.

Speed: 1.8 km/h -

2.2 km/h; GF:

100%; BWS:

<30%

EEG BrainAmp DC

and MR plus

amplifier,

Brain-products,

Germany; 4×32

channel amplifiers

combined to 120

channels. Sampling

rate: 2.5 kHz; Band

pass: 0.1–1000 Hz;

Electrode

placement: 10–20

system (EasyCap,

Germany);

Additional: EMG

Power spectra

relating to the

active and passive

robot-supported

gait

No health

impairments;

Sample size:

14; Exclusion:

1; Male: 8;

Female: 7; Age:

22 to 28

(average:

24.3 ± 2.7)

right-handed

Mu (8–12 Hz) and

beta (18–21 Hz)

rhythms are

suppressed during

active walking

compared to

passive walking.

Significant

differences in

cortical activation

between active and

passive robotic

walking support the

evaluation of brain

monitoring

techniques and

brain-computer

interface

technologies to

improve gait

restoration

therapies in a

top-down

approach.

Youssofzadeh

et al., 2014

Directed neural

connectivity changes in

robot-assisted gait

training: A partial

Granger causality

analysis

ALEX II on

non-dominant leg

(left)

Speed: 0.87 ± 0.15

m/s. 10 training

paradigms Rest: 2 -

4 min. between

trials Haptic and

visual guidance:

100%.

EEG; g.tec’s;

g.USBamp; 16

electrodes;

Electrode

placement: 10–20

system

PGC to elucidate

the functional

connectivity of EEG

signals in RAGT;

PSD for validity

check

No health

impairments;

Sample size: 6

male subjects

Age:

26.5 ± 6.5

years; Weight:

77.8 ± 9.7 kg;

Body height:

1.79 ± 0.04 m

The results showed

a strong causal

interaction between

the lateral motor

cortical areas.

A front-parietal

connection was

found in all robotic

training units. After

training a causal

“top-down”

cognitive control

was found.

Causal "top-down"

cognition control

indicates plasticity

in connectivity in

the respective brain

regions.

(Continued)
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TABLE 1 | Continued

Author(s) Title Robotic system Method EEG/fNIRS device Parameter Sample Outcome Conclusion

Youssofzadeh

et al., 2016

Directed Functional

Connectivity in

Fronto-Centroparietal

Circuit Correlates with

Motor Adaptation in

Gait Training

ALEX II on

dominant leg (right)

Conditions:

Standing upright,

walking

unsupported on a

treadmill,

robot-assisted

walking with and

without the task of

adjusting the

changed footpath

on a screen. 10

training paradigms

Speed:

0.87 km/h ± 0.15

m/s

EEG; g.tec’s;

g.USBamp; 16

electrodes;

Sampling rate:

512 Hz; Electrode

placement: 10–20

system; Additional:

EMG

PGC to elucidate

the functional

connectivity of EEG

signals in RAGT;

PSD for validity

check

No health

impairments;

Sample Size: 6

male subjects;

Age:

26.5 ± 6.5

years; Weight:

77.8 ± 9.7 kg;

Body height:

1.79 ± 0.04 m

PGC analysis

showed improved

connectivity near

sensorimotor areas

(C3, CP3) during

standing while

additional

connectivity near

central (CPz) and

frontal (Fz) areas

during walking

compared to

standing.

Significant fronto-

centroparietal

causal effects both

in training and after

training. Strong

correlations

between kinematic

errors and fronto-

centroparietal

connectivity during

and after training.

PSD analysis

showed increase in

α rhythms during

standing, and theta

and γ during

walking.

Fronto-

centroparietal

connectivity is a

potential

neuromarker for

motor learning and

adaptation in

RAGT.

