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Abstract: We propose a filter bank consisting of an ordinary current-state extended Kalman

filter, and two similar but constrained filters: one is constrained by a null hypothesis that the

miss distance between two conjuncting spacecraft is inside their combined hard body radius at

the predicted time of closest approach, and one is constrained by an alternative complementary

hypothesis. The unconstrained filter is the basis of an initial screening for close approaches of

interest. Once the initial screening detects a possibly risky conjunction, the unconstrained filter also

governs measurement editing for all three filters, and predicts the time of closest approach. The

constrained filters operate only when conjunctions of interest occur. The computed likelihoods of

the innovations of the two constrained filters form a ratio for a Wald sequential probability ratio test.

The Wald test guides risk mitigation maneuver decisions based on explicit false alarm and missed

detection criteria. Since only current-state Kalman filtering is required to compute the innovations

for the likelihood ratio, the present approach does not require the mapping of probability density

forward to the time of closest approach. Instead, the hard-body constraint manifold is mapped to

the filter update time by applying a sigma-point transformation to a projection function. Although

many projectors are available, we choose one based on Lambert-style differential correction of the

current-state velocity. We have tested our method using a scenario based on the Magnetospheric

Multi-Scale mission, scheduled for launch in late 2014. This mission involves formation flight in

highly elliptical orbits of four spinning spacecraft equipped with antennas extending 120 meters

tip-to-tip. Eccentricities range from 0.82 to 0.91, and close approaches generally occur in the

vicinity of perigee, where rapid changes in geometry may occur. Testing the method using two

12,000-case Monte Carlo simulations, we found the method achieved a missed detection rate of

0.1%, and a false alarm rate of 2%.
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1. Introduction

The current state of the practice for conjunction assessment (CA) is predominantly based on

attempts to explicitly compute collision probability [1], [2], [3]. In principal, such approaches

require approximate solutions to the Fokker-Planck-Kolmogorov partial differential equation for

mapping probability densities through time. They then require approximations to integrals of

probability density to compute a collision probability. Once this estimate is in hand, they require

thresholding of acceptable collision probability values, or other arbitrary factors associated with the

character of the conjunction.

Reference [4] proposed the use of a Wald Sequential Probability Ratio Test [5] (WSPRT) to guide

the collision avoidance decision process. The WSPRT guides risk mitigation maneuver decisions
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based on explicit false alarm and missed detection criteria, which can be informed by Bayesian

utility theory. Some limitations of the method proposed in Reference [4] include assumptions that

the observations are statistically independent, and its reliance on a set of assumptions that reduce the

complexity of the encounter. These limitations were overcome in Reference [6] which reformulated

the WSPRT using a filter bank consisting of two norm-inequality-constrained epoch-state extended

Kalman filters. In that approach one filter models a null hypothesis that the miss distance between

two conjuncting spacecraft is inside their combined hard body radius at the predicted time of closest

approach, and one is constrained by an alternative complementary hypothesis. The epoch-state

filter developed for that method explicitly accounts for any process noise present in the system.

Because of its epoch-state formulation however, that method still required potentially inaccurate

approximations to mapping probability density forward through time.

In this work, we report our development of a filter bank that eliminates the need for an epoch-

state formulation. Our current approach consists of an ordinary current-state extended Kalman

filter (EKF), and two current-state constrained EKFs, one for each hypothesis in the WSPRT. The

unconstrained filter is the basis of an initial screening for close approaches of interest. Once the

initial screening detects a risky conjunction, the unconstrained filter predicts the time of closest

approach, tca, for all three filters.1 The constrained filters operate only when conjunctions of interest

occur. The densities governing the innovations of the two constrained filters form the likelihood

ratio for the WSPRT at the time of the current measurement. The unconstrained filter governs

measurement editing for all three filters, avoiding any ambiguity in computing the likelihood ratio.

Figure 1 provides an overview of the architecture of the proposed filter bank.

Y1:k

EKF1 with H1 : ‖r∗‖ > R

Unconstrained EKF

EKF0 with H0 : ‖r∗‖ ≤ R

Editing, tca

Editing, tca

ε̄k|H1

ε̄k|H0

Λk =
p(Y1:k|H1)
p(Y1:k|H0)

Figure 1. Proposed Current-State Filter Bank for WSPRT. The set of measurements Y1:k is processed

by two inequality-constrained EKFs, and one unconstrained EKF. The conditional densities of the

innovations of the constrained filters, ε̄k|Hi
, are used in a likelihood ratio, Λk, for a WSPRT.

