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ABSTRACT

After decades of research and development, the WSR-88D (NEXRAD) network in the United States was upgraded with

dual-polarization capability, providing polarimetric radar data (PRD) that have the potential to improve weather observations,

quantification, forecasting, and warnings. The weather radar networks in China and other countries are also being upgraded

with dual-polarization capability. Now, with radar polarimetry technology having matured, and PRD available both nationally

and globally, it is important to understand the current status and future challenges and opportunities. The potential impact of

PRD has been limited by their oftentimes subjective and empirical use. More importantly, the community has not begun to

regularly derive from PRD the state parameters, such as water mixing ratios and number concentrations, used in numerical

weather prediction (NWP) models.

In this review, we summarize the current status of weather radar polarimetry, discuss the issues and limitations of PRD

usage, and explore potential approaches to more efficiently use PRD for quantitative precipitation estimation and forecasting

based on statistical retrieval with physical constraints where prior information is used and observation error is included. This

approach aligns the observation-based retrievals favored by the radar meteorology community with the model-based analysis

of the NWP community. We also examine the challenges and opportunities of polarimetric phased array radar research and

development for future weather observation.
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1. Introduction and motivation

Radar is a very important tool in weather observations

and forecasts, and there is an increasing need for faster data

updates and more informative measurements to advance the

atmospheric sciences, as stated by Bluestein et al. (2014).

While faster data updates can be realized with phased ar-

ray radar (PAR) technology, multi-parameter weather mea-

surements can be made by radar polarimetry. Weather radar

polarimetry aims to obtain more detailed weather informa-

tion from radars with polarization diversity (Doviak and

Zrnić, 1993; Bringi and Chandrasekar, 2001; Zhang, 2016).

Through decades of research and development, radar po-

larimetry has matured and been implemented on the network

of Weather Surveillance Radars–1988 Doppler in the United

States (WSR-88D), also referred to as NEXRAD (Next Gen-

eration Radar) (Doviak et al., 2000). Doppler weather radars

in China and other countries have also been, or are be-

ing, upgraded with dual-polarization capability. Polarimetric

radar data (PRD) are now available nationally and globally.

The dual-polarization upgrade is an important and impera-

tive milestone in weather radar technology because the addi-

tional information it provides about the shape, composition,

and phase of hydrometeors is much needed for further under-

standing, quantifying, and predicting weather.

A single-polarization Doppler radar can only measure

the reflectivity factor (also called reflectivity: Z or ZH), ra-

dial velocity (vr), and spectrum width (σv or SW). The

Doppler measurements of vr and σv respectively represent

the mean and standard deviation (including shear) of the ra-

dial velocity of scatterers, i.e., the dynamic motion. Only the

reflectivity directly provides microphysics information, but

this one measurement is obviously insufficient to fully char-

acterize the complex cloud and precipitation microphysics.

For example, cloud microphysics is normally represented in

convective-scale numerical weather prediction (NWP) mod-

els not by the one observed parameter, Z, but by several to

over a dozen state variables used in microphysics parame-

terization schemes. These variables include the water mix-

ing ratios and number concentrations for the five or six hy-

drometeor species (cloud water, cloud ice, rain, snow, and

hail/graupel) used in many double-moment or multi-moment

schemes (e.g., Milbrandt and Yau, 2005a, b; Morrison et al.,

2005, 2009). There can be ten times more unknowns if spec-

trum bin microphysics is used (Khain et al., 2015).

Because reflectivity alone cannot fully characterize cloud

microphysics, efforts and attempts have been made to in-

crease the number of independent radar measurements to bet-

ter understand and characterize weather conditions through

frequency/wavelength and/or polarization diversities. For ex-

ample, the Global Precipitation Measurement core observa-

tory carries the space-borne Ku/Ka-band Dual-frequency Pre-

cipitation Radar (https://pmm.nasa.gov/GPM/flight-project/

DPR), which was advanced from the Tropical Rainfall Mea-

suring Mission single-frequency precipitation radar (Huff-

man et al., 2007). While a multi-frequency radar can pro-

vide more information, it is essentially multiple radars and

therefore expensive to build (Eccles and Atlas, 1973; Gos-

set and Sauvageot, 1992). The data from a multi-frequency

radar are also complicated to analyze. For ground-based re-

mote sensing, radar polarimetry is both cost-effective and ef-

ficient in providing more microphysical information (Seliga

and Bringi, 1976; Seliga et al., 1979; Zrnic and Aydin, 1992).

In addition to the single polarization radar measurements

of Z, vr, and σv, a polarimetric radar can produce: differential

reflectivity (ZDR)—the ratio of reflectivity between the hori-

zontally and vertically polarized waves; the co-polar correla-

tion coefficient (ρhv); the differential phase (ΦDP) and/or its

range derivative—specific differential phase (KDP); the linear

depolarization ratio (LDR); and the correlation coefficients

between co-polar and cross-polar signals (ρxh and ρxv). Radar

polarimetry is normally implemented in one of two modes:

(i) dual-polarization (simultaneous transmission and simulta-

neous reception: STSR) mode, or (ii) full-polarization (alter-

nate transmission and simultaneous reception: ATSR) mode.

For practical reasons, as stated in section 4 of Doviak et

al. (2000), most operational weather radars, including WSR-

88D, use the dual-polarization STSR mode and produce PRD

of Z, vr, σv, ZDR, ρhv, and ΦDP/KDP. Nevertheless, these

PRD contain information about hydrometeor size, shape, ori-

entation, and phase/composition, allowing for better charac-

terization of cloud and precipitation microphysics (e.g., Zr-

nic and Ryzhkov, 1999). PRD have enormous, but as yet not

fully tapped, potential to improve severe weather detection

and warnings, as well as quantitative precipitation estimation

(QPE) and forecasting (QPF).