(Continued)
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TABLE 1 | Continued

Author(s) Title Robotic system Method EEG/fNIRS device Parameter Sample Outcome Conclusion

Kim et al., 2016 Best facilitated cortical

activation during

different stepping,

treadmill, and

robot-assisted walking

training paradigms and

speeds: A functional

near-infrared

spectroscopy

neuroimaging study

Lokomat Randomized,

based on a block

design; 3

Conditions:

Conventional

walking, TW, RAGT;

Speed: (1)

self-selected, (2+3)

1,5, 2.0, 2.5,

3,0 km/h; GF:

100%. BWS: 50%

fNIRS 31-channels Cerebral

hemodynamic

changes

associated with

cortical movement

network regions in

the primary SMC,

PMC, SMA, PFC

and SAC

No health

impairments;

Sample size:

14; Men: 8;

Women: 6;

Age:

30.06 ± 4.53

years

right-handers

More global

activation of the

motion network

(SMC, PMC, SMA)

during RAGT

compared to

conventional and

treadmill walking.

Positive correlation

of speed and

activity of the

movement

network.

RAGT provides the

best cortical

activation

associated with

motor control.

Simis et al.,

2018

Using Functional near

Infrared Spectroscopy

(fNIRS) to assess brain

activity of spinal cord

injury patient, during

robot-assisted gait

Lokomat Conditions:

Standing (resting

position) and

walking in the

Lokomat

fNIRS 32 optodes:

16 emitters, 16

detectors;

Placement: 10–20

system

Cerebral

hemodynamic

changes in the

motor cortex of

both hemispheres.

Relative change in

concentration of

oxy- and

deoxyhemoglobin

Patients with

spinal cord

injury; Number

of test persons:

3 patients

Two of the patients

had an increased

activation in M1

during the RAGT,

compared to the

standing position.

One of the patients

showed no

changes in M1

brain activity.

fNIRS is suitable for

measuring the brain

activity of SCI

patients during

robotic walking.

Results indicate an

increased

involvement of the

motor cortical areas

during walking.

ALEX, active leg exoskeleton; BWS, body weight support; CSE, cortical spinal excitability; DAR, delta-alpha EEG power ratio; EGT, ekso-gait training; ERD, event-related desynchronization; ERS, event-related

synchronization; ERSPs, event-related spectral perturbation; FPEC, frontoparietal effective connectivity; GAR, gait assistance robot; GF, guidance force; HMI, human-motion-intention; M1, primary motor cortex; OGT,

over ground gait training; PFC, prefrontal cortex; PGC, time-domain partial Granger causality; PMC, primary motor cortex; PSD, power spectral density; RAGT, robot-assisted gait training; SAC, sensory association

area; sEMG, surface electromyography; SEP, sensory evoked potentials; SMA, supplementary motor area; SMC, sensorimotor cortex; SMI, sensorimotor integration; TBI, traumatic brain injury; TMS, transcranial

magnetic stimulation.
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less guidance force compared to complete guidance (Knaepen
et al., 2015). Furthermore, low gamma (24–40 Hz; Wagner
et al., 2012; Seeber et al., 2014) and high gamma (70–
90 Hz) amplitudes were modulated depending on gait cycle
phases, but conversely to each other (Seeber et al., 2015).
Youssofzadeh et al. (2014, 2016) reported significant fronto-
centroparietal connectivity during and after RAGT proposing
potential neuromarkers for motor learning and adaptation
in RAGT. Other investigations aimed to eliminate EEG
artifacts by using REMOV, a method that combines various
approaches and established ICA based routines to remove
contaminations, thus providing a procedure to use EEG as
an imaging technique during RAGT (Artoni et al., 2012).
Clinical studies were conducted either with patients suffering
from stroke (Calabrò et al., 2018; Contreras-Vidal et al.,
2018) or traumatic brain injury (Lapitskaya et al., 2011).
In a prospective, pre-post, randomized RAGT based clinical
study with 40 stroke patients, improved frontoparietal effective
connectivity (FPEC) after eight weeks of EksoTM gait training
compared to conventional training was observed (Calabrò
et al., 2018). Contreras-Vidal et al. (2018) showed changes
in neuroelectric cortical activity patterns during post-stroke
rehabilitation, thus, demonstrating the feasibility of decoding
walking from brain activity.