Since only current-state Kalman filtering is required to compute the innovations for the likelihood

ratio, the present approach does not require the mapping of probability density forward to the

time of closest approach. Instead, the hard-body constraint manifold is mapped to the filter update

time by means of a sigma-point transformation and a projection operator. Although a multiplicity

of projectors are possible, we choose one based on Lambert-style differential correction of the

current-state velocity.

1The use an unconstrained filter on which to base the initial screening and tca predictions was implicit in Refer-

ence [6]; we explicitly acknowledge its necessity here to better clarify our method.
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2. Problem Description

Let {Ri,Vi}, i = 1, 2 represent the inertial position and velocity of two space objects. Then, the

relative position and velocity between the objects in a frame fixed to the orbital velocity and orbit

normal vectors of object 1 are

r = R2 −R1 and v = V2 − V1 − ω1 × r (1)

where ω1 is the instantaneous orbital angular velocity of object 1. During a time interval of interest,

the relative position may have one or more local minima that occur when

rTv = 0 and rTa+ vTv > 0 (2)

where a is the difference between the total inertial accelerations of the objects. Such minima are

predicted as part of a CA screening process, and any minima for which some additional screening

criteria are met, such as ‖r‖ less than some specification, constitute events of interest for further

assessment using the method of the present work. It is common to denote as tca the time at which

Eqs. 2, along with any additional screening criteria, are satisfied. In the sequel, we abbreviate this

notation to t∗, and any other object with this subscript should be understood to refer to that object’s

value at t∗ = tca.

Given such a conjunction event of interest, we seek to establish a decision procedure for when

to recommend a collision risk mitigation maneuver. The procedure we recommend below is to

maneuver based on the likelihood that measurements of the object states are consistent with the

hypothesis that ‖r‖ ≤ R, where R is the combined hard-body radius of the conjuncting objects.

Collecting (according to some design unimportant for the present argument) the object states at

time tk into a vector xk, we assume there exist a sequence of k measurements of these states, which

we model as

yk = h(xk) + vk (3)

where we assume the measurement noise is a zero-mean Gaussian process with covariance Rk,

which we will indicate by expressing its probability density as p (vk) = N (vk, 0, Rk), where for

x ∈ R
n, µ = E [x], and P = E

[

(x− µ)(x− µ)T
]

,

N(x,µ, P ) = (2π)−n/2|P |−1/2 e−
1

2
(x−µ)TP−1(x−µ) (4)

3. Wald Sequential Probability Ratio Test

As in References [4] and [6], we employ the WSPRT for our decision procedure. The WSPRT

uses a ratio of the joint probability densities of the set of k measurements of the spacecraft,

Y1:k = {y1, ...,yk}, under the alternative hypothesis, H1 that the conjunction is safe, and the null

hypothesis, H0, that the conjunction is unsafe:

Λk =
p (Y1:k|H1)

p (Y1:k|H0)
=

p (Y1:k| ‖r∗‖ > R)

p (Y1:k| ‖r∗‖ ≤ R)
(5)
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In a Wald test, one compares Λk to decision limits A and B such that whenever B < Λk < A one

should, if possible, seek another observation. If Λk ≤ B, then one should accept the null hypothesis,

and in the present case, we would recommend a collision avoidance maneuver. If Λk ≥ A, then

one should accept the alternative hypothesis, and hence we would dismiss the conjunction alarm2.

Wald’s explanations for the thresholds A and B are that we will accept the alternative hypothesis if

it is A times more likely than the null, and accept the null hypothesis if it is 1/B times more likely

than the alternative. Wald shows that such a procedure will terminate with probability one, and that

A ≤ 1− Pfa

Pmd

and B ≥ Pfa

1− Pmd

(6)

where Pfa is the allowable false alarm probability, and Pmd is the allowable missed detection

probability.

3.1. Joint Density of the Measurements

The joint density of the measurements, unconstrained by either hypothesis, can be written in a

sequential form as

p (Y1:k) = p (yk|Y1:k−1) p (Y1:k−1) (7)

As standard texts, such as Brown and Hwang [7], show, the conditional density of the kth measure-

ment conditioned on the past measurement sequence can be written in terms of the innovations of a

sequential estimator, such as the Kalman filter. If the noise inputs to the estimator are zero-mean

and Gaussian, then

p (yk|Y1:k−1) = N
(

yk,h(x̄k), H̄kP̄kH̄
T
k +Rk

)

(8)

where x̄k is the filter’s estimate at tk just prior to incorporating the measurement yk, yk−h(x̄k) ≡ ε̄k
is the kth filter innovation, H̄kP̄kH̄

T
k + Rk ≡ W̄k is the innovations covariance, P̄k is the filter’s

covariance corresponding to errors in x̄k, and H̄k = ∂hk/∂xk|x̄k
. Similarly, we may distinguish

the filter’s kth residual as ε̂k ≡ yk − h(x̂k), with ĤkP̂kĤ
T
k +Rk ≡ Ŵk as the residual covariance,

P̂k as the filter’s covariance corresponding to errors in x̂k, and Ĥk = ∂hk/∂xk|x̂k
.