Currently, we use PRD in severe weather observation

and detection, hydrometeor classification, winter precipita-

tion applications, and QPE. In observational studies, certain

polarimetric radar signatures, such as the ZDR arc, ρhv ring,

and KDP foot are identified and connected to certain micro-

physical processes (Kumjian and Ryzhkov, 2008; Romine et

al., 2008). In hydrometeor classification (HC), a set of PRD

is used in a fuzzy logic classification algorithm whereby the

membership function of a radar variable for a species is estab-

lished based on experience, and then the membership values

are combined to make a decision as to which class the set

of PRD represents (Vivekanandan et al., 1999; Straka et al.,

2000; Park et al., 2009; Chandrasekar et al., 2013; Dolan et

al., 2013). The classification results are used to detect severe

weather and to select radar estimators to improve QPE (Gi-

angrande and Ryzhkov, 2008). These uses of PRD in severe

weather observations and detection have utility in the weather

forecasting community. For example, the Warning Deci-

sion Training Division of the U.S. National Weather Service

(NWS) offers a Radar and Applications Course as the initial

training on the use of the WSR-88D for severe weather op-

erations (http://training.weather.gov/wdtd/courses/rac/). The

application of PRD is a fundamental part of the course due

to the recent upgrade of the WSR-88D network to dual-

polarization. The course includes training on the following

topics: base PRD, HC, the melting layer algorithm, QPE

rainfall products, severe hail detection, supercell morphol-

ogy, and the tornado debris signature (TDS), as well as winter
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weather applications.

The use of PRD can provide vital real-time information to

forecasters, thus helping to improve severe weather detection

and warnings, but many of the methods are oftentimes sub-

jective and empirical, and have limitations in realizing the full

potential of PRD. In QPE, deterministic power-law relations

are used for rain estimation from PRD (Zhang et al., 2016;

Chen et al., 2017), which may not be optimal. Also, uncer-

tainties of radar-derived products have not been accurately

quantified and provided together with the products. More im-

portantly, the community has not begun to regularly derive

from PRD the state parameters used in convective-scale high-

resolution NWP models, such as water mixing ratios and

number concentration. The question is: How should we effi-

ciently utilize PRD to improve severe weather detection, avi-

ation weather services, QPE, and QPF?

Ideally, PRD should be used to determine cloud and pre-

cipitation physics state variables and to improve microphys-

ical parameterization in NWP models, which in turn are ex-

pected to improve the accuracy of weather quantification and

to shorten the spin-up time of the NWP model forecast. Un-

fortunately, this cannot be done easily for several reasons: (i)

the number of independent pieces of information from PRD is

limited and is usually less than the number of state variables

that are used in NWP models in the case of multi-moment

and/or multi-species microphysics, resulting in underdeter-

mined problems; (ii) relationships between state variables

and polarimetric radar variables are not linear, and some-

times they are not entirely known, especially for ice-phase

and mixed-phase species; (iii) there are errors in radar mea-

surements of PRD and in the forward operators that connect

model state variables to the radar variables; (iv) there are

large errors and uncertainty in convective-scale NWP model

physics and parameterization when NWP model constraints

are used in retrieval through data assimilation (DA), and these

prevent the PRD from substantially contributing to the model

initialization and prediction; and (v) there is a disconnect be-

tween the radar meteorology and NWP communities in their

use of PRD.

Although it is difficult and challenging, the efficient use

of PRD and advancing radar technology for severe weather

detection and warnings, QPE, and QPF, are still the main

goals, which is the motivation behind the writing of this arti-

cle. Specifically, we discuss and explore the following issues:

• The limitations of current PRD usage;

• The gaps between the radar meteorology/hydrology

and NWP communities;

• The difficulty in assimilating PRD into NWP models;

• The development status of new radar technology and

PAR polarimetry, to meet future needs.

Only once these shortcomings are realized and these chal-

lenges tackled can the optimal usage of PRD and efficient ad-

vancement of radar technology be achieved. The rest of this

paper is organized as follows:

Section 2 shows examples of PRD and PRD usages/

products from WSR-88D. The issues and limitations of cur-

rent PRD usage and the gaps between the radar meteorology

and the NWP communities are discussed in section 3. Section

4 suggests a unified statistical approach to using PRD. An ex-

ample of an NWP model-based analysis of PRD is shown in

section 5. Section 6 discusses the status and challenges of

research and development of polarimetric PAR technology.

The paper concludes with a summary in section 7.

2. Current status of PRD usage

After the dual-polarization upgrade completed in 2013,

archived PRD from WSR-88D became available at NOAA’s

National Centers for Environmental Information (https://

www.ncdc.noaa.gov/nexradinv/index.jsp) in level II and level

III format, which is summarized in Fig. 1. Level II data (left

column) are base data estimated from pulsed radar signals,

from which level III data/products are derived. The dashed

boxes are the single polarization radar data and their derived

products, and the solid boxes are for dual-polarization data

and PRD-derived products. Compared with that over a dozen

of single polarization products (middle column), the PRD-

derived products (right) are still very limited—only three, in-

dicating future challenges exist and opportunities are to be

explored. In this section, we discuss the current usage of PRD

for weather observation, HC, and QPE.

2.1. PRD for weather observation and forecasting

As shown in the left column of Fig. 1, WSR-88D level

II data contain six variables, consisting of three existing

single-polarization variables (Z, vr, σv) and three added dual-

polarization variables (ZDR, ρhv, and ΦDP), which contain a

wealth of information about cloud and precipitation micro-

physics.

Each dual-polarization variable has specific proper-

ties/characteristics with regard to different weather or non-

weather radar echoes, and, together with Z, they reveal the

microphysical properties of clouds and precipitation. ZDR is

a measure of the reflectivity weighted shape of the scatter-

ers and tends to increase for more oblate scatterers (within

the Rayleigh regime). ρhv represents the similarity between

the horizontal and vertical polarization signals, and it is re-

duced when there is increased randomness and diversity be-

tween the horizontally and vertically polarized backscattered

waves, especially for non-Rayleigh scattering. Finally, ΦDP

is the difference in phase shift between horizontally and ver-

tically polarized waves, including both differential scattering

phase (δ) and differential propagation phase (φDP). φDP in-

creases rapidly for heavy rain because the horizontally po-

larized wave propagates slower than the vertically polarized

wave, as its polarization is in the direction of the larger di-

mension of oblate particles.

When used in conjunction with ground-based observa-

tions and storm reports (when available), their understand-

ing of the storm morphology, and the near-storm environ-

ment (i.e., mesoanalysis), meteorologists who serve as warn-

ing forecasters at the U.S. NWS use radar data to make warn-

ing decisions on whether a thunderstorm is capable of pro-
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Fig. 1. WSR-88D data and their derived products after the dual-polarization upgrade. The data

and products in the dashed boxes are for single polarization.

ducing severe weather (� 26 m s−1 winds and/or � 2.54 cm

hail) and/or a tornado. If a forecaster has enough confidence

for severe weather and/or a tornado, the forecaster can is-

sue a severe thunderstorm warning or tornado warning with

the potential hazards (i.e., estimated maximum hail size, es-

timated maximum wind speed, and tornado damage threat).