In the two fNIRS studies, hemodynamic changes in response
to RAGT were investigated in healthy subjects (Kim et al., 2016)
as well as in patients with spinal cord injury (Simis et al., 2018).
Kim et al. (2016) compared cortical activation during different
stepping, treadmill, and RAGT paradigms and speeds. Cerebral
hemodynamic changes were determined in cortical locomotor
network areas. Elevated global locomotor network activation
was observed during RAGT compared to stepping or treadmill
walking, thus leading to the conclusion that RAGT facilitated
greater cortical activation associated with locomotor control
than without RAGT (Kim et al., 2016). The feasibility of fNIRS
in patients suffering from spinal cord injury were shown by
enhanced activation in motor cortex during RAGT compared to
standing. This supports the assumption of enhanced involvement
of motor cortical areas during RAGT (Simis et al., 2018).

In summary, the majority of EEG based studies demonstrated

suppressed mu and beta oscillations while in fNIRS studies

increased Hboxy changes in sensorimotor areas during RAGT

were observed. Nevertheless, it must be noted that the studies

differ significantly in terms of their methodology such as robotic

device, EEG/fNIRS system, design, subjects and parameters

that lead to heterogeneous results (see Table 1). To date, the

complexity of our brain still leads to a limited understanding

of the relation among brain activation and behavior as well as

dysfunction and disorder.Whilemeasuring different perspectives

of brain activity, the utilization of fused EEG-fNIRS helps to

identify more features correlated with brain activation and brain

connectivity in the complex process of gait. However, questions

remain how the signals are related, and which advantages the

fusion provides in terms of studying brain dysfunction due to gait

disorders as well as neurophysiological changes during robotic

gait rehabilitation?

FUSED EEG-fNIRS TO MONITOR BRAIN
ACTIVITY

Both EEG and fNIRS are comparatively inexpensive and portable,
they have unique, complementary advantages without interfering
with each other, thus leading to an increased interest for fused
EEG-fNIRS in rehabilitation research. The connection of the
systems can be ensured either via wired trigger signals, which
are split into various synchronized signals, or via connected
networks. For the latter, the signals from different devices
could be synchronized using systems (e.g., Lab Streaming
Layer) where the networking and time-synchronization of
the signals are handled to offer a uniform recording of
measurement time series (Chadwick, 2018). Different approaches
have been developed by taking advantage of simultaneous
multimodal measurement.

First, fused EEG-fNIRS can be used for the investigation of
how neuronal changes are related to neurovascular coupling.
During a motor task, increased Hboxy concentration was
accompanied by a decrease in Hbdeoxy and a decrease in
alpha and beta power (Lachert et al., 2017). Koch et al.
(2008) also reported a correlation between high individual
alpha frequency (IAF) and low Hboxy response (Koch et al.,
2008). Furthermore, Berger et al. (2018) extended the relation
by demonstrating an increase of EEG alpha power following
10 and 20 Hz transcranial alternating current stimulation
(tACS), which was accompanied by a decrease in Hboxy
(Berger et al., 2018). Based on previous studies investigating
neural correlates of walking or RAGT, it can be expected that
suppressed alpha and beta oscillations in the motor cortical
network are accompanied by increases in Hboxy. However,
numerous questions regarding the correlation of neuronal
activities and vascular changes (e.g., co-localization / time
lag of the correlated changes or consistency of changes in
connectivity; Functional Brain Imaging with EEG and fNIRS,
o.d.) remain.

Second, fused EEG-fNIRS provides detailed spatio-temporal
information on neurophysiological activity through different
strengths and weaknesses of EEG and fNIRS, thus leading in
improved distinctions of conditions such as rest and task (Leamy
et al., 2011; Fazli et al., 2012; Khan et al., 2018). Leamy et al. (2011)
investigated hemodynamic and electrical responses during motor
imagery (MI) and rest periods. Classification of 2-dimensional
EEG feature spaces (change in mu and beta power from rest
to MI) and fNIRS feature spaces (change in average amplitude
of Hboxy and Hbdeoxy from rest to MI) was performed
using linear discriminant analysis (LDA), at first separately
and in combination afterward. By employing a supplemental
measurement modality through combining EEG-fNIRS, more
information about the underlying neurovascular relationship can
be achieved (Leamy et al., 2011). If the classification of fNIRS
features can complement EEG classifications were also examined
in a real-time sensor motor-rhythm based brain-computer
interface (BCI) paradigm with executed movements and MI. By
using LDA, fused EEG-fNIRS provide complementary spatio-
temporal information with a significantly improved classification
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accuracy (Fazli et al., 2012). Furthermore, it would be possible
to use data by one technique to reduce artifacts of the
other due to the independence between electrical and optical
measurements but up to date, these possibilities are not
yet sufficiently proven. By the fact that fNIRS is limited
due to the long-term delay of the hemodynamic response
(Fazli et al., 2012) and requires a minimum distance between
sources and detectors that detectors are not suffering from
“source blinding”, improving fNIRS through supplementing
EEG data might be more useful than adding fNIRS to EEG
(Leamy et al., 2011).