For the likelihood ratio, we need the joint density of the measurements constrained by hypothesis

Hi, which we write similarly as

p (Y1:k|Hi) = p (yk|Y1:k−1,Hi) p (Y1:k−1|Hi) (9)

and we express p (yk|Y1:k−1,Hi) in terms of the innovations of a filter constrained by Hi as

p (yk|Y1:k−1,Hi) = N
(

yk,h(x̄k|Hi
), H̄k|Hi

P̄k|Hi
H̄T

k|Hi
+Rk

)

(10)

with an obvious extension of the notation above.

2In the present case, there may be minimal penalty in waiting until all possible measurements have been collected.

If the test is still indeterminate at that time, it may be prudent to maneuver, although this would imply an increased false

alarm rate.
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3.2. Constraint Mapping

To constrain the epoch-state filters in Reference [6] we extended the method for equality-constrained

estimation of Zanetti et al. [8] to the case of inequality constraints through the use of a slack variable,

but this approach does not appear feasible for the current-state filter formulation. Instead, we follow

the guidance of Julier and LaViola [9], in which a projection is applied to the unconstrained mean

and covariance using a sigma-point transformation. First, we perturb each constrained filter’s state

estimate, x̂, using the columns of the Cholesky factorization of its error covariance to generate a set

of sigma points, Xk|Hi
. In the present case, the (inequality) constraint function is given by

c(x) = ‖φr
∗(x)‖ ≶ R (11)

where φr
∗(x) is the prediction of the relative position component of x to tca. Reference [9]

concerns equality-constrained estimation, while we need inequality-constrained estimates. As in

Reference [6], if c(X (j)
k|H0

) ≥ R for any sigma point arising from the null hypothesis filter, then the

sigma point is projected onto the constraint boundary, and vice versa for the alternative hypothesis

filter. Julier and LaViola’s method for constraining the estimate allows for any projection function,

p(x), that satisfies the constraint, i.e.

c(p(x)) = R. (12)

We therefore evaluate each sigma point, X (j)
k|Hi

, compare it to the constraint, and apply the projector:

P (j)
k|Hi

=

{

p(X (j)
k|Hi

) if c(X (j)
k|Hi

) ∈ Hi

X (j)
k|Hi

otherwise
(13)

Applying the projector, p(x), is not the innovation of Julier and LaViola’s method, but rather only

the first step of a two-step procedure3. They argue the need for a second step by pointing out that

projection does not necessarily force the mean of the resulting constrained density to satisfy the

constraint. Since the mean is the property of the distribution estimated by a filter, Ref. [9] suggests

that the entire distribution should be translated so that the mean will satisfy the constraint. This

translation, which also affects the covariance, constitutes the second step of Julier and LaViola’s

approach. In the context of an inequality constraint, we would only perform this step if the mean fails

to satisfy the inequality. It is not obvious to us that the second step of Julier and LaViola’s method

is necessary or even desirable in the present context. By construction, the projected sigma points,

P (j)
k|Hi

, will already satisfy our inequality constraint and hence are our best available representation

of the distribution. Translating them in order for the mean to satisfy the constraint could therefore

degrade the overall quality of our representation of the distribution.

In the present case, we can in principle choose a projector by solving Lambert’s problem for the

velocity of one spacecraft at time tk that will adjust the length of the relative position at the tca so

that it lies on the constraint boundary, as necessary to satisfy the inequality constraint. For two-body

motion, the solution may be expressed using classical f and g functions formulated using universal

3The nonlinear projection method was suggested in Ref. [10], but Julier and LaViola appear to be the first to suggest

applying the projector using a sigma-point transformation.
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variables, viz.

V1(tk) =
R∗

1(t∗)− fR1(tk)

g
(14)

where R∗
1(t∗) is the targeted position of one spacecraft such that the relative position at t∗ is equal

to the combined hard body radius:

R∗
1(t∗) = R2(t∗)−R r∗

‖r∗‖
(15)

Hence, if we now specify the contents of the state vector as x = [RT
1 ,V

T
1 ,RT

2 ,V
T
2 ]T, the projector

is given by

p(xk) =









R1(tk)
R∗

1
(t∗)−fR1(tk)

g

R2(tk)
V2(tk)









(16)

for those xk that do not satisfy the appropriate inequality constraint for the current hypothesis.