The addition of PRD gives forecasters additional informa-

tion on the storm morphology, which can assist in warning

decision-making.

An example from a warm-season event is used to demon-

strate the PRD and its utility in weather observations and

warnings. Figure 2 shows the plan position indicator (PPI)

images of these data at an elevation of 1.3◦ for a tornadic

supercell event observed by the S-band polarimetric WSR-

88D (KFDR) radar in southwest Oklahoma at 2243 UTC 16

May 2015. Six PPI images represent the polarimetric Doppler

weather radar measurements of Z (Fig. 2a), vr (Fig. 2b), and

σv (Fig. 2c), as well as the added dual-polarization measure-

ments of ZDR (Fig. 2d), ρhv (Fig. 2e), and ΦDP (Fig. 2f). The

red polygon is a tornado warning that was issued by NWS

Norman, Oklahoma, Weather Forecast Office (WFO).

The storm is a classic supercell with a hook echo. At the

tip of the hook (on the southwest flank of the storm), a meso-

cyclone is sampled by the radar, as indicated by a cyclonic

velocity couplet. On the forward flank of the supercell, along

with the reflectivity gradient on the southern edge, there is an

increase in ZDR. This feature is known as a ZDR arc, which

occurs due to size-sorting in a supercell that occurs because

of vertical wind shear (Kumjian and Ryzhkov, 2008). North-

west of the ZDR arc, ΦDP increases markedly with range. This

is due to very heavy rainfall in the forward flank downdraft

(FFD) of the supercell. Immediately to the west-northwest

of the hook, there is a reduction in ZDR and ρhv within an

area of high reflectivity. These measurements are likely due

to the presence of hail mixing with rain. The final signature

to note is a local minimum in the ρhv and ZDR at the center

of the velocity couplet, which is coincident with reflectivity

> 40 dBZ. The low ρhv and ZDR indicates the presence of

non-meteorological targets. This signature, known as a TDS,

exists due to debris being lofted by a tornado (Ryzhkov et

al., 2005; Kumjian and Ryzhkov, 2008; Kumjian, 2013; Van

Den Broeke and Jauernic, 2014). In this event, the presence

of a TDS resulted in the NWS Norman WFO issuing a severe

weather statement (i.e., updated tornado warning) where the

hazard in the warning became “damaging tornado” and the

source for the warning became “radar confirmed tornado.”

In this example, the PRD had an important role in warning

decision-making by providing information that heightened

the wording of the warning statement.

Though the previous example is a warm-season event,

PRD have applications in the cold season too (Zhang et al.,

2011; Andrić et al., 2013), including melting-layer detection

and precipitation type transition zones (Brandes and Ikeda,

2004; Giangrande et al., 2008; Bukovčić et al., 2017), and in

the study of ice microphysical processes (Griffin et al., 2018).

Polarimetric radars have also been successfully used in the

study of tropical meteorology (Rauber et al., 2007; May et

al., 2008; Brown et al., 2016; Didlake and Kumjian, 2017).

2.2. PRD products

2.2.1. HC

While it is informative to look at the individual polari-

metric variable images, it is more scientific, rigorous, and ef-

ficient to systematically and automatically use the PRD for

accurate weather measurements and forecasting (Straka and

Zrnić, 1993; Straka, 1996). The first such use was in hydrom-

eteor (or echo) classification based on a fuzzy logic algorithm

(Vivekanandan et al., 1999; Liu and Chandrasekar, 2000).

An updated version of the HC algorithm (HCA) described
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Fig. 2. Polarimetric variables at the S-band radar KFDR for a supercell observed in southwest Oklahoma, USA, at 2243

UTC 16 May 2015: (a) reflectivity (Z); (b) radial velocity (vr); (c) spectrum width (σv); (d) differential reflectivity

(ZDR); (e) copolar correlation coefficient (ρhv); and (f) differential phase (ΦDP). The radar (not shown) is located south-

east of the supercell. The white lines are county or state borders, and the orange and brown lines are roadways. Plotted

using GR2Analyst software.

by Park et al. (2009) is implemented on the WSR-88D. Its

input parameters are Z, ZDR, ρhv, the logarithm of KDP, the

standard deviation of Z, and the standard deviation of ΦDP.

Its output is ten classes of radar returns (light/moderate rain,

heavy rain, rain/hail mix, big drops, dry snow, wet snow,

crystals, graupel, biological, and ground clutter) plus “no

echo” and “unknown”, and the elevation-based HC is avail-

able as one of the WSR-88D level III products. A hybrid

version of the HC product (called HHC), derived from the

elevation-based HC, is created for the dual polarization QPE.

Recent modifications to the HCA include a hail size discrim-

ination for the rain/hail mix category (Ryzhkov et al., 2013a,

b; Ortega et al., 2016): large hail (at least 2.54 cm in diameter

but less than 5.08 cm) and giant hail (greater than or equal to

5.08 cm). Using the graupel classification from the HCA as

a primary input, the WSR-88D algorithm suite now also in-

cludes an icing hazard level product that is used by the Fed-

eral Aviation Administration to detect regions of icing aloft.

Figure 3a shows the HCA output from the KFDR radar

for the event depicted in Fig. 2. Although it is not easy to

verify the HCA output by comparisons with in-situ measure-

ments, the results of the classification in Fig. 3a fit the ac-

cepted microphysical understanding of a severe super-cell

storm. As expected, the area of high reflectivity with reduced

ZDR and ρhv is classified as rain and hail (HA: red). Heavy

rain (HR: dark green) is identified in the FFD region, consis-
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Fig. 3. (a) Hydrometeor classification product generated from the NSSL hydrometeor classification algorithm at 2243

UTC 16 May 2015, and (b) dual-polarization radar estimated hourly rainfall accumulation. The radar is located south-

east of the supercell (not shown). The white lines are county or state borders, and the orange and brown lines are

roadways. These were plotted using GRLvel3 software. The echo class notations are: biological scatterers (BI); ground

clutter (GC); ice crystals (IC); dry snow (DS); wet snow (WS); light/moderate rain (RA); heavy rain (HR); big drops

(BD); graupel (GR); and rain and hail (HA). Purple areas represent unknown classification.

tent with the rapid increase in ΦDP noted in the previous sub-

section. Light and moderate rain (RA: light green) are iden-

tified at the southwest edge of the storm. The leading side

of the storm is classified as big drops (BD: brown), which

is reasonable due to size sorting. It is also reasonable to see

biological scatterers (BI: light gray) identified ahead of the

storm near the radar where insects normally appear.

