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Abstract

Genome-scale metabolic models (GEMs) computationally

describe gene-protein-reaction associations for entire

metabolic genes in an organism, and can be simulated

to predict metabolic fluxes for various systems-level

metabolic studies. Since the first GEM for Haemophilus

influenzae was reported in 1999, advances have been

made to develop and simulate GEMs for an increasing

number of organisms across bacteria, archaea, and

eukarya. Here, we review current reconstructed GEMs

and discuss their applications, including strain

development for chemicals and materials production,

drug targeting in pathogens, prediction of enzyme

functions, pan-reactome analysis, modeling interactions

among multiple cells or organisms, and understanding

human diseases.

Introduction

Since the first genome-scale metabolic model (GEM) of

Haemophilus influenzae RD was reported in 1999 [1],

GEM reconstruction has been established as one of the

major modeling approaches for systems-level metabolic

studies. A GEM computationally describes a whole set of

stoichiometry-based, mass-balanced metabolic reactions

in an organism using gene-protein-reaction (GPR) associ-

ations that are formulated on the basis of genome annota-

tion data and experimentally obtained information [2, 3].

Importantly, the GEM allows the prediction of metabolic

flux values for an entire set of metabolic reactions using

optimization techniques, such as flux balance analysis
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(FBA), which uses linear programming [4]. GEM also

serves as a platform for the integration and analysis of

various types of data such as omics and kinetic data [5–7].

As the techniques for genome sequencing and relevant

omics analyses continue to evolve, the quality and applica-

tion scopes of GEMs have also expanded accordingly, and

together they have contributed to better understanding of

metabolism in various organisms. Starting with GEMs of

model organisms, including Escherichia coli [8] and Sac-

charomyces cerevisiae [9], GEMs of various microorgan-

isms and also multicellular organisms, such as humans

[10] and plant cells [11], have been reconstructed.

Such progress in the reconstruction of GEMs has made it

possible to construct a wide range of metabolic studies by

generating model-driven hypotheses and implementing

various context-specific simulations [12]. Relevant applica-

tions that have benefited from advances in the use of GEMs

include, but are not limited to, strain development for the

production of bio-based chemicals and materials, drug tar-

geting in pathogens, the prediction of enzyme functions,

pan-reactome analysis, modeling interactions among mul-

tiple cells or organisms, and understanding human diseases.

Applications of GEMs are expected to expand further in

coming years. To this end, we comprehensively review the

current status and applications of GEMs reconstructed for

diverse organisms belonging to bacteria, archaea, and

eukarya (Fig. 1, Additional file 1, and Additional file 2). By

discussing a broad range of studies involving GEMs, we

show how GEMs can help us to gain novel biological

insights beyond those provided by genome sciences and

how they can help to develop biotechnological applications.

Current status of reconstructed genome-scale

metabolic models
As of February 2019, GEMs have been reconstructed for

6239 organisms (5897 bacteria, 127 archaea, and 215 eu-

karyotes), either manually or by using automatic GEM

reconstruction tools that are discussed below (Fig. 1,

Additional file 1, and Additional file 2). A total of 183

organisms (113 bacteria, 10 archaea, and 60 eukaryotes)
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Fig. 1 (See legend on next page.)
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have been subjected to manual GEM reconstruction. We

first discuss the current status of GEMs built for model

organisms that are scientifically, industrially, and/or

medically important, and then cover computational

resources for GEM reconstruction.

High-quality GEMs for model organisms

The GEMs for model organisms that have high scientific,

industrial, and/or medical values have been updated several

times since their initial reconstruction as more relevant

biological information became available over the years.

GEMs are often updated by adopting up-to-date experi-

mental information on GPR associations and cell growth

under various conditions (such as in gene knockouts or

when different carbon sources are used), and by resolving

issues such as incorrect GPR associations and different

database identifiers for the same metabolite. The resulting

GEMs serve as an excellent knowledgebase for studying

the metabolism of the target organisms and are capable of

predicting the organism’s various biological capabilities. As

a result, high-quality GEMs of several model organisms

reveal the history, rationale behind, and future directions of

GEM development. Furthermore, they serve as good refer-

ence models for developing GEMs of other related

organisms.

Bacteria

Escherichia coli Being a model organism for bacterial

genetics, the Gram-negative bacterium Escherichia coli

has been subjected to genome-scale metabolic reconstruc-

tion campaigns for almost two decades. The first E. coli

GEM, iJE660 [8], was reported in 2000 soon after the first

release of the genome sequence of E. coli K-12 MG1655

[17]. The iJE660 model has subsequently been updated in

terms of the coverage of GPR associations and prediction

capacities, officially at least four times [18–21]. The most

recent version, iML1515, contains information on 1515

open reading frames, twice the number of open reading

frames incorporated in the original iJE660 model. The

iML1515 model shows 93.4% accuracy for gene

essentiality simulation under minimal media containing

16 different carbon sources such as glucose, xylose, and

acetic acid. Importantly, iML1515 was tailored in various

ways to extract the most relevant knowledge from a large

volume of biological data. For example, iML1515-ROS has

additional reactions associated with the generation of re-

active oxygen species (ROS) and is useful for antibiotics

design; iML976, a subset of iML1515, only contains infor-

mation on metabolic genes that are shared by over 1000

E. coli strains and provides understanding of the core and

accessory metabolic capacities of E. coli strains, especially

clinical ones; and context-specific GEMs, by using prote-

ome data from cells grown under specific conditions, re-

duce the false-positive predictions [21]. As a ‘model’

GEM, iML1515 shows how a GEM can accurately predict

cellular metabolic and physiological states, and is expected

to evolve further as new data become available.

Bacillus subtilis Bacillus subtilis is a representative

Gram-positive bacterium that has value to industrial

biotechnology in the production of various enzymes and

proteins [22, 23]. GEMs reconstructed for B. subtilis in-

clude iYO844 [24], a GEM by Goelzer et al. [25], iBsu1103

[26], iBsu1103V2 [27], iBsu1147 [28], and iBsu1144 [29].

The latest version, iBsu1144, built on the basis of the

re-annotated genome information [30], was developed by

incorporating thermodynamic information on the standard

molar Gibbs free energy change for each reaction, in order

to improve the accuracy and consistency of the reversibility

of intracellular reactions. In one application study,

iBsu1144 was employed to identify the effects of oxygen

transfer rates (i.e., low, medium, and high oxygen transfer

rates) on the production of serine alkaline protease and

recombinant proteins using B. subtilis in silico. The B.

subtilis GEMs will serve as important reference models for

other Gram-positive bacteria.