Otherwise, the projector leaves states that already satisfy the constraint alone. Figure 2 schematically

illustrates the operation of the projector function. Unlike Ref. [9], the present case has an inequality

constraint. As the figure shows, sigma points that already satisfy the constraint are not projected.

It might be argued that projecting the relative position onto the constraint surface is an arbitrary

choice. To justify it, we appeal to the following argument. Since we are using the Euclidean

two-norm, the minimum mean-square error of the inequality-constrained estimate is given by

MMSE = argmin
x′∈Hi

E
[

‖x′ − x‖2
]

= argmin
x′∈Hi

E
[

‖x′ − x̂+ x̂− x‖2
]

= argmin
x′∈Hi

{

E
[

‖x′ − x̂‖2
]

+ E
[

‖x̂− x‖2
]

− 2E
[

(x′ − x̂)
T
(x̂− x)

]}

(17)

and since x̂ = E [x|Y1:k], then

MMSE = argmin
x′∈Hi

E
[

‖x′ − x̂‖2
]

(18)

and hence the MMSE is achieved by letting x′ be as close as possible to x̂ in the sense of the chosen

norm, subject to the constraint that x′ ∈ Hi. If x̂ ∈ Hi, then we merely set x′ = x̂. Since the

constraint is a boundary for Hi, then if x̂ /∈ Hi, then we choose the point on the constraint closest

to x̂ in the sense of the chosen norm.

In practice, we note that a Lambert solution such as we have just described will not project estimates

accurately enough under real-world perturbations for the constraints to be satisfied with adequate

precision, so some kind of differential correction scheme will be required. If the conjunction is

more than one orbit period in the future, some kind of two-point boundary value problem solver

that breaks the prediction into segments, such as a collocation method, is likely to be necessary for

the general CA case. Such methods are readily available in common off-the-shelf software, and are

beyond the scope of this paper.
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(a) Null Hypothesis Projector 

(b) Alternative Hypothesis Projector 

Relative 
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 Hard Body 

 Density at tj 

 Density at tca 
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Figure 2. Schematic of Projector Mapping: (a) Null Hypothesis Projector; (b) Alternative Hypothesis

Projector. Paths with a terminal arrowhead indicate how sigma points that violate the constraint are

projected. Paths with arrows at each end illustrate that sigma points already satisfying the constraint

are not projected. Note that r ∈ R
3 and v ∈ R

3 have been projected onto R
1 at tj , that not all sigma

points are shown, and that only the velocities of sigma points at tj are altered by the projection.

3.3. Summary of the Problem Solution

Herein, we summarize our application of the WSPRT to the CA problem.

Screening For each potential object that might be involved in a conjunction, perform orbit

determination using an unconstrained estimator. For the present work, we use the extended Kalman

filter. If there are no common measurements (such as might arise from inter-spacecraft tracking), no

common process noise, and no common initial condition errors, one may use a separate estimator

for each spacecraft. Based on some specified screening criteria, determine any pairs of objects that

should be subjected to more detailed CA. The subject of appropriate screening criteria is beyond

the scope of the present work, but might consist of one or more metrics, such as predicted minimum

range or Mahalanobis distance, over a given planning horizon. To economize our notation, we
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collect the positions and velocities estimated by the unconstrained orbit determination process(es)

into a single state estimate of a notionally single extended Kalman filter. Any additional bias

states, if present, would be appended to this estimate, but as they do not contribute directly to the

elucidation of our algorithm, we do not consider them here. Thus, the unconstrained estimate will be

given as follows. For each measurement yk, predict the estimate and its associated error covariance

from the previous measurement time tk−1 to the current measurement time tk:

x̄k = φk(x̂k−1) and P̄k = Φk,k−1P̂k−1Φ
T
k,k−1 +Qk (19)

where φk(x̂k−1) represents the solution of the differential equations of motion for the state over

the interval [tk, tk−1], Φk,k−1 represents the solution of the associated variational equations, and

Qk is the covariance of any process noise input into the system over the same interval. Then,

if the Mahalanobis distance from the observed measurement to the predicted measurement is

within a specified editing threshold, α, update the state and covariance using Kalman’s gain,

Kk = P̄kH̄
T
k W̄

−1
k :

if ε̄Tk W̄
−1
k ε̄k ≤ α:

{

x̂k = x̄k +Kkε̄k

P̂k = (I −KkH̄k)P̄k(I −KkH̄k)
T +KkRkK

T
k

(20)

otherwise:

{

x̂k = x̄k

P̂k = P̄k

(21)

If there is no previous measurement, the state and covariance are initialized using prior information

x̂0 and P̂0. After processing each measurement, predict the estimate into the future over the

planning horizon, and evaluate it using the specified screening criteria, e.g. Mahalanobis distance.