However, a couple of issues presently exist and are being

addressed. The melting layer with high reflectivity has often

been misclassified as graupel and big drops. A recent ver-

sion of HCA classifies more hydrometeors within the melting

layer as wet snow. Also, the current melting layer detection

algorithm (MLDA) does not perform well with cool-season

precipitation where the melting layer is close to the ground

and where there are mixed-phase hydrometeors. An improved

MLDA that allows for microphysically based variations in the

heights of the top and bottom of the melting layer is under de-

velopment (Reeves, 2016). It uses several inputs from a rapid

refresh forecast model. A recent advancement in HCA with

PRD is to use an objective approach to derive statistical rela-

tions based on cluster analysis (Wen et al., 2015, 2016).

2.2.2. QPE

Whereas HCA is very successful in systematically utiliz-

ing PRD for revealing cloud and precipitation microphysics,

it is qualitative and empirical rather than quantitative. One

of the main motivations to develop weather radar polarimetry

was to improve QPE with polarimetric measurements, such

as ZDR (Seliga and Bringi, 1976; Seliga et al., 1979; Ul-

brich and Atlas, 1984) and KDP (Sachidananda and Zrnić,

1987; Ryzhkov and Zrnić, 1996), because polarimetric mea-

surements depend on the shape of hydrometeors, and rain-

drop shape is monotonically related to the drop size. Hence,

radar rain estimators with different combinations of Z, ZDR,

and KDP were developed using simulated or measured rain

drop size distributions (DSDs) and electromagnetic scattering

models (Jameson, 1991; Vivekanandan et al., 1991; Ryzhkov

and Zrnić, 1995). The improvement of QPE with PRD has

been demonstrated with real data in a subtropical environ-

ment (Brandes et al., 2002), in the Southern Great Plains re-

gion (Giangrande and Ryzhkov, 2008), and in a tropical re-

gion (May et al., 1999; Chang et al., 2009), as well as in

Europe (Figueras i Ventura and Tabary, 2013). It is generally

accepted that the estimation error decreases from 30% to 40%

uncertainty for a single polarization reflectivity to about 15%

error for polarimetric measurements (Brandes et al., 2002).

A synthetic polarimetric radar rain estimator that com-

bines different estimators based on HCA results was initially

adapted by the dual-polarization WSR-88D to produce level

III QPE products (Giangrande and Ryzhkov, 2008). The

dual-polarization QPE products are currently generated based

on the five primary rain estimators:

R(Z) = 0.017Z0.714, (Z = 300R1.4) ; (1)

R(KDP) = 44|KDP|
0.822sign(KDP) ; (2)

R(Z,Zdr) = 0.0142Z0.77Z−1.67
dr ; (3)

R(Z,Zdr) = 0.0067Z0.927Z−3.43
dr ; (4)

R(KDP) = 27|KDP|
0.822sign(KDP) . (5)

Here, sign(KDP) allows for negative KDP values and both Z

and Zdr are in linear units instead of logarithmic values for

Z/ZH and ZDR. The three rain estimators are used/chosen

based on HCA results. For example, if the echo is classified

as light to moderate rain, Eq. (3) or Eq. (4) of R(Z,Zdr) is

used to estimate the rain rate, depending whether an operator

chooses a “continental” or “stratiform/tropical” relationship,

respectively; if the echo is classified as heavy rain, Eq. (2) of

R(KDP) is used; if the echo is classified as hail–rain mixture,

Eq. (5) of R(KDP) is used to mitigate hail contamination. Most

classifications within and above the melting layer use Eq.

(1), usually with a multiplier of R(Z), such as 0.6×R(Z) for

wet snow. Figure 3b shows the dual-polarization radar-based

QPE result that has much less contamination from anoma-
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lous propagation clutter and biological scatterers. The dual-

polarization QPE, based on Z, Zdr, and KDP, provided im-

proved precipitation estimates over the previous single polar-

ization QPE in warm-season events where the freezing level

was high. However, it has relatively large random errors due

to its sensitivity to errors in Zdr, which are significant at times.

The dual-polarization QPE also suffers from discontinuities

and some biases near the melting layer. The R(KDP) estima-

tor can produce a negative rain rate, which is physically im-

possible, if KDP is estimated from ΦDP using a least-squares

fit, as is currently used for WSR-88D. A recent advancement

is to improve KDP estimation for better QPE by using a hy-

brid method of combining linear programming (also called

linear optimization) and physical constraints (Giangrande et

al., 2013, Huang et al., 2017), which yields the best match

with observed ΦDP while ensuring positive KDP estimates.

The latest developments also include the use of specific atten-

uation for rainfall estimation (Ryzhkov et al., 2014; Zhang et

al., 2017). There is also interest in using X-band polarimet-

ric radar networks to improve QPE and low-level coverage

(Chen et al., 2015).

3. Issues with current PRD usage

As discussed in the last section, it is informative and in-

tuitive to observe polarimetric radar signatures for detection

and warning of severe storms and aviation hazards, exciting

to see PRD HC results reveal cloud and precipitation micro-

physics, and satisfactory to improve QPE with PRD. PRD

can serve the community better and its potential can be bet-

ter realized if the issues and limitations of the current usage

of PRD are acknowledged and resolved. These issues are as

follows:

As noted in the introduction, the independent information

of PRD is still limited, and the relative errors of polarimet-

ric measurements can be large. The number of independent

pieces of information varies depending on the hydrometeor

species: ∼ 1 for drizzle or dry snow; 3–4 for melting snow or

hail. The relative error of ZDR and KDP can be 100% for light

rain due to the small intrinsic values. Furthermore, system

uncertainty and bias affect the accuracy of polarimetric mea-

surements (Zrnic et al., 2006). Even with a well-calibrated

radar system, the overall uncertainty of the bias/error has his-

torically been greater than the required tolerance (e.g., 0.1 dB

bias for ZDR), limiting the quantitative usage of PRD (Ice et

al., 2014).