Mycobacterium tuberculosis In the fight against micro-

bial pathogens, understanding their condition-specific

metabolism (e.g., metabolism at a specific lifecycle point) at

a systems level is very important for the identification of

(See figure on previous page.)

Fig. 1 A phylogenetic tree of all of the GEMs reconstructed to date at the family level. GEMs for 434, 40, and 117 taxonomic families of bacteria

(light blue), archaea (light purple), and eukarya (pink), respectively, are marked in the phylogenetic tree. Organism names are labeled with circles of

different colors outside the circular phylogenetic tree, depending on the development methods used: manual, Path2Models [13], AGORA [14],

and CarveMe [15]. For manually reconstructed GEMs, the relevant PubMed identifier (PMID) or digital object identifier (DOI) for the latest GEM

version is additionally indicated. The phylogenetic tree was prepared as follows. First, organism names were collected from BioModels for the

GEMs from Path2Models, from Virtual Metabolic Human (VMH) for AGORA models, and from a GitHub repository (https://github.com/

cdanielmachado/embl_gems/blob/master/model_list.tsv) for CarveMe. Next, National Center for Biotechnology Information (NCBI) taxids at the

species level and taxonomic lineages for all of the organisms subjected to the GEM reconstruction were obtained from a dataset available (as of

May 14, 2019) at the NCBI Taxonomy FTP (ftp://ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz). Finally, a Newick file for all of the organisms with

taxids was subsequently generated using an in-house Python script at the family level, and this file was used to create a phylogenetic tree using

iTOL (https://itol.embl.de/) [16]. A phylogenetic tree of GEMs at the species level is available as Additional file 1. A full list of organisms subjected

to the GEM reconstruction and preparation of phylogenetic trees is available as Additional file 2
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effective drug targets [31]. Mycobacterium tuberculosis, a

bacterial pathogen that causes tuberculosis in humans, is

one of the microbial pathogens that have been studied the

most over the past 10 years using GEMs [32–38]. The most

recent version of the GEM iEK1101 of M. tuberculosis,

H37Rv, was developed by standardizing and combining

biological information from previously released GEMs [38].

Upon reconstruction, iEK1101 was used to provide under-

standing of this pathogen’s metabolic status under an

in vivo hypoxic condition, which replicates a pathogenic

state, and also in an in vitro drug-testing condition. Com-

paring the predicted metabolic flux distributions in the two

conditions allowed evaluation of the pathogen’s metabolic

responses to antibiotic pressures [38]. Besides developing

independent GEMs, a GEM of M. tuberculosis was inte-

grated with a GEM of human alveolar macrophages to

study host–pathogen interactions [39]. Development of sys-

tematic drug-targeting methods using GEMs of M. tuber-

culosis continues to be an active research area.

Archaea

Methanosarcina acetivorans GEM reconstruction stud-

ies have mainly focused on prokaryotes and eukaryotes,

but GEMs have also been built for a few archaea, such as

Methanosarcina acetivorans, a methanogenic archaeal spe-

cies which lives in a marine environment [40–43]. GEMs of

M. acetivorans contain information on the methanogenesis

pathway, the most representative metabolism of methano-

gens [44]. The iMAC868 model, the latest version of a M.

acetivorans GEM [42], was established by integrating two

previous models, iVS941 [40] and iMB745 [41]. iMAC868

was curated to represent a thermodynamically feasible

methanogenesis reversal pathway that co-utilizes methane

and bicarbonate, among other updates made in the GEM

[42]. Another recent GEM of M. acetivorans, iST807 [43],

was also updated on the basis of the previous version,

iMB745 [41], in order to consider the effects of regulators

on metabolic pathways in media containing different sub-

strates. For example, in addition to the newly added meta-

bolic pathways, tRNA-charging was explicitly incorporated

into iST807, thereby allowing characterization of the effects

of the differential expression of tRNA genes on metabolic

fluxes. The GEMs for archaea will serve as a useful resource

for metabolic studies on unusual characteristics of archaea

in a wide range of habitats, including extreme environ-

ments and the human gut.

Eukarya

Saccharomyces cerevisiae As the most representative

eukaryotic microorganism, S. cerevisiae was the first

eukaryotic organism to have its genome sequenced [45].

In addition, it was the first eukaryote for which a GEM

was reconstructed [9]. Since the first S. cerevisiae GEM

was released in 2003 [9], the GEMs for this microorgan-

ism have been updated by several different research

groups [46–51]. However, the resulting different versions

of S. cerevisiae GEMs were found to have inconsistent

annotations, which hampered their comparison and

further GEM upgrades. To address this inconsistency

problem, a consensus metabolic network, Yeast 1, was

reconstructed through an international collaborative

effort [52]. Although Yeast 1 was a comprehensive meta-

bolic network, it could not be simulated for flux predic-

tions; constraint-based simulation became possible with

a later version, Yeast 4 [53]. Yeast 1 has been upgraded

to the latest version, Yeast 7, in the past few years by in-

corporating new biological information and by correct-

ing critical modeling errors, such as the removal of

thermodynamically infeasible reactions [53–56]. Very re-

cently, Yeast 7.Fe [57] was extended from Yeast 7.6 [56]

by including additional information on iron metabolism,

which had not been properly considered in the previous

GEMs. The Yeast 7.Fe now allows estimation of the opti-

mal turnover rate of iron cofactors and more rigorous

examination of metabolism. The GEMs of S. cerevisiae

will continue to serve as reference models for eukaryotic

microorganisms.

Chlamydomonas reinhardtii The green microalgae

Chlamydomonas reinhardtii has served as a model or-

ganism in studies of photosynthesis, phototaxis, cell mo-

tility, and bioenergy production [58, 59]. Owing to its

biological importance, there has been much interest in

reconstructing a GEM for C. reinhardtii. A total of six

GEMs have been developed for C. reinhardtii to exam-

ine microalgal behaviors at the systems level, including

iAM303 [60], iRC1080 [61], AlgaGEM [62], iCre1355

[63], a GEM by Winck et al. [64], and a GEM by Mora

Salguero et al. [65]. The latest version by Mora Salguero

et al. [65] allows dynamic simulations by including kin-

etic information on the effects of acetate as a nutrient

on the growth rate at varying CO2 levels. Overall, the

dynamic simulation of the C. reinhardtii GEM was able

to predict cellular responses to the environmental

changes accurately. GEMs for a greater number of

microalgal species have been reconstructed for applica-

tions in biotechnology, including the production of lipids

and secondary metabolites [66].