If the screening test indicates the need for further analysis, begin the WSPRT. Otherwise, continue

screening.

Constrained Filtering To begin the WSPRT, initialize the constrained filters using the uncon-

strained filter state and covariance: x̂k|Hi
= x̂k and P̂k|Hi

= P̂k; preferably, the unconstrained

filter will have reached a “converged” status before reaching this step. Note that equating the

unconstrained and constrained filters should only occur when starting up the unconstrained filters;

for subsequent measurement processing, the unconstrained filters should perform their own separate

time and measurement updates as follows:

x̄k|Hi
= φk(x̂k−1|Hi

) and P̄k|Hi
= Φk,k−1|Hi

P̂k−1|Hi
ΦT

k,k−1|Hi
+Qk (22)

if ε̄Tk W̄
−1
k ε̄k ≤ α:

{

x̂k|Hi
= x̄k|Hi

+Kk|Hi
ε̄k|Hi

P̂k|Hi
= (I −Kk|Hi

H̄k|Hi
)P̄k|Hi

(I −Kk|Hi
H̄k|Hi

)T +Kk|Hi
RkK

T
k|Hi

(23)

otherwise:

{

x̂k|Hi
= x̄k|Hi

P̂k|Hi
= P̄k|Hi

(24)
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Note also that editing for the constrained filters is controlled by the editing decisions of the uncon-

strained filter, and that all three filters share the same process and measurement noise covariances,

but possibly differ in their state transition and measurement Jacobians.

After each measurement update, the constrained filters apply the constraint as described in Section

3.2. to the posterior state estimate. We then merge the constrained sigma points to form the “step-1”

constrained mean:

x̂
(1)
k|Hi

=
h2 − n

h2
P (1)

k|Hi
+

1

2h2

2n+1
∑

j=2

P (j)
k|Hi

(25)

where h is the interval length or step size of the sigma point transformation, and n is the dimension

of the state. To form the associated covariance, we use the divided-difference matrices of Nørgaard,

et al. [11, 12], each column j of which is given by4

D̃
(1)
∆xp(x̂k|Hi

)j =
1

2h

[

P (j+1)
k|Hi

− P (j+1+n)
k|Hi

]

(26)

D̃
(2)
∆xp(x̂k|Hi

)j =

√
h2 − 1

2h2

[

P (j+1)
k|Hi

+ P (j+1+n)
k|Hi

− 2P (1)
k|Hi

]

(27)

The application of the nonlinear constraint to the covariance is then approximated (for step 1) by

P̂
(1)
k|Hi

=
[

D̃
(1)
∆xp(x̂k|Hi

), D̃
(2)
∆xp(x̂k|Hi

)
] [

D̃
(1)
∆xp(x̂k|Hi

), D̃
(2)
∆xp(x̂k|Hi

)
]T

(28)

Finally, if we are performing Julier and LaViola’s step 2, we apply the projector to the step-1 mean

and adjust its covariance, if necessary:

if c(x̂
(1)
k|Hi

) ∈ Hi:







x̂
(2)
k|Hi

= p(x̂
(1)
k|Hi

)

P̂
(2)
k|Hi

= P̂
(1)
k|Hi

+
(

x̂
(2)
k|Hi

− x̂
(1)
k|Hi

)(

x̂
(2)
k|Hi

− x̂
(1)
k|Hi

)T (29)

otherwise:

{

x̂
(2)
k|Hi

= x̂
(1)
k|Hi

P̂
(2)
k|Hi

= P̂
(1)
k|Hi

(30)

Likelihood Ratio Finally, we iteratively compute the likelihood ratio for the WSPRT from the

innovations of the constrained filters (in practice we have found that it is generally numerically

superior to compute the log-likelihood ratio):

Λk =
N
(

yk,h(x̄k|H1
), H̄k|H1

P̄k|H1
H̄T

k|H1
+Rk

)

N
(

yk,h(x̄k|H0
), H̄k|H0

P̄k|H0
H̄T

k|H0
+Rk

)Λk−1 (31)

and compare Λ to Wald’s limits A and B, computed using desired missed detection and false alarm

rates. If Λ > A we dismiss the conjunction and discontinue the constrained filter bank. If Λ ≤ B
we recommend a conjunction risk mitigation maneuver.