Severe weather (such as hail and tornado)–related obser-

vation studies with PRD have been highly subjective and em-

pirical. It is difficult to automatically use and expand the sub-

jectively decided polarimetric signatures/knowledge for op-

erational usage in severe weather detection, prediction, and

warning. It would be beneficial to warning forecasters if there

are products that utilize PRD to better quantify potential haz-

ards, such as maximum hail size or tornado damage threat.

As shown in Fig. 1, there is no severe weather detection

product that has been generated in WSR-88D level-III PRD

products (with the exception of the hail size discriminator

in the latest HCA), compared with many reflectivity-derived,

velocity-derived products. This is because not all the weather

science has been fully understood, and rigorous relations be-

tween weather states and PRD have not been fully estab-

lished. Therefore, further research and development needs to

be done.

Classifications have been successful, but are still quali-

tative, and some severe weather conditions (e.g., TDS) are

not in the HCA output. Also, a dominant contributor to PRD

may not necessarily be the main contributor to microphysics

states/processes. For example, a hydrometeor class deter-

mined from PRD may not necessarily have the highest wa-

ter mixing ratio or evaporation rate if other classes exist in

the radar resolution volume. This is because radar measure-

ments are mainly determined by higher DSD moments (e.g.,

approximately 6th moment for reflectivity) dominated by a

few large particles rather than the large number of small drops

which have important effects on microphysical processes,

thermodynamics, and storm development.

Power-law-type polarimetric radar rain estimators [e.g.,

Eqs. (1)–(5)] may not be optimal, because it is difficult to use

prior information and measurement errors in rain estimation

once a power-law estimator is chosen. True relations (if they

exist at all) between rain rate and radar variables may not

necessarily be in power-law form. For example, if rain DSDs

are exponentially or gamma distributed, the analytically de-

rived R(Z,Zdr) is not in power-law form [see Zhang, 2016,

Eq. (6.26)]. The power-law form was used for simplicity be-

cause it becomes a linear function after taking the logarithm

of both sides; this makes for an easy fit to data. Even if the

functional form is acceptable, the least-squares fitting with a

constant weight for all data points is optimal only if the errors

are Gaussian-distributed in the logarithm domain. Otherwise,

least-squares fitting does not yield the minimal error. Further-

more, a minimal error in the logarithm domain does not nec-

essarily yield a minimal error in the linear domain for rain

estimation. Also, the HC-based QPE can cause discontinu-

ity in rain estimation because the chosen estimator switches

relations discretely according to subjectively determined con-

ditions, even though the underlying microphysical condition

has evolved only continuously. Furthermore, model errors,

measurement errors of the involved radar variables and rain

rate, and data sampling/collection issues are not considered

in the formulation and fitting procedure, yielding uncertainty

in QPE results.

Another issue—likely the most important—is the diffi-

culty involved in using the current PRD or PRD products

to improve NWP. The difficulty comes from: (i) the large

variety/uncertainty in storm-scale NWP models and model

parameterization (discussed further in section 5); and (ii) a

disconnect between model basic state variables (e.g., wa-

ter mixing ratio and number concentration) and polarimet-

ric variables. Efforts have been made to develop PRD sim-

ulators (i.e., forward operators) to connect model variables

with PRD variables through cloud/precipitation microphysics

rooted in drop/particle size distribution (DSD/PSD), N(D),
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and other physical and statistical properties such as shape,

orientation, and composition reflected in scattering matrix

elements, as in Doviak and Zrnić (1993, section 8.5.2.2),

Bringi and Chandrasekar (2001, section 3.10.1) and Zhang

(2016, section 4.2.6). Based on scattering calculations with

the T -matrix method (Waterman, 1965; Vivekanandan et al.,

1991), Jung et al. (2008a, 2010), Pfeifer et al. (2008), and

Ryzhkov et al. (2011) all developed different forward opera-

tors, and were able to simulate realistic PRD signatures from

NWP model output. The computer code in Fortran language

for PRD operators is posted on the University of Oklahoma

website (http://arps.ou.edu/downloadpyDualPol.html). There

is also a freely available Cloud Resolving Model Radar Simu-

lator (http://radarscience.weebly.com/radar-simulators.html)

developed by a group of scientists from Stony Brook

University and Brookhaven National Laboratory. Colorado

State University and NASA’s Goddard Space Flight Center

also developed the Polarimetric Radar Retrieval and Instru-

ment Simulator (https://cloud.gsfc.nasa.gov/POLARRIS/).

Still, efficient and accurate PRD operators, like the one in

Mahale et al. (2019) for rain, are still lacking and in need for

ice- and mixed-phase species to make PRD assimilation more

feasible and efficient.

The current status of using PRD is due to the PRD and

products thereof having been generated from radar engineer-

ing and meteorological points of view, with little influence

from the NWP community thus far. Rigorous retrieval meth-

ods developed from the information theory and NWP com-

munities have not been successfully adapted. Radar mete-

orology and NWP fields developed and evolved from their

communities independently from each other. Radar meteorol-

ogy was developed based on the theory/model of electromag-

netic wave scattering by hydrometeors, and by observing and

relating radar measurements for understanding and estimat-

ing weather with empirical relations. NWP, on the other hand,

is formulated from a set of physical, dynamic and thermo-

dynamic conservation equations. There has not been enough

connection between the two research areas. This disconnect

is reflected in the different variables commonly used to rep-

resent the weather state [e.g., the water mixing ratio (q) in

NWP models, but the rain rate (R) in radar meteorology], the

difference of unit usage between NWP state and radar vari-

ables, and the different values used to characterize PRD er-

rors for two different realities in the two communities. For

example, it is generally accepted by the radar meteorology

community that the measurement error for Z is about 1.0 dB,

which is usually ignored in direct observation retrieval; how-

ever, a 2.0–5.0 dB error is usually used in the NWP commu-

nity. The gaps between radar meteorology and NWP need to

be bridged, and the approaches adapted to use PRD need to

be aligned for optimal results.