Caenorhabditis elegans The nematode Caenorhabditis

elegans has been employed as an established eukaryotic

model organism in various studies, including work on

aging [67], molecular and developmental biology [68], and

nutrition [69]. The biological importance of C. elegans has

led to multiple GEM reconstructions, including iCEL1273

[70], ElegCyc [71], and CeCon [72]. In 2017, the

Gu et al. Genome Biology          (2019) 20:121 Page 4 of 18



WormJam Community was founded to develop a consen-

sus GEM of C. elegans by merging and reconciling the

existing GEMs that had been developed by different re-

search groups [73]. The three different C. elegans GEMs

were merged to give a draft consensus GEM, and manual

curation of the GEM was conducted to incorporate add-

itional metabolic characteristics of C. elegans. The manual

curation process, which was based on biological insights

and over 40 metabolomics studies, led to the correction of

errors in multiple metabolic pathways (i.e., glycogen me-

tabolism, sphingolipid metabolism, and the biosynthesis

and degradation of fatty acids, such as branched chain

fatty acids) and the addition of new metabolic pathways

(i.e., biosynthesis of maradolipids and ascaroside). The

WormJam consensus GEM, the most accurate C. elegans

GEM to date, now provides better biological insights into

C. elegans physiology.

Arabidopsis thaliana Arabidopsis thaliana, a model

organism for plants, has also been an attractive target

for extensive metabolic reconstruction studies, resulting

in the development of four different GEMs: a GEM by

Poolman et al. [74], AraGEM [11], a GEM by Mintz-

Oron et al. [75], and a GEM by Cheung et al. [76].

Among these four GEMs, the latest version by Cheung

et al. [76] was reconstructed to predict more accurate

fluxes in the heterotrophic metabolism of A. thaliana, in

particular by considering the transport costs associated

with nutrient uptake and protein translocation between

organelles and the maintenance costs for ATP and

NADPH. By including information on these energy costs

in the model, the metabolic flux distributions calculated

using the updated GEM became more consistent with

those obtained by 13C-metabolic flux analysis. Despite

greater biological complexity, plant GEMs are beginning

to be used more extensively to understand the metabol-

ism of plants [77].

Homo sapiens The availability of human GEMs has

contributed to a better understanding of the biological

mechanisms behind various diseases and to the design of

appropriate disease treatments. Since the release of Recon

1, the first generic human GEM in 2007 [10], the Recon

series has gone through several important updates, includ-

ing the incorporation of additional biological information

and the correction of various modeling errors [78–81].

Recon 2M.2 is the version in which a framework for

gene-transcript-protein-reaction associations (GeTPRA)

was deployed to generate metabolic reactions by consider-

ing the effects of alternative splicing of metabolic genes

(i.e., both principal and non-principal transcripts) [80].

Recon3D is the latest version and contains the most ex-

tensive human GPR associations and structural informa-

tion on metabolites and enzymes. Recon3D can be used as

a resource for many biomedical applications, including

the characterization of disease-associated mutations and

metabolic responses to drugs [81].

The Human Metabolic Reaction (HMR) series [82] is

another generic human GEM series, which contains in-

formation on subcellular localization and tissue-specific

gene expression, both mainly from the Human Protein

Atlas database [83, 84]. In comparison with the Recon

series, the HMR series has more comprehensive infor-

mation on fatty acid metabolism that has been manually

curated. The HMR series led to the generation of several

cell-type-specific GEMs, such as iAdipocytes1809 [82],

iHepatocytes2322 [85], and iMyocyte2419 [86], which

were used to study obesity, non-alcoholic fatty liver

disease (NAFLD), and diabetes, respectively. Both the

Recon and the HMR series will serve as useful resources

for various biomedical studies, as discussed below.

Computational resources for automatic GEM

reconstruction

Manual reconstruction of GEMs is a time-consuming

procedure [3], in which a large number of GPR associa-

tions and many other sources of data and information

must be considered. To address this challenge, several

software programs for automatic GEM reconstruction

have been developed (Table 1). A significant part of the

GEM reconstruction procedure has now been auto-

mated, including, but not limited to, the annotation of

genome sequence, the generation of a set of GPR associ-

ations unique to a target organism, the prediction of

reaction reversibility on the basis of thermodynamics,

and enzyme localization. Three independent studies

involving the high-throughput generation of GEMs,

namely Path2Models [13], AGORA [14], and CarveMe

[15], led to the reconstruction of more than 6000 GEMs

(Table 2). CarveMe led to the generation of the greatest

number of GEMs, especially for bacteria, followed by

Path2Models and AGORA (Fig. 1). CarveMe is a computa-

tional pipeline that automatically converts a manually

curated reaction dataset (known as the ‘universal model’)

into a target-organism-specific GEM. CarveMe was used

to reconstruct 5587 bacterial GEMs, which corresponds to

91.8% of the bacterial GEMs reconstructed (Fig. 1). Path2-

Models, the first large-scale GEM reconstruction project,

allowed reconstruction of GEMs for 2606 organisms,

which are accessible at the BioModels database [98]. GEMs

developed through Path2Models cover 20.1, 98.4, and

88.8% of all the GEMs reconstructed for bacteria, archaea,

and eukaryotes, respectively (Fig. 1). AGORA models in-

clude the GEMs of 773 members of the human gut micro-

biota, which were prepared in a semi-automatic manner

using the online GEM reconstruction platforms Model

SEED [93] and KBase [104]. As of February 2019, 818

AGORA models are accessible at the Virtual Metabolic
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Human database [103]. Both manually curated high-quality

GEMs and automatically reconstructed GEMs are now

available at several databases, as summarized in Table 2.

As these tools and strategies for GEM reconstruction

are advancing rapidly, an increasing number of GEMs for

many different organisms, including those of research

interest, have become available. Nevertheless, challenges

remain with the automatic GEM reconstruction. The

most urgent challenges are to evaluate the quality of an

automatically generated draft GEM and to automate the

refinement procedure [105]. A draft GEM usually includes

inaccurate reactions and GPR associations; for example,

the biomass generation reaction is not tailored for a target

organism, and reactions are often incorrectly constrained

(e.g., there are no constraints or incorrect reaction revers-

ibility in the draft GEM). Solutions exist to meet this

challenge. The quality of the draft GEMs can be evaluated

by using a set of task functions that are relevant to a target

organism; this feature is now addressed by the software

program memote (which stands for ‘metabolic model

tests’) [106], but in an organism-independent manner.