4The explicit form of these equations assumes indexing the sigma points as in Refs. [11, 12].
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4. Test Data

Spacecraft collisions are rare events. It would be difficult to comprehensively test the present

algorithm using realistic spacecraft conjunctions, so we construct artificial conjunctions that are

arguably more stressful, and certainly more comprehensive, than actual mission data could provide.

We begin by choosing a test distribution for the miss distances at a given tca. To make the present

explanation definitive, we select a Maxwell distribution, which we can relate to a χ2 distribution:

χ2
ν (z) = [2ν/2Γ(ν/2)]−1z(ν/2−1) e−z/2 (32)

We want to scale this distribution, with ν = 3, such that the square roots of half of all samples from

it (z) lie inside the combined hard body surface, and half lie outside. To achieve this, we find the

value z∗ that satisfies

0.50 = Pr (z ≤ z∗) =

∫ z∗

0

χ2
3 (z) d x (33)

and then we scale χ2
3 (z) samples by R/

√
z∗.

We have found it helpful to further categorize the samples into quartiles which we denote as “clear

hit,” “near hit,” “near miss,” and “clear miss.” We then distribute these miss distances uniformly over

R3 using “igloo” sampling [13]. Figure 3 illustrates the resulting distribution of relative position

vectors, color-coded by the quartile category. Two quadrants of data from the foreground of the

figure have been excluded so as to provide a cut-away view into the interior, and hence better

illustrate the distribution of data among the quartiles.

Relative velocities associated with each relative position vector sampled in this fashion need to

satisfy the conditions for minimum, given by Eqs. 2. At the time of close approach the relative

acceleration may be reasonably approximated as a linear function of relative position and velocity,

a ≈ Cr +Dv (34)

where the matrix C contains the centripetal and gravity gradient terms, and D the Coriolis term, so

that we can replace the second of Eqs. 2 by

rTCr + rTDv + vTv ≥ 0 (35)

We now choose v = vN = vuN where v is a velocity magnitude typical of conjunctions of interest,

and uN is a unit vector that spans the null space of the matrix

F =

[

rT

rTD

]

(36)

Such vN immediately satisfy the first of Eqs. 2, and we can make them satisfy the second as follows.

With v = vN, Eq. 35 becomes

rTCr + vT
N
vN ≥ 0 (37)
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Figure 3. Cut-away view of the distribution of miss vectors. Half of the cases have miss distances

of less than the combined hard body radius R = 120 m, and half exceed this. One-quarter of the

cases have miss distances of less than 86 m, and one-quarter exceed 158 m.

Since vT
N
vN ≥ 0 then Eq. 37 will be satisfied if we exclude any vN that fail to satisfy

∥

∥vN

∥

∥

2 ≥
∥

∥C
∥

∥

2

∥

∥r
∥

∥

2
(38)

Since
∥

∥C
∥

∥

2
∼ ω2, where ω is the instantaneous orbital rate, this condition is usually satisfied for

close approach distances of interest to the present work, and we rarely need to exclude a vN.

Next, we introduce uncertainty into the tca by drawing perturbations to its nominal value from a

given distribution. Figure 4 illustrates the use of Gaussian draws to perturb the tca, introducing

uncertainty on the order of a minute.

5. Results

Using the procedures in the previous section, we can generate large sets of stressing conjunction

test data for any orbit and conjunction scenario of interest. In the current section, we present results

using such a data set based on the Magnetospheric Multi-Scale (MMS) mission, which NASA plans

to launch in late 2014.

5.1. Example Description

Figure 5 depicts the MMS orbit during Phase 1 of the mission, an approximately 24-hour orbit

with apogee radius of approximately 12 Earth radii (RE), and perigee radius of approximately

1.2 RE . MMS consists of four nearly identical spacecraft spinning at 3 RPM, which must maintain an
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Figure 4. Histogram of empirical distribution of miss distance and tca.

approximately tetrahedral formation in the vicinity of apogee to make electromagnetic measurements

of the interaction between the earth’s and the sun’s magnetic fields. Each MMS spacecraft has

radial wire antennas approximately 60 m long. Hence, a combined hard-body sphere for two MMS

spacecraft has a radius of 120 m.