4. A unified statistical approach

Since the purpose of both radar meteorology and NWP

is to understand and predict weather, one way to advance

the usage of PRD is to improve model parameterizations and

initialization for more accurate weather forecasts and warn-

ings. Considering that radar measurements contain errors,

weather states vary, observational information is not enough

and not uniformly available across the atmosphere, and phys-

ical constraints and prior information are needed to facilitate

retrieval, a statistical approach is warranted. In this frame-

work, both state variables and radar measurements are treated

as random variables, and both the prior background and ob-

servations are used.

As shown in Fig. 4, let xxx be the state vector and yyy the po-

larimetric radar variable vector; and they are related by the

Fig. 4. Sketch of the weather physics state variables of DSD [N(D)], axis ratio (γ), density (ρ), and orientation angles (θ, ϕ)

versus polarimetric radar measurables.
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forward operator as: yyy = H(xxx). An optimal retrieval involves

finding the state vector xxx that has the best match with a given

prior background, xxxb, and a set of observations, yyyo, while ac-

counting for their given uncertainties. This is equivalent to

minimizing the cost function J,

J = (xxx− xxxb)TBBB−1(xxx− xxxb)+ [yyyo−H(xxx)]TOOO−1[yyyo−H(xxx)] , (6)

where BBB and OOO represent the background error covariance

and observation error covariance, respectively, and H(. . .)

is a forward observation operator. This serves as the ba-

sis for variational (VAR) analysis and ensemble Kalman

filter (EnKF) analysis (Lorenc, 1986). The VAR approach

has been used in improving QPE and microphysics re-

trieval with PRD in Hogan (2007), Cao et al. (2010, 2013),

Yoshikawa et al. (2014), and Chang et al. (2016), in which the

background information is obtained from previous measure-

ments/knowledge. In EnKF analysis, the forward operator is

assumed to be linear, the flow-dependent covariance BBB is es-

timated from a limited number of ensemble forecasts, and the

analyzed state vector is solved from Eq. (6) iteratively, whose

application in data assimilation (DA) with PRD is presented

in section 5.

The procedure to derive Z–R relations is a special case

of the VAR approach, in which background information is

lacking [the first term in Eq. (6) is ignored], only the Z ob-

servations are used, and each data point is normally equally

weighted to fit with a power-law relation (Z = aRb) in the log-

arithm domain to determine the coefficients a and b. Hence,

the Z–R relation highly depends on data collection/selection,

filtering, and the weighting and fitting procedure used, which

is obviously not optimal because the data quality and weight-

ing issues cannot be taken into account in rain estimation

once a Z–R relation is chosen. Therefore, the statistical ap-

proach represented by Eq. (6) is more fundamental and com-

plete in formulating PRD-based retrieval, and has the poten-

tial to achieve optimal usage because the prior background

information can be used and measurement error effects are

included. Since it is already in use in the NWP community

for radar data assimilation, the statistical approach is one way

to align the radar meteorology/hydrology and NWP commu-

nities, and is applicable to both observation-based and DA-

based retrievals.

While the statistical retrieval approach has been formu-

lated and successfully used in the data assimilation commu-

nity (Rodgers, 2000; Kalnay, 2003), it has seen little success

in the optimal usage of PRD due to its complexity. The rea-

son for this is that there are many issues in optimally utilizing

PRD for improving QPE and QPF, as discussed in the previ-

ous section (section 3). Importantly, there are large uncer-

tainties in storm-scale NWP models and model microphysics

parameterization (further discussed in section 5). These large

errors in NWP that DA depends on as background informa-

tion [first term of Eq. (6)], and large uncertainty and nonlin-

earity in PRD operators prevent the substantial positive im-

pact of limited information from PRD [2nd term of Eq. (6)].

Considering all aforementioned issues, the vision for op-

timal utilization of PRD with different components is mod-

ified from Zhang (2016, Fig. 7.14) and shown in Fig. 5. As

sketched in the top row (red) of the figure, observation-based

studies and retrievals are normally conducted in radar me-

teorology, which deals with in-situ measurements and pro-

cessing, PRD observation, HC and precipitation estimation

through empirical relations, and PRD quality control (QC)

and error characterization to determine OOO. The direct and em-

pirical methods have been used in observation-based studies,

but the error covariance and prior information are usually ig-

Fig. 5. Sketch of the different components for optimal utilization of PRD and connections between

observation-based retrieval (red) that can be used in radar meteorology and DA-based retrieval (blue)

used in NWP. Acronyms/abbreviations are: polarimetric radar data (PRD); quality control (QC); mi-

crophysics (MP); electromagnetic (EM); forward observation operators (Fd obs. operators); variational

(VAR); Ensemble Kalman filter (EnKF); quantitative precipitation estimation (QPE); quantitative pre-

cipitation forecasting (QPF), numerical weather prediction (NWP); data assimilation (DA).
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nored in the retrieval. As shown in the bottom row (blue)

of Fig. 5, DA-based retrieval/analysis is used by the NWP

community. It involves selection and improvement of micro-

physical parameterization schemes and NWP models, as well

as estimation of BBB. The stochastic nature of microphysical

variables contributes significantly, which is ignored in most

current model parameterizations, and should be included in

future improvements (Finlon et al., 2016). As sketched in

the middle row (brown), the forward operators, which re-

sult from microphysics modeling and electromagnetic model-

ing, and statistical retrieval algorithms, are required for both

observation-based and DA-based retrievals. Each of the re-

trievals needs to have compatible microphysics models, such

as DSD/PSD models, and shape/density relations, electro-

magnetic modeling and calculations, etc., as well as statis-

tical retrieval algorithms that can handle measurement error

and background information and covariance, such as the one

presented earlier in this section. To achieve best possible re-

sults, all the components need to be accurately determined

and selected, and used in conjunction and cross-verified with

each other in the statistical retrieval algorithms as depicted in

the figure.

The statistical retrieval allows observation errors and

prior information to be characterized and included, and it

reduces to the direct retrieval when the observation errors

are zero and the prior information is absent. The optimal

usage of PRD is to find the balance between the measure-

ments used and the prior information obtained for a specific

application as well as errors in the measurements and infor-

mation used and characterized. Since observation errors are

included, the contribution from each measurement is auto-

matically weighted differently based on its relative informa-

tion compared with the error to produce optimal estimates, as

done in Mahale et al. (2019) for rain microphysics retrieval,

without having to empirically change one estimator to an-

other, as in Eqs. (1)–(5). To include flow-dependent back-

ground information in the retrieval, assimilating PRD into an

NWP model is needed, which is discussed next.