Some established algorithms for refining draft GEMs, such

as gap-filling [107, 108] and the integration of experimen-

tal data (such as those from cultivation experiments under

various conditions) [5], can be integrated with the GEM

reconstruction tools to allow (semi-)automatic refinement

of the draft GEMs. For complex problems such as the for-

mulation of an organism-specific biomass generation reac-

tion, manual refinement assistance could be provided in

the GEM reconstruction tool, for example, by providing

the biomass generation equations of biologically related

organisms. In the future, it is expected that this step will

Table 2 Representative GEM databases

Database Available GEMs URL Reference(s)

BiGG Models 84 high-quality GEMs that were manually reconstructed http://bigg.ucsd.edu [97]

BioModels 6753 patient-specific GEMs using TCGA datasets, > 2600
GEMs from the Path2Models project, and 641 manually
curated small-scale metabolic models from the literature

http://www.ebi.ac.uk/biomodels [98]

Human Metabolic
Atlas (HMA)

Two generic and > 100 context-specific human GEMs,
five human gut microbiota species GEMs, and a mouse
GEM

http://www.metabolicatlas.org [99]

MEMOSys 2.0 20 publicly available GEMs in a standardized format http://memosys.i-med.ac.at (unstable) [100]

MetaNetX 217 GEMs collected from GEM-relevant databases (e.g.,
BiGG Models and Model SEED) in a standardized format

http://www.metanetx.org [101]

Model SEED 39 plant GEMs reconstructed using PlantSEED http://modelseed.org [93, 102]

Virtual Metabolic
Human (VMH)

818 GEMs for gut microbes (AGORA models) and
Recon3D

http://www.vmh.life [103]

Table 1 Software programs for the reconstruction of GEMs

Tool Language Graphical user interface
(GUI) available?

Source database for
metabolic reactions

Use as a
reference model?

Gap-filling Eukaryote
modeling

Simulation
ready

Reference

AuReMe Python No KEGG, BiGG Models,
MetaCyc

No Yes Yes Yes [87]

AutoKEGGRec Matlab No KEGG No No No No [88]

CarveMe Python No BiGG Models Yes (universal model) Yes No Yes [15]

CoReCo Python No KEGG No Yes Yes Yes [89]

FAME Python Yes KEGG Yes No No Yes [90]

merlin Java Yes KEGG, MetaCyc,
UniProtKB, TCDB

No No Yes No [91]

MetaDraft Python Yes BiGG Models Yes No No Yes [92]

Model SEED Web Yes In-house reaction
database

Yes Yes Yes (only
plants)

Yes [93]

Pathway Tools Python, Lisp Yes Pathway/Genome
Database (PGDB),
MetaCyc

No Yes Yes Yes [94]

RAVEN 2.0 Matlab No KEGG, MetaCyc Yes Yes Yes Yes [95]

SuBliMinal
Toolbox

Java No KEGG, MetaCyc No No No Yes [96]
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also be automated, for example, by automatically extract-

ing information on a target organism-specific biomass

composition and even GPR associations from the litera-

ture using text mining techniques.

Applications of GEMs

GEMs of various organisms have been widely employed in

scientific discovery as well as in various industrial and

medical applications [7, 109, 110]. Importantly, the devel-

opment of omics data integration methods for GEMs re-

sulted in the expansion of the application scope of GEMs

[111] by tailoring a GEM according to specific conditions

of interest. Relevant omics data integration algorithms [5,

112, 113] include GIMME [114], iMAT [115], MBA [116],

INIT [117], mCADRE [118], tINIT [119], CORDA [120],

and TIMBR [121]. The integration of omics data with

GEMs is particularly important for modeling multicellular

organisms, such as human and plants, because the generic

GEMs that are available for these organisms need to be

transformed into context-specific GEMs. Generic GEMs

do not address condition-specific metabolism because they

have information on all metabolic genes regardless of their

expression levels in a specific tissue or cell type. Relevant

studies involving context-specific GEMs include the pre-

diction of condition-specific (e.g., specific to life cycle stage

or cultivation environment) drug targets in pathogens, the

prediction of host–pathogen metabolic interactions, and

the characterization of the reprogrammed metabolism of

liver cancer stem cells (LCSCs) and the endothelium of

sepsis patients, which are all discussed below. Further

details of various omics data integration methods have

been thoroughly discussed elsewhere [5, 112, 113].

Production of chemicals and materials

GEMs have long been used to predict targets for effective

gene manipulation (by knockout or through the up- or

downregulation of gene expression, for example) for the

enhanced microbial production of chemicals and mate-

rials. Notably, GEMs have been applied to redesign as-

pects of the metabolism of both bacteria and eukaryotes

in order to produce an increasing number of chemicals

and materials. A recent example is the enhanced produc-

tion of aromatic polymers involving D-phenyllactic acid as

a monomer (e.g., poly(3-hydroxybutyrate-co-D-phenyllac-

tate)) using metabolically engineered E. coli strains (Fig. 2a)

[122]. Direct production of D-phenyllactic acid from glu-

cose was first attempted by implementing flux response

analysis of the E. coli GEM iJO1366 [20] to examine the

effects of engineering central and aromatic amino acid

biosynthetic reactions on D-phenyllactic acid production.

Additional knockouts of tyrB and aspC genes in an engi-

neered E. coli base strain (XB201T) producing 0.55 g/L of

D-phenyllactic acid successfully increased D-phenyllactic

acid production to 1.62 g/L. Fed-batch fermentation of the

final strain produced 13.9 g/L of poly(61.9 mol% 3-

hydroxybutyrate-co-38.1 mol% D-phenyllactate).

In another example involving Yarrowia lipolytica, an

eukaryotic microorganism known to accumulate large

amounts of lipids [130], its GEM was used to improve the

production of dodecanedioic acid [123] (Fig. 2b). First, a

GEM of Y. lipolytica, iYLI647, was newly reconstructed

and employed to find target reactions that can lead to the

enhanced production of dodecanedioic acid [123]. For

this, several in silico strain design methods were imple-

mented using iYLI647, including (1) flux activity analysis

(a method examining the effects of changes in individual

reaction fluxes on a target chemical production rate) [131]

and the transcriptomics-based strain optimization tool

(tSOT) [132], both of which identify overexpression tar-

gets; (2) genetic design by local search (GDLS) [133],

which is used to identify knockout targets; and (3) cofac-

tor modification analysis (CMA) [134], which identifies

cofactor modification targets. Application of algorithms

such as these to redesign a microbial strain’s metabolism

allows the identification of more robust gene manipula-

tion targets, and is becoming an essential practice in

metabolic engineering.