In summary, the independence between electrical and optical
measurements can be used advantageously to (1) obtain
detailed spatio-temporal information, (2) improve classification
accuracy and (3) reduce effects of movements artifacts with
the aim to improve the reliability and robustness of signal
interpretation (Shin et al., 2018). Nevertheless, the relation of
EEG and fNIRS is not yet fully understood (Leamy et al.,
2011) and challenges of the combined EEG-fNIRS approach
arise. For instance, electrical and hemodynamic signals are not
necessarily coupled. On one side, physiological process (e.g.,
neurotransmitter synthesis) can cause hemodynamic changes
without electrophysiological activity. On the other side, changes
in metabolic activity may not be detectable if EEG activity is
transient (Yuan et al., 2014). Furthermore, EEG and fNIRS
measurements make great demands on study designs due to
the susceptibility to motion and light interference (Vitorio
et al., 2017) which is of high relevance especially for clinical
studies. In addition, there is no uniform, standardized procedure
due to many different methods regarding signal processing
and analysis which makes the comparability and interpretation
difficult. According to this, the combination of EEG and
fNIRS is very complex and still in its infancy despite the
technical progress.

However, based on the knowledge that multi-modal
measurement has the capacity to analyze neurovascular
coupling more accurately, fused EEG-fNIRS might be beneficial
to basic neuroscientific research as well as clinical applications
(Muthalib et al., 2013).

FUTURE PROSPECTS FOR FUSED
EEG-fNIRS IN RAGT

Regarding RAGT, fused EEG-fNIRS provides a detailed insight
into how locomotor control and gait recovery is characterized
by brain signals. On one side, the understanding of the
underlying mechanisms of RAGT might be a further step
toward scientific-based evidence for improved gait recovery.
Based on brain signals, optimal training parameters and settings
(e.g., BWS, GF; Knaepen et al., 2015) as well as augmented
feedback (Wagner et al., 2014; Calabrò et al., 2017) can be
determined for individualized gait therapy protocols. Wagner
et al. (2014) examined the impact of visual feedback on EEG
pattern during RAGT and presented that movement related
interactive feedback in virtual environment (VE) significantly
increase brain activity in premotor and parietal areas due

to motor planning and visuomotor processes compared to
movement unrelated feedback (Wagner et al., 2014). Thus, robot-
assisted gait rehabilitation can be further improved, for example
by selecting specific feedback based on the underlying network
activity in order to promote individuals voluntary drive which is
crucial for motor learning.

On other side, EEG-fNIRS signals can be used to expand and
integrate further approaches such as EEG/fNIRS controlled gait
therapy in brain machine interface (BMI) paradigms or non-
invasive brain stimulation (NIBS) during RAGT that are guided
by oscillatory or hemodynamic activity (see Figure 2).

In BMI, cortical activity associated with movements were
identified and used to directly control external devices (García-
Cossio et al., 2015; Donati et al., 2016; Teo et al., 2016).
Donati et al. (2016) investigated the effects of long-term
training with a BMI-based gait protocol on motor recovery
and restoring mobility in paraplegic patients. Eight chronic
paralyzed patients performed a BMI neurorehabilitation
paradigm including virtual reality training, enriched visual-
tactile feedback, and walking with EEG-controlled robotic
devices. After 12 months of training, paraplegic patients
improved their somatic sensation and walking abilities. It was
hypothesized that this unprecedented neurological recovery
resulted from both cortical and spinal cord plasticity triggered
by long-term training with BMI (Donati et al., 2016). For the
future of non-invasive, portable, and wearable BMIs, researchers
suggest the use of hybrid EEG-fNIRS systems, as they have been
shown to be superior to the use of EEG-BCIs and fNIRS-BCIs
alone (Fazli et al., 2012; Khan et al., 2014; Koo et al., 2015;
Naseer and Hong, 2015).