In order to achieve a nearly regular tetrahedron near apogee, the MMS formation tends to need at

least one pair of relative orbits that closely approach one another in the vicinity of perigee, often

near the semi-latus recta crossings at true anomalies of 270 deg and 90 deg. The mission will

require maneuvers approximately every two weeks in order to maintain formation quality and

avoid close approaches. When MMS performs such maneuvers, it loses a full orbit’s worth of

science. Furthermore, as with most missions, fuel margins are tight, and maneuver operations are

costly in terms of ground activities as well. Hence, MMS has a strong need to limit unnecessary

conjunction avoidance maneuvers. At the same time, MMS has a total mission cost on the order

of $1B, and its orbit transits important regions of operation for other missions, including GEO,

the orbits of GNSS satellites, and the higher regions of LEO where for example a large number of

sun-synchronous missions operate. Furthermore, all NASA missions have a duty to avoid polluting

the space environment with collision debris. Hence, the mission has a strong need to ensure that the

probability of a collision is as low as practicable. Considerations such as these have led the mission

to establish requirements that limit the false alarm rate for conjunction avoidance to 1/20, and the

missed detection rate to 1/1000. The corresponding WSPRT limits for MMS are therefore A = 950
and B = .05005.

Although the method of this paper might in principle be used for avoiding conjunctions between

MMS and other spacecraft, as well as for conjunctions within the MMS formation, for the present

example, we model two MMS spacecraft that have a conjunction near a true anomaly of 270 deg.

This point appears in Figure 5 as a blue asterisk. Figure 5 also depicts the portion of MMS’ orbit

12



where we expect its GPS receiver to acquire four or more GPS signals, and hence be able to produce

point solutions5. We model these point solutions as bias-free with isotropic white noise of 1 m

per component. The data arc is two hours long, and measurements occur once per minute. We

model the full nonlinear two-body dynamics for each spacecraft in simulating these measurements.

The EKFs that process these measurements also model the full nonlinear two-body dynamics of

each spacecraft, but the filters’ dynamics model includes a small, fictitious acceleration process

noise, with an isotropic intensity of 1× 10−9 m/s5/2 per axis. The filters’ measurement model is

identical to the simulation model. Note that we have intentionally matched the filter model to the

simulation model so as to remove any ambiguity concerning the performance of the WSPRT. We

have chosen a simple but fairly nonlinear model so that we can run large numbers of cases with

acceptable computational time. In the sequel, we present a detailed look at four of these cases, and

then summarize the outcome of 24,000 simulations.

(a) Phase 1 Orbit
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Figure 5. MMS Conjunction Example

5.2. Example Results, Part 1

To illustrate the WSPRT, we simulated four cases, one each of the clear hit, near hit, near miss, and

clear miss category, which we have described above. Figures 6 to 9 summarize these results. Each

figure consists of four quadrants. The upper left quadrant depicts the 120 m hard-body sphere as a

gray wire mesh. Markers indicated by the legend show the relative position vector that each of the

three EKFs estimates at the end of the data arc, along with the true relative position. The lower left

5The actual MMS GPS receiver will acquire and process, using an onboard EKF, pseudo-range data throughout all

of the Phase 1 orbit, and much of the higher-apogee Phase 2 orbit so that state updates will be available over a much

larger fraction of the orbit than this example considers.
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and upper right quadrants show, as a solid colored line, the three components of the relative position

estimation error from the alternative (H1) and null hypothesis (H0) filters, respectively. Dashed

lines show the filters’ 3σ formal error envelope. For reference, gray solid and dashed lines show the

unconstrained filter’s estimate and formal error envelope. The lower right quadrant shows the base

ten logarithm of the likelihood ratio, along with Wald’s limits for the alarm, B, and the dismissal, A.

In Figure 6, which is a clear hit case, we see that the null hypothesis filter closely tracks the

unconstrained filter leading to a rapid and definitive conclusion to raise the alarm and recommend

a conjunction avoidance maneuver. Figure 7, which is a near hit case, produces similar results.

In Figure 8, which is a near miss case, neither of the constrained filters predicts as accurately as

the unconstrained filter, but the alternative hypothesis filter is slightly more consistent with its

own formal errors than the null hypothesis filter, leading to a dismissal. Figure 9, the clear miss

case, shows a close agreement between the alternative hypothesis and unconstrained filters, and

divergence of the null hypothesis filter, once again leading to a dismissal.

5.3. Example Results, Part 2

Next, we shortened the simulation timeline to consider an “emergency” situation such as might occur

after a faulty formation maintenance maneuver. In this case, the faulty maneuver has occurred prior

to the previous apogee, creating an unintentional close approach on the approach to the subsequent

perigee. We give the WSPRT access to only 20 minutes of measurement data that begin 40 minutes

prior to the conjunction, which as previously occurs at a true anomaly of 270 deg. Although this is

an unrealistically short timeline for MMS to actually perform an emergency maneuver, we want to

show that our WSPRT can perform adequately in even such an unrealistically stressing case. We

also used this shorter scenario to examine the difference in performance between using both steps

of Julier and LaViola’s constraint application approach, versus only performing the projection step.