5. An example of DA analysis with PRD

It is accepted that one of the main uses of radar obser-

vations, including PRD, is the assimilation of these obser-

vations into a convective-scale NWP model. It was realized

that the assimilation of reflectivity data helps reduce the spin-

up problem (Sun and Crook, 1997, 1998; Hu et al., 2006;

Gao and Stensrud, 2012), and a variety of real case stud-

ies have shown these data help improve QPF (Jung et al.,

2012; Ge et al., 2013; Yussouf et al., 2013, 2015; Putnam et

al., 2014, 2017a; Wheatley et al., 2014; Snook et al., 2016).

However, many issues still exist because although reflectiv-

ity has proven to be useful, reflectivity alone is insufficient

to analyze all the state variables included in advanced multi-

moment microphysics schemes (e.g., hydrometeor mixing ra-

tios and number concentrations). PRD may help resolve these

issues with additional information about cloud microphysics

and physics processes (Vivekanandan et al., 1999; Zhang et

al., 2006; Ryzhkov et al., 2013a, b; Kumjian et al., 2014, Car-

lin et al., 2016).

Several studies have been conducted to initialize an NWP

model with PRD (Wu et al., 2000; Jung et al., 2008b; Li

and Mecikalski, 2010; Posselt et al., 2015, Li et al., 2017).

However, in those studies, polarimetric data were assimilated

indirectly (e.g. Wu et al., 2000; Li and Mecikalski, 2010),

assimilated directly but in the observing system simulation

experiment framework (Jung et al., 2008b), or using a single-

moment microphysics scheme, which is unable to simulate

size sorting (e.g., Posselt et al., 2015; Li et al., 2017). Re-

cently, there was a more advanced PRD assimilation of ZDR

in addition to Z and vr using an EnKF and a multi-moment

microphysics scheme for the 20 May 2013 Newcastle–Moore

tornadic supercell case, as shown in Fig. 6. The analysis

with differential reflectivity increased the low-level ZDR val-

ues with fewer, larger raindrops along the right forward flank

of the supercell adjacent to the updraft in the vicinity of

the observed ZDR arc polarimetric signatures (Kumjian and

Ryzhkov, 2008). The ZDR values are lower downshear in the

forward flank in the storm in the transition region between

and the supercell immediately to its north. Additionally, the

gradient of hail mean mass diameter was larger aloft and sim-

ilar to hail patterns studied in Dawson et al. (2014, see their

Fig. 17), which demonstrated the importance of size sorting

of rimed-ice in producing a low-level ZDR arc, further indi-

cating the positive impact of PRD assimilation.

There is some evidence that PRD also contains informa-

tion about storm dynamic and moisture information, which

can also be used to initialize NWP models (Snyder et al.,

2015; Carlin et al., 2017). Such studies indicate that ZDR

columns can be used to identify regions of positive temper-

ature perturbations from latent heat release due to condensa-

tion and/or freezing. Realizing this, Carlin et al. (2017) ex-

plored the impact of assimilating real PRD through a mod-

ified cloud analysis (Hu et al., 2006). Preliminary findings

suggested a marked improvement in analyzed updraft loca-

tion. Quantitative analysis of Equitable Threat Score for Z

also revealed improved performance when using the modi-

fied cloud analysis routine in several experiments with the

ZDR column than that of the control experiment without us-

ing the ZDR column. The study is also very preliminary.

Many challenges still remain for PRD assimilation. The

20 May study demonstrated how the number of predicted mo-

ments in model microphysics schemes affect microphysical

processes, where excessive size sorting known to occur with

double moment microphysics schemes (Dawson et al., 2010;

Morrison and Milbrandt, 2011; Dawson et al., 2015) had a

significant impact on the effectiveness of PRD data assimila-

tion. Also, the forward operators and microphysics schemes

must be improved, specifically in regard to the treatment of

frozen hydrometeors as well as mixed-phase hydrometeors,

which most microphysics schemes do not predict. Addition-

ally, the choice of model resolution has a significant impact

on the detailed polarimetric patterns and signatures that can

be resolved. The 20 May study used a 500-m grid spacing,
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Fig. 6. Comparison between polarimetric radar observation and DA analysis: (a) observed reflectivity and (b)

differential reflectivity from KTLX of the Newcastle–Moore tornadic supercell at 1938 UTC 20 May 2013,

with storm location noted in (a); (c) analyzed reflectivity and (d) differential reflectivity at 1940 UTC from an

EnKF experiment that assimilated only reflectivity and radial velocity (EXP Z + vr), as well as (e) analyzed

reflectivity and (f) differential reflectivity from an EnKF experiment that assimilated differential reflectivity in

addition to reflectivity and radial velocity (EXP Z+vr+ZDR). [Adapted from Putnam et al. (2019);©American

Meteorological Society; used with permission].

and continuing advances in computer power can allow for

even higher resolution experiments. PRD assimilation is still

in its infancy, but the additional microphysical information

provided can help to improve our understanding of current

model deficiencies, both through assimilation experiments

like those referenced here and direct simulation comparisons

similar to Johnson et al. (2016) and Putnam et al. (2017b).

6. Polarimetric PAR technology

While radar polarimetry allows for more microphysical

information measured, there is increasing need for faster data

updates. To timely detect and predict fast evolving weather

phenomena such as tornadoes and downbursts, it is desirable

to rapidly acquire volumetric radar data at intervals of one

minute or less, as opposed to the current five minutes with

WSR-88D. For this reason, rapid scan PAR with agile beam

scanning capability was recently introduced to the weather

community (Weber et al., 2007; Zrnic et al., 2007; Heinsel-

man and Torres, 2011). Simulation experiments demonstrate

assimilation of PAR observations at 1-min intervals over a

short 15-min period yields significantly better analyses and

ensemble forecasts than those produced using WSR-88D ob-

servations (Yussouf and Stensrud, 2010). Thus, there is the

potential to increase the tornado warning lead time beyond

the present 10 to 15 minutes.