Another future prospect could include the feedback of
cortical activation pattern measured by fused EEG-fNIRS that
is used to identify regions of hypo- or hyperactivity to
guide NIBS protocols (Teo et al., 2016; Berger et al., 2018).
Transcranial electrical stimulation (tES) is regarded as one of
the most well-known forms of NIBS who’s primarily researched
modalities are transcranial direct current stimulation (tDCS)
and transcranial alternating current stimulation (tACS; Paulus,
2011; Yavari et al., 2018). By applying weak current through
the scalp, tES represent promising tools for the induction of
acute or long-lasting effects on excitability or brain network
dynamics, thus investigating the causal relationship between
brain activity, motor functions (Yavari et al., 2018) and potentially
enhancing motor learning processes (Reis and Fritsch, 2011;
Sugata et al., 2018). tES can be set up as portable and
wireless systems, thus having complimentary capabilities as
well as EEG and fNIRS (McKendrick et al., 2015). In this
way, combining tES with fused EEG-fNIRS is suitable for
modulating pathological brain pattern to enhance neuroplasticity
during RAGT, thereby representing an avenue for clinical
applications (McKendrick et al., 2015). For example, fused
EEG/fNIRS allow the identification of hypo- or hyperactivity
accompanied by gait disorders that might help to determine
and guide brain stimulation protocols. Thus, tES may be
applied during RAGT tomodulate neuronal networks supporting
gait rehabilitation (Teo et al., 2016). Closed-loop tES during
RAGT as well as BMI guided by fused EEG-fNIRS represent
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FIGURE 2 | Future perspectives for fused EEG-fNIRS in robotic gait rehabilitation. (A) Robotic device Lokomat (Hocoma, Switzerland) for RAGT. (B) EEG and fNIRS

provide the monitoring of neurophysiological processes occurring during RAGT by measuring different perspectives of brain activity. Electrophysiological (EEG) and

haemodynamic (fNIRS) signals can be processed in various ways. Data from each electrode/channel can be extracted over time (e.g., ERPs/time-series), as an

average over time (e.g., power spectra/contrasts) or they can be correlated to represent functional connectivity (e.g., coherence/connectivity). (C) Brain activity

measured by EEG or fNIRS serves as a basis for brain modulation such as BCI/BMI which may be a form of endogenous brain stimulation as well as for brain

stimulation techniques were a weak current is applied through the skull to modulate brain activity. Subjects appearing in the figures provided informed written

consent to the publication of identifying images in an online open access publication.

two approaches for the implementation of individualized
neurorehabilitation which is essential for success in motor
recovery (McKendrick et al., 2015).

CONCLUSION

EEG and fNIRS measure different perspectives of brain
activity. Therefore, fused EEG-fNIRS provide detailed spatio-
temporal information correlated with brain activity and
connectivity. Based on the reviewed studies investigating
brain activity following RAGT as well as studies using multi-
modal approaches, we conclude that fused EEG-fNIRS has
the potential to characterize the complex neurovascular
coupling mechanisms associated with gait disorders due
to neurological diseases as well as robotic rehabilitation
in more detail than by using one modality alone. Thus,
neuroplastic changes due to RAGT that were measured by
fused EEG-fNIRS might contribute to scientifically prove
the effectiveness of RAGT. Furthermore, revealing brain
activity underlying RAGT is essential for the adjustment of

therapy protocols and the guidance of further interventions
such as BMI or NIBS. Fused EEG-fNIRS approaches the
goal of individualized, closed-loop RAGT that optimizes
the outcome and efficacy of gait recovery, thereby fostering
independent living and improved quality of life for neurological
patients. Despite technical advances (e.g., signal processing,
data synchronization), fused EEG-fNIRS remains complex
and poses challenges that require further innovations to
determine the potential during RAGT in clinical and in
non-clinical environment.
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