We ran 12,000 Monte Carlo trials for this scenario for each of these two cases.

Table 1. Large Ensemble (12,000 cases each) Stress Case Results

Case Missed Detection False Alarm No Decision Indecision Eff. False Alarm

Both Steps 0.167% 2.17% 10.0% 0.7% 7.35%

Step 1 Only 0.117% 1.82% 9.63% 0.5% 7.59%

In the first row of Table 1 are the results of using both steps (projection and translation) of the

constraint application, while the second row contains the results of using the projection step only.

The first two columns of the table show the raw missed detection and false alarm rates. The third

column shows the fraction of cases in which the likelihood ratio failed to reach either the alarm

or dismissal limit within the short span of measurements that were available. The fourth column

shows the fraction of cases in which the test first reached or exceeded one boundary, either alarm

or dismissal, and then relaxed back into the in-decision region between the two boundaries. The

final column requires a bit more explanation. In practice, if the WSPRT has not terminated with a

decision by the time we process the last measurement, we assume that the prudent course of action

is to maneuver. In some cases, this would prove to be a correct decision, while in others it would

result in a false alarm. We report this increased false alarm rate in the final column.
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Figure 6. Clear Hit Case (‖r(tca)‖ = 74 m)
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Figure 7. Near hit case (‖r(tca)‖ = 114 m)
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Figure 8. Near miss case (‖r(tca)‖ = 132 m)

17



−100
0

100

−100
0

100
200

−100

0

100

200

300

 

mm
 

m

True Position

Null Hypothesis

Alternative Hyp

Unconstrained

−30 −20 −10 0

−5

0

5

10

15

L
o

g
−

L
ik

e
lih

o
o
d
 R

a
ti
o

Hours before t
ca

Dismiss

Alarm

−30 −20 −10 0
−100

0

100

m

H1 Filter Est. Errors

−30 −20 −10 0
−200

0

200

m

−30 −20 −10 0
−100

0

100

m

Hours before t
ca

−30 −20 −10 0
−2000

−1000

0

1000

m

H0 Filter Est. Errors

−30 −20 −10 0
−2000

0

2000

4000

m

−30 −20 −10 0
−500

0

500

1000
m

Hours before t
ca

Hard Body Sphere

Figure 9. Clear miss case (‖r(tca)‖ = 359 m)

18



If, per Wald, we assume that any time the WSPRT reaches a decision limit, we would terminate the

test, such a policy would remove the possibility of an indecision case occurring. This is the policy

we used in constructing the statistics of Table 1, although we nonetheless continued running the test

in order to collect the indecision statistics as well. We note that in many cases it may be minimally

costly to wait until the end of the data arc to make a recommendation; if the filters are continuing to

improve in accuracy as they process more data, the final value of the likelihood ratio is likely to be

more accurate and hence both the power and the specificity of the test would improve.

One can see in Table 1 that the missed detection rates slightly exceed the desired rate of 1/1000,

while the raw false alarm rates are well within the desired false alarm rate of 1/20. While the

elevated effective false alarm rates are not unexpected given our policy of raising the alarm in a

no-decision case, the slightly elevated missed detection statistics are notable. For row two of the

table, the missed detection rate corresponds to seven of the 6,000 trials which were truthfully inside

the combined hard body radius, but which were misidentified as being outside. This is only one in

excess of the six that we would expect to occur for a test designed to achieve a missed detection

rate of 1/1000. We believe it is reasonable to consider this a non-significant fluctuation. On the

other hand, for row one of the table, the missed detection rate corresponds to ten of 6,000 trials;

this excess of four events versus the six we expect appears to us to be statistically significant6.

Therefore, we may conclude from Table 1 that use of the projection step only is superior to using

both projection and translation, and that when so doing, the WSPRT meets our expectations for its

performance.

6. Conclusions

The Wald sequential probability ratio test based on a bank of inequality-constrained current-state

extended Kalman filters, as proposed and demonstrated in this paper, is a promising new approach

to conjunction assessment. Although it may require the solution of multiple-revolution Lambert

problem for multiple sigma-points to project the inequality constraint from the predicted time

of closest approach to the current measurement time, we believe this problem is fundamentally

easier than trying to predict a probability density into the future and then compute integrals over it.

The MMS mission, due to launch in 2014, plans to utilize our approach as part of its conjunction

assessment process.
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