Drug targeting in pathogens

Another important application of GEMs is to predict the

viability of an organism under a given condition. This

simulation approach has been utilized to suggest meta-

bolic drug targets whose inhibition can effectively kill a

pathogen. The GEM of a target pathogen can be used to

predict essential genes (or reactions) [32, 135] and essen-

tial metabolites [136, 137], each of which can lead to a dif-

ferent drug discovery strategy. A recent study using GEMs

suggested drug targets in Plasmodium falciparum that are

specific to the life cycle stage of the malaria-causing

pathogen [124]. P. falciparum goes through a complex life

cycle to reproduce itself [138]. Because each life cycle

stage has a different metabolic network structure, it is

likely that different drug targets can be found for each

stage. Thus, the stage-specific GEMs of P. falciparum

were reconstructed [124]. Integration of a generic GEM

with stage-specific transcriptome and physiology data,

such as stage-specific growth rates and metabolite secre-

tion rates, led to five stage-specific models that represent

the trophozoite, schizont, early gametocyte, late gameto-

cyte, and ookinete (Fig. 2c). Gene essentiality analysis of

the stage-specific GEMs showed 71.2% accuracy in com-

parison with experimentally characterized drug targets (42

out of 59 drug targets). The prediction outcome indicates

that the quality of the P. falciparum GEM needs to be im-

proved further. In addition, new drug targets beyond these

59 targets need to be identified, especially novel targets

that are effective in the proliferative and late gametocyte

stages. Life-cycle-stage-specific modeling and simulation
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approaches such as this will be important for drug target-

ing in other pathogens that exhibit different life stages,

but this approach requires the acquisition of stage-specific

omics data.

Condition-specific drug targeting using GEM has also

been conducted for Acinetobacter baumannii [125],

which is one of the six ESKAPE pathogens (Enterococcus

faecium, Staphylococcus aureus, Klebsiella pneumoniae,

A. baumannii, Pseudomonas aeruginosa, and Enterobac-

ter spp.) associated with antimicrobial resistance [139].

Specifically, an updated version of the A. baumannii

GEM, iLP844, was reconstructed and transformed into

condition-specific GEMs by integration with transcrip-

tome data. The transcriptome data were obtained from

cells treated and untreated with colistin, one of the last-

resort antibiotics against multi-drug-resistant pathogens

[125]. Condition-specific drug targets were obtained by

predicting genes that are exclusively essential in colistin-

treated cells, and not homologous to any human genes,

so that possible side-effects in the human body are

avoided (Fig. 2d). It should be noted that similar ap-

proaches have also been applied to predict drug targets

for diseased human cells such as cancers [119, 140].

Once a condition-specific GEM is built, drug targets can

be predicted relatively easily. More demanding chal-

lenges are to validate the targets experimentally and to

identify drugs that can effectively inhibit the predicted

drug targets.

Prediction of enzyme functions

Rigorous analysis of the simulation results from a GEM

also allows the identification of previously unidentified

reactions or enzyme functions. In this context, two repre-

sentative studies demonstrate how GEMs can be used to

unveil additional functions of an enzyme. One study fo-

cused on a set of genes that were shown in experiments to

be nonessential, but that were predicted to be essential in a

gene essentiality simulation of the E. coli GEM iJO1366

(i.e., there was a false-negative prediction of cell growth;

Fig. 2e) [126]. Such false-negative predictions were thought

to be caused by the presence of previously unidentified

reactions that made a nonessential gene essential upon its

knockout in silico. Among the ‘false-negative’ genes, aspC,

argD, and gltA were selected for experimental validation

because sequence homology analysis identified high-

confidence candidate isozymes. Knockout of the genes en-

coding the potential isozymes revealed that tyrosine amino-

transferase, which is encoded by tyrB, can compensate for

the loss of aspartate aminotransferase, which is encoded by

aspC (Fig. 2e). The same knockout approach also identified

potential isozymes that could serve as alternative reaction

enzymes for those encoded by argD and gltA.

In another study, a new method called PROmiscuity

PrEdictoR (PROPER) [127] was developed to identify

promiscuous enzymes in a target organism at the gen-

ome scale. For the implementation of PROPER, gene-

similarity trees were built for all of the genes in E. coli

using Position-Specific Iterated (PSI) BLAST, which

show their homologous genes from the SEED database.

The gene-similarity trees were used to generate a matrix

that presents the primary and potential promiscuous

functions (i.e., metabolic reactions) of E. coli enzymes

encoded by the corresponding genes. Finally, ‘replacer’

genes were identified in the matrix, which have a poten-

tial promiscuous function that is identical to the primary

function of another conditionally essential gene (‘target’

gene) in E. coli. A potential promiscuous function of a

replacer gene can be validated if expression of this gene

(See figure on previous page.)

Fig. 2 Applications of GEMs for the production of chemicals and materials, drug targeting in pathogens, the prediction of enzyme functions, and

pan-reactome analysis. a. Flux-response analysis using the Escherichia coli GEM iJO1366 [20] has been used to identify gene manipulation targets

for the enhanced production of a monomer of an aromatic polymer D-phenyllactic acid in E. coli [122]. The final strain has two additional genes

(tyrB and aspC) knocked out from an E. coli base strain XB201T that expresses AroGfbr, PheAfbr, and FldH. The final strain produced 1.62 g/L of D-

phenyllactic acid, much more than the 0.55 g/L produced by the base strain. b Reconstruction of the Yarrowia lipolytica GEM iYLI647 and its

application for the prediction of reaction engineering targets using four different in silico strain-design strategies [123]. c Identification of stage-

specific antimalarial drug targets for Plasmodium falciparum using stage-specific GEMs that represent five different life cycle stages [124]. d