Another motivation behind introducing PAR technology

is the MPAR (multifunction PAR) and SENSR (Spectrum

Efficient National Surveillance Radar) initiatives to use one

radar network to replace the four radar networks in the United

States of the (1) National Weather Surveillance Radar (WSR-

88D), (2) Terminal Doppler Weather Radar (TDWR) for de-

tecting low altitude wind shear; (3) Airport Surveillance

Radar (ASR) for air traffic control; and (4) Air Route Surveil-

lance Radar (ARSR) for long-range air surveillance (Stailey

and Hondl, 2016). Since all the radars share the same prin-

ciple in detecting electromagnetic wave scattering from tar-

geted media, it is efficient to use a single radar network to

service all the missions. To do so, PAR fast scanning capabil-

ity is needed. Because WSR-88D has dual-polarization capa-

bility, future PAR for weather observation needs to have po-

larimetry capability as well, i.e., polarimetric PAR (PPAR).

PPARs have been developed for satellite and military ap-

plications, but with limited scanning angles (Jordan et al.,

1995). For ground-based weather measurements, it is chal-

lenging to develop the PPAR technology because of the re-

quirements of wide angle scan and high accuracy for polari-

metric measurements (ZDR error < 0.2 dB, ρhv error < 0.01,

ϕDP error < 3◦). Nevertheless, the challenges and difficulties

have not curbed the enthusiasm and efforts of the commu-

nity to formulate PPAR theory and design and develop PPAR

systems for future weather observation and multi-missions

(Zhang et al., 2009).
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Several PPAR configurations and systems have been at-

tempted, including: (1) a planar PPAR (PPPAR) with one-

dimensional (1D) electronic scan capability antenna mounted

on a mechanically steerable platform, e.g., the Collaborative

Adaptive Sensing of the Atmosphere phase tilted radar (Hopf

et al., 2009); (2) a two-dimensional (2D) electronic scan PP-

PAR, like the National Severe Storms Laboratory (NSSL)

ten-panel demonstrator (shown in Fig. 7a); and (3) a cylindri-

cal PPAR (CPPAR) demonstrator (Fig. 7b) being developed

jointly by the University of Oklahoma (OU) and the NSSL

(Zhang et al., 2011, Karimkashi and Zhang, 2015, Fulton

et al., 2017). Each of these PPARs can cover the volume

more quickly than a mechanically steered beam due to beam

agility, versatility in beam shape, speed of changing point-

ing direction, and/or four radars operating simultaneously.

Fig. 7. Pictures of polarimetric PARs that are under develop-

ment: (a) NSSL 2D ten-panel planar PPAR (PPPAR) demon-

strator (TPD); and (b) OU-NSSL cylindrical PPAR (CPPAR).

Although a considerable amount of effort has been put

into developing PPPAR, no satisfactory polarimetric weather

measurements have appeared in the literature. Initial testing

results of CPPAR are promising, but still preliminary, as doc-

umented in a technical report by Byrd et al. (2017). A set

of CPPAR measurements compared to the WSR-88D KTLX

measurements are duplicated in Fig. 8. Since the CPPAR has

a lower power (< 2 kW) and smaller aperture (< 2 m in diam-

eter), the lower sensitivity is expected, yielding less data cov-

erage than KTLX. It is promising to see the similar features in

ZDR, and ZH appear in both with the CPPAR and the KTLX

measurements. However, ρhv is low and not up to expecta-

tions due to the antenna beam mismatch and other system in-

stability issues. The beam mismatch is being addressed by a

redesign of the frequency-scan dual-polarization column an-

tennas (Saeidi-Manesh et al., 2017). The CPPAR electronics

is also being redesigned and rebuilt to have a stable system so

that many CPPAR related issues such as commutating scan,

sector-to-sector isolation, surface wave effects, and accurate

weather measurements can be addressed/demonstrated.

Achieving comparable or better accuracy in the polari-

metric measurements than on the WSR-88D is challenging.

It is most difficult for the 2D PPPAR with multiple faces be-

cause the polarization basis for a planar array changes and be-

comes coupled for a pair of radiators and can cause bias/error

that is much larger than the maximum allowed error. The

1D PPPAR with a mechanical scan in azimuth is feasible

because of its relative simplicity in maintaining polarization

purity and azimuthal scan invariant beam characteristics, but

needs to be demonstrated. CPPAR is an alternative solution

for accurate polarimetric PAR measurements, which scans in

the azimuth by commutating its beam position to achieve the

high performance beam characteristics like the 1D PPPAR.

Further research and development are needed to realize this

potential.

7. Conclusions and discussion

This paper reviews the status of weather radar po-

larimetry, identifies the limitations and challenges of using

PRD, and proposes possible solutions and unification of ap-

proaches. Also discussed and explored are the challenges, re-

search and development for future weather observation using

PAR polarimetry technology. The main objective of this pa-

per is to raise these issues and generate consensus for finding

a path forward.

Collaborative efforts between the radar engineering/

meteorology/hydrology and NWP communities are neces-

sary to develop feasible new technology and to more effi-

ciently utilize the existing PRD to better monitor, quantify,

and forecast weather. Although radar data are becoming a

dominant factor and PRD are useful in short-term forecast-

ing and warning, PRD alone do not guarantee accurate short-

term forecasts. Other measurements such as satellite remote

sensing data and cellular communication signals (Overeem

et al., 2013) can be included to enhance the information con-
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Fig. 8. Comparison of polarimetric weather measurements between the CPPAR demonstrator located at the

pink circle and the WSR-88D KTLX radar at the red asterisk. The data were collected at 0413:47 UTC 10

September 2016 for CPPAR and 0413:50 UTC 10 September 2016 for KTLX. Data points with Z < 20 dBZ

were excluded. There are echoes in the KTLX data, but not in the CPPAR data, because CPPAR has a much

lower sensitivity due to its smaller antenna and lower transmitted power.

tent. On the other hand, NWP model microphysics parame-

terizations need to be improved so that the utilization of PRD

can make substantial contributions to improving the accu-

racy of weather forecasts. Direct comparisons between NWP-

simulated PRD and polarimetric radar measurements open

a feasible way to reveal model deficiencies and to improve

model physics and microphysics parameterizations. Assimi-

lation of PRD and data from other in-situ and remote sensors,

such as satellites, into high-resolution convective-scale NWP

models, together with judicious interpretation by meteorolo-

gists, is required to produce further improvements of QPE,

QPF, and severe weather warning lead time.
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