Reconstruction of a GEM for Acinetobacter baumannii using several databases and its application for the prediction of condition-specific drug

targets to combat antibiotic-resistant A. baumannii [125]. e Discovery of new isozyme functions for genes that have been shown to be

nonessential in experiments but that were predicted to be essential in a gene essentiality simulation of the E. coli iJO1366 GEM (i.e., false-negative

prediction for the aspC gene) [126]. It was found that tyrosine aminotransferase, which is encoded by tyrB (red line), can compensate for the loss

of aspartate aminotransferase, encoded by aspC, which catalyzes the conversion of L-aspartate (L-Asp) and α-ketoglutarate (Akg) to oxaloacetate

(Oaa) and L-glutamate (L-Glu). gDCW/L grams dry cell weight per liter. f The PROmiscuity PrEdictoR (PROPER) method identifies promiscuous

enzymes at a genome-scale in a target organism [127]. Promiscuous functions for all of the genes in the target organism (E. coli) were predicted

using the PROPER method and an E. coli GEM from the Model SEED, which identified 98 alternative routes for the biosynthesis of various

metabolites. For example, the product of the thiG gene in E. coli was newly found to biosynthesize pyridoxal 5′-phosphate, which is also known

to be biosynthesized by the product of the pdxB gene. g Analysis of the pan-reactome and accessory reactome of 410 Salmonella strains

spanning 64 serovars using their respective GEMs [128]. Simulation of the GEMs under various nutrient conditions revealed the different catabolic

capabilities of the different strains as well as their preferred growth environments. h Analysis of the pan-reactome and accessory reactome of 24

Penicillium species by using their respective GEMs [129]. Hierarchical clustering of the 24 GEMs revealed additional insights into the biosynthetic

pathways of secondary metabolites, which successfully differentiated the metabolic clades
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can prevent cell death upon knockout of the target gene.

Among the target–replacer gene pairs predicted using

the PROPER method and an E. coli GEM from Model

SEED [93], the pdxB–thiG gene pair was experimentally

validated (Fig. 2f ). The pdxB gene is a conditionally es-

sential gene involved in the biosynthesis of pyridoxal 5′-

phosphate in E. coli, and served as a target gene in this

study. The thiG gene, a replacer gene in this study, en-

codes 1-deoxy-D-xylulose 5-phosphate:thiol sulfurtrans-

ferase, an enzyme in the thiazole biosynthetic pathway,

which was shown to biosynthesize pyridoxal 5′-phos-

phate without involving the enzyme encoded by pdxB.

These two studies have demonstrated that a high-

quality GEM of a target organism allows the prediction

of new enzyme functions and enzyme promiscuity,

which is extremely useful because not all enzyme func-

tions are experimentally validated.

Pan-reactome analysis

Computational resources for high-throughput GEM

reconstruction are now allowing the metabolic analysis

of multiple organisms, including multiple strains of a

single species [141, 142] or multiple species of a single

genus [128, 129]. Analysis of a pan-reactome, an entire

set of reactions, of biologically related organisms using

GEMs provides a better understanding of the metabolic

traits and lifestyles of these organisms. This concept was

applied to study the metabolic traits of 410 Salmonella

strains, spanning 64 serovars, by reconstructing a GEM

for each strain [128]. The constructed pan-reactome re-

vealed that the metabolic differences among the strains

come from the accessory reactome, a set of reactions

that are present in only some strains. These reactions

were largely involved in alternative carbon metabolism

and in cell wall or membrane metabolism. In particular,

the strains could be distinguished on the basis of their

different catabolic capabilities by analyzing their growth

under various nutrient conditions in silico (Fig. 2g). Further

investigation of serovar-specific catabolic capabilities

helped to reveal the growth environments that are pre-

ferred by the Salmonella serovars and provided informa-

tion about their evolution. Automatic GEM reconstruction

tools have definitely contributed to pan-reactome analysis,

and will continue to be applied to various groups of bio-

logically related organisms of high scientific, industrial,

and/or medical importance.

Along the same lines, a pan-reactome analysis was con-

ducted to provide information on the metabolic features

of 24 Penicillium species that are well-known for the pro-

duction of secondary metabolites [129]. Analysis of the 24

reconstructed GEMs revealed that most of the reactions

involved in primary metabolism were conserved among

these species. Subsequent hierarchical clustering of the 24

GEMs showed that the biosynthetic pathways for

secondary metabolites were the most distinctive pathways

in differentiating the metabolic clades, and that these

pathways contributed to the genomic diversity of the 24

Penicillium species (Fig. 2h). Comparison of the metabolic

clades with the phylogenetically classified clades, which

were based on entire protein sequences for each species,

demonstrated that stratifying species solely by using the

phylogenetic tree could not fully explain the metabolic dif-

ferences among the species. These representative studies

demonstrate that the use of GEMs can bring about add-

itional biological insights into a group of biologically re-

lated organisms. In the near future, an automated GEM

refinement procedure using experimental data will much

improve the quality of pan-reactome analysis, which at

present is mainly conducted using draft GEMs.

Modeling interactions among multiple cells or organisms

The modeling of metabolic interactions among multiple

cells or organisms is also an important application of

GEMs. This approach has been used for various studies of

intermicrobial interactions, including the cross-feeding of

microorganisms (or the exchange of metabolites between

microorganisms) [92, 143, 144] and the evolutionary trajec-

tory of microbial communities [145]. A recent study using

GEMs has revealed that the secretion of costless metabo-

lites contributes to the better growth of other interacting

microorganisms, and ultimately to a greater taxonomic di-

versity in nature (e.g., in a nutrient-poor environment)

[144]. Costless metabolites were defined as those that do

not negatively affect the producing organism’s fitness cost

(i.e., growth rate) upon secretion [144]. The pairwise

growth of the 24 microbial species examined in this study

was simulated under various environmental conditions,

involving different carbon sources and varying availability

of oxygen, in order to examine the effects of the paired mi-

croorganisms’ cross-feeding on their growth (Fig. 3a). The

number of media that allowed the growth of at least one of

the two microorganisms substantially increased if the ex-

change of costless metabolites between the microorganisms

was allowed in the simulation. Interestingly, more frequent

bidirectional exchanges between the two microorganisms

and a greater number of costless metabolites were ob-

served under anaerobic conditions than under aerobic con-

ditions. These carefully designed in silico simulations using

GEMs allowed the identification of new biological insights

into intermicrobial interactions at a scale that would be dif-

ficult to replicate experimentally.

In a study involving type 2 diabetes patients treated

with the drug metformin [146] (Fig. 3b), the metabolism

of four representative gut microbiota species, Escherichia

sp., Akkermansia muciniphila, Subdoligranulum varia-

bile, and Intestinibacter bartlettii, was examined using

their respective GEMs. The GEMs were obtained from

the AGORA models. Upon metformin treatment,
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Escherichia sp., A. muciniphila, and S. variabile are

known to be enriched in the gut, while I. bartlettii is re-

ported to decrease. In the simulation studies, contribut-

ing or competing bacteria were predicted through

simulation of the GEMs for short-chain fatty acids (e.g.,

acetic and butyric acids), amino acids, and gases (e.g.,

H2, H2S, and CH3SH), all of which play important roles

in both intermicrobial metabolic interactions and the

regulation of human metabolism. For example, Escheri-

chia sp. and S. variabile were predicted to contribute to

the production of short-chain fatty acids under aerobic

and anaerobic conditions. In addition, Escherichia sp.

was shown to be least affected by the availability of

intestinal nutrients. Covering a greater range of microor-

ganisms and the metabolites exchanged among them will

add more scientific value to GEM-based studies of a

specific microbiota.

In this regard, another recent study also deserves

attention. Kumar et al. [147] examined the production of

metabolites by gut microbiota in children with malnutri-

tion using GEMs for 58 representative gut microbiota

species (Fig. 3c) [147]. The GEMs for 58 representative

gut microbiota species were reconstructed using Model

SEED and then used to examine metabolic differences

(i.e., common and unique reactions) among these micro-

organisms. Community metabolic models (CMMs) were

also reconstructed by integrating the GEMs of individual

microbiota species according to the composition of the

gut microbiota; each CMM represents the entire gut

microbiota species of each child. Simulation of the

CMMs revealed that the production of essential amino

acids by the gut microbiota of the malnourished children

was decreased, which was consistent with the children’s

plasma metabolite profiles. The development of strat-

egies for treating abnormal health conditions on the

basis of findings from GEMs will be a major challenge

for the near future.

The metabolic interaction between a host and a patho-

gen is another important type of interspecies interaction

that can be studied using GEMs [151]. In one recent study,

the effects of pathogen infection on the host plant’s photo-

synthetic capacity were examined using GEMs [148]. A

generic GEM of the leaf of a potato plant (Solanum tubero-

sum) was first reconstructed, and three context-specific

GEMs were subsequently created by incorporating tran-

scriptome data from the cells of plants that were infected

with Phytophthora infestans, a plant pathogen that causes

late blight, at days 0, 1, and 2 after infection (Fig. 3d). The

three context-specific GEMs were subsequently used alone

to infer the metabolic interactions without using the patho-

gen’s GEM. Pathogen infection was predicted to affect Cal-

vin cycle fluxes, and thus carbon fixation. In particular, at

day 1 after infection, the carboxylase activity and oxygenase

activities of ribulose-1,5-bisphosphate carboxylase/oxygen-

ase (RuBisCO), the first enzyme committed to carbon fix-

ation in the Calvin cycle, were predicted to be decreased

and increased, respectively. Such changes are known to

reduce photosynthesis, and subsequently to induce the

production of ROS, which could be associated with a quick

defense mechanism against pathogen attack. Moreover, the

flux of glyceraldehyde 3-phosphate formation in the second

part of the Calvin cycle, as well as starch biosynthesis flux

(an indicator of plant health), was predicted to decrease

drastically from day 0 to day 1, but to recover slightly at

day 3. GEM-based studies of strategies to protect plants

against pathogens by examining fluxes of Calvin cycle and

other pathways, which indicate the health status of a plant,

will be of interest.

Modeling interactions among multiple cells or organisms,

especially microbiota, presents many technical challenges.

First, the microbial species that constitute a specific micro-

biota are not fully elucidated in most, if not all, cases. This

partly explains why the microbial communities covered by

the studies described above were simplified by considering

(See figure on previous page.)

Fig. 3 Applications of GEMs for interspecies metabolic interactions and understanding human diseases. a GEM-based simulation of the effects of

costless metabolites (i.e., metabolites that have no effects on the producing organism’s growth rate) secreted by at least one of two paired

microorganisms on their growth under anaerobic and aerobic conditions [144]. The number of growth-supporting environments was increased

as a result of cross-feeding. b Prediction of the metabolites (e.g., short-chain fatty acids [SCFAs]) required or produced by four representative gut

microbiota species, Escherichia sp., Akkermansia muciniphila, Subdoligranulum variabile, and Intestinibacter bartlettii, which are known to be affected

by the type 2 diabetes (T2D) drug metformin [146]. c Prediction of the metabolites produced by gut microbiota species from malnourished

children using community GEMs that describe the metabolism of multiple gut microbiota species [147]. The prediction results were consistent

with the children’s plasma metabolite profiles. d Prediction of the suppressed photosynthesis of a potato plant (Solanum tuberosum) upon infection by

the plant pathogen Phytophthora infestans, which triggers the plant’s defense responses against pathogen attack through oxygenation of ribulose1,5-

bisphosphate (RuBP) and subsequently increases in the intracellular levels of reactive oxygen species (ROS) [148]. Formation of glyceraldehyde-3-

phosphate (GAP) and starch were also decreased as a result of the infection. e Identification of metabolic differences between liver cancer stem cells

(LCSCs) and non-LCSCs, and of the transcription factors responsible for the metabolic changes, by using GEMs integrated with transcriptome data

[149]. f Characterization of the reprogrammed metabolism of the endothelium cells of sepsis patients using a human endothelium GEM, iEC2812 [150].

Context-specific GEMs were created using transcriptome and metabolome data obtained from human umbilical vein endothelial cells (HUVECs)

treated with lipopolysaccharide (LPS) and/or interferon-γ (IFN-γ). Simulation of the context-specific GEMs indicated that increased glycan and fatty acid

metabolism led to increased glycocalyx shedding and endothelial permeability where there was endothelial inflammation. HPAEC human pulmonary

artery endothelial cell, HMVEC human microvascular endothelial cell
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only representative microbial species. Thus, the use of

GEMs will become more powerful when it becomes

possible to identify all (or at least most) microbial species in

a given community. For example, key microorganisms or

metabolites in a specific microbiota can be suggested more

systematically by examining metabolic interactions among

more varied combinations of microorganisms from the

microbiota. Here various modeling and simulation algo-

rithms beyond FBA can be developed, depending on the

objective of study and the scale of the metabolic modeling

to be examined. Second, it is extremely difficult to measure

metabolites that are exchanged by microbial species in vivo.

Metabolome analyses using food, stool, and/or serum have

been the most frequently practiced approaches for charac-

terizing the metabolism of microbiota species, but still have

limitations in revealing metabolite exchange by microbial

species in vivo. This issue has led to active discussions on

the need to identify and apply accurate condition-specific

constraints for the GEMs of gut microbiota species and to

conduct community-level manual curation of the GEM of

each gut microbiota species [152, 153]. Finally, it is very im-

portant to inform experimental microbiologists of how the

GEMs of microbiota are reconstructed, how omics data are

used to improve the GEMs, and what the GEMs of micro-

biota species can be used for. Taken together, the develop-

ment of experimental and computational techniques for

the accurate measurement of metabolites in vivo and

proper communication with experimental microbiologists

will allow better understanding of microbe–microbe and

host–microbe interactions. This will be important because

the GEMs of microbiota species tend to present flux pre-

dictions that are often distinct from those of model organ-

isms [152, 153].

Understanding human diseases

Human diseases have also been studied using context-

specific GEMs to elucidate metabolic malfunctions in

cells that are under chronic or acute disease conditions,

and to suggest effective therapeutic targets. Cancers, in-

cluding cancers of the liver [140, 154–156], breast [157],

prostate [158], lung [159], and colon-rectum [160], have

been the most active target of context-specific GEMs.

Chronic diseases, including NAFLD [161] and obesity

[140], have also been examined using context-specific

GEMs. In a study by Hur et al. [149], the metabolism of

LCSCs that showed therapeutic resistance in hepatocel-

lular carcinoma was investigated in comparison with

non-LCSCs by building context-specific GEMs for both

cell types using their transcriptome data [149] (Fig. 3e).

Upon identifying reactions with fluxes that differed sig-

nificantly between LCSCs and non-LCSCs, transcription

factors that are known to be associated with those reac-

tions were traced. As a result, MYC, a transcription fac-

tor that is important in cell proliferation, among other

transcription factors, was found to be heavily involved in

the changed metabolism of the LCSCs. This prediction

was experimentally validated, providing insights into the

reprogrammed metabolism of LCSCs. This GEM-based

comparative analysis, along with the use of relevant

omics data, is also applicable to explaining the repro-

grammed metabolism of other types of cancer cells or

other abnormal cells that represent disease conditions.

Other studies have used GEMs to predict altered intra-

cellular metabolic flux distributions in acute diseases such

as sepsis [150] and viral infection [162]. In one study, the

reprogrammed metabolism of endothelium in sepsis pa-

tients was investigated (Fig. 3f) [150]. A human endothe-

lium GEM, iEC2812, was reconstructed and integrated

with transcriptome data to represent the metabolism of

three endothelial subtypes: human pulmonary artery endo-

thelial cell (HPAEC), human umbilical vein endothelial cell

(HUVEC), and human microvascular endothelial cell

(HMVEC). The network structures of the three context-

specific GEMs were compared with one another in order

to identify metabolic differences among the three endothe-

lial subtypes, which occurred mainly in nucleotide metab-

olism. Furthermore, context-specific GEMs for HUVECs

were reconstructed using transcriptome and metabolome

data, which were obtained from lipopolysaccharide (LPS)

and/or interferon-γ (IFN-γ)-treated HUVECs. The treat-

ment of endothelial cells with LPS and IFN-γ triggers a cel-

lular status similar to those seen under bacterial infection

and during an immune response, respectively. These

context-specific GEMs for the LPS- and IFN-γ-treated

HUVECs predicted elevated fluxes through glycan and

fatty acid metabolism, which were found to increase

glycocalyx shedding and endothelial permeability in the

sepsis patients.

Human diseases are associated with highly complex

cues and cascading of signals, and thus, the use of

GEM-based simulations alone can provide only limited

insights into disease. In the future, a number of import-

ant studies need to be performed to provide a better un-

derstanding of human diseases and to help in designing

proper therapies. First, in addition to a metabolic net-

work, regulatory and/or signaling networks should also

be considered to allow a more accurate computational

description of a diseased cell. These different types of

biological network are connected with one another in a

highly complex manner. Thus, it will ultimately be

necessary to integrate metabolic, gene regulatory, and

signaling networks in modeling and simulation. This will

require an innovative computational framework that al-

lows simultaneous simulation of material flow (metabolic

network) and information flow (gene regulatory and sig-

naling networks). Second, it is increasingly recognized that

a number of human diseases are significantly affected by

patients’ lifestyles. Thus, it will be necessary to develop
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strategies to integrate human GEMs with a framework of

precision medicine that involves not only patient-specific

omics data but also personal lifestyle data, such as dietary

habits and patterns of various physical activities.

Conclusions

Having been established as one of the major modeling

approaches for metabolic studies at systems level, the

reconstruction and simulation of GEMs continue to be

explored for an increasingly wider range of organisms and

applications. Advances in the reconstruction and use of

GEMs are largely attributed to the greater availability of

biological data and information, and to the establishment

of automatic GEM reconstruction tools. GEMs will con-

tinue to evolve by embracing a greater coverage of GPR

associations, reconciling model inconsistencies, and devel-

oping novel mathematical modeling techniques that can

be used in a high-throughput manner. GEMs will become

more powerful by incorporating additional biochemical

information that will provide explanations of cellular pro-

cesses beyond metabolism [163]. Additional information

that has been incorporated into GEMs successfully in-

cludes protein allocation [164–167], cellular macromol-

ecular composition [168, 169], and protein structural

information [21, 170–172]. Nevertheless, various bio-

chemical properties, such as enzyme–substrate interac-

tions, the structure of protein–protein complexes, and

post-translational modification, still need to be considered

further. It is expected that GEMs will find increasing

applications in studying interactions among a greater

number of cell types. These will include, for example, in-

teractions among microorganisms in a given microbiota

under spatiotemporally varying conditions, metabolic

interactions between human (or animal or plant) cells and

microbiota, and interactions among multiple human cells,

to name a few. Although technical challenges remain to

be overcome, GEMs will be applied to study an expanding

and increasingly complex range of problems.

Additional files

Additional file 1: Figure S1. A phylogenetic tree at the species level of

all of the GEMs reconstructed to date. (PDF 9989 kb)

Additional file 2: Table S1. A full list of organisms subjected to the

GEM reconstruction and used in the preparation of phylogenetic trees in

Fig. 1 and Additional file 1. (XLSX 305 kb)
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