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Abstract

Glioma, which accounts for more than 30% of primary central nervous system tumours, is characterised by symptoms
such as headaches, epilepsy, and blurred vision. Glioblastoma multiforme is the most aggressive, malignant, and lethal
brain tumour in adults. Even with progressive combination treatment with surgery, radiotherapy, and chemotherapy,
the prognosis for glioma patients is still extremely poor. Compared with the poor outcome and slowly developing
technologies for surgery and radiotherapy, the application of targeted chemotherapy with a new mechanism has
become a research focus in this field.
Moreover, targeted therapy is promising for most solid tumours. The tumour-tropic ability of stem cells, including
neural stem cells and mesenchymal stem cells, provides an alternative therapeutic approach. Thus, mesenchymal
stem cell-based therapy is based on a tumour-selective capacity and has been thought to be an effective anti-tumour
option over the past decades. An increasing number of basic studies on mesenchymal stem cell-based therapy for
gliomas has yielded complex outcomes.
In this review, we summarise the biological characteristics of human mesenchymal stem cells, and the current status
and potential challenges of mesenchymal stem cell-based therapy in patients with malignant gliomas.
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Background
Gliomas are the most common aggressive primary cen-
tral nervous system tumours in adults [1], and they lead
to a severe economic burden all over the world [2, 3].
Currently, the standard therapy for malignant gliomas is
maximal safe surgical resection, postoperative radiother-
apy, and then concomitant and adjuvant chemotherapy
with temozolomide [4]. Due to the invasive growth fea-
tures of malignant gliomas, complete resection is rarely
achieved. Intra-operative fluorescence-guided technol-
ogy, such as 5-aminolevulinic acid (5-ALA), could in-
crease the resection proportion but does not improve
the overall survival of patients with malignant gliomas

[5]. Radiotherapy has been performed to treat patients
with intra-cranial tumours since the 1950s [6], but the
technology has been slow to develop, and one of the
hallmarks of this disease is radiotherapy-resistant glioma
stem cells (GSCs) [4]. Temozolomide is the most com-
mon and effective chemotherapy agent for patients with
malignant gliomas, but the results depend on the pro-
moter methylation status of O6-methylguanine methyl-
transferase (MGMT) [5]. However, the complex features
of malignant glioma contribute to a poor prognosis.
Glioblastoma (GBM), which has the worst prognosis,
only has a 14.6-month median survival rate [7]. In recent
years, with the increased understanding of the biological
features of gliomas, an increasing number of precise tar-
geted therapies have been generated.
Different types of stem and progenitor cells, including

neural stem cells (NSCs), mesenchymal stem cells
(MSCs), haematopoietic progenitor cells (HPCs), and
embryonic stem cells (ESCs), have been shown to have
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the capacity for tumour-tropic homing and migration
both in vitro and in vivo [8–11]. In tumour microenvi-
ronments, tumour cells and stromal cells can secrete
several factors, including transforming growth factor
(TGF)-β, stromal cell-derived factor-1α (SDF-1α), and
vascular endothelial growth factor (VEGF), to recruit
other cells into the tumour burden during tumour pro-
gression. Many reports have indicated that multipotent
MSCs could migrate into tumour microenvironments in
gliomas [12–14]. Based on the glioma tropism capacity,
many basic and preclinical studies have used MSCs as
cell vectors to deliver immune factors, anti-tumour pro-
teins, anti-tumour microRNAs (miRNAs) or long
non-coding RNAs (lncRNAs), suicide genes, and oncoly-
tic viruses.
In this current review, we summarise the biological

characteristics of human MSCs and present the principle
of MSC-based therapy. Then, we analyse the current sta-
tus and potential challenges in basic and preclinical
studies for MSC-based therapy in patients with gliomas.

Biological features of MSCs
Friendenstein et al. reported the existence of MSCs in
bone marrow in 1966 [15]. Subsequently, MSCs were
widely and gradually found in many tissues [16–19].
MSCs were then gradually recognised as adult multipotent
progenitor cells with the potential for self-renewal and dif-
ferentiation into mesodermal and non-mesodermal line-
ages [20–22], but there was no definition marker for
MSCs. In 2006, the International Society for Cellular
Therapy (ISCT) defined the minimal criteria for MSCs ac-
cording to their biological features: plastic adherent
growth, positive expression of CD105, CD73, and CD90,
negative expression of CD14, CD34, and CD45, and differ-
entiation towards osteoblasts, adipocytes, and chondro-
cytes in vitro [23]. MSCs showed similar plastic adherent
morphology from different sources [24], but they
expressed slightly different cell surface markers, such as
desmin, vascular endothelial (VE)-cadherin, α-smooth
muscle actin (α-SMA), nestin, and nerval/glial antigen
(NG2) (Table 1) [25]. MSCs from different sources could
differentiate into multiple cell lines, such as bone [26],
muscle [27], adipose [28], tendons [29], neurons [30], and

myocardium [31], under specific in-vivo and in-vitro con-
ditions. The differentiation pathway to a particular pheno-
type can be regulated by some gene events (Fig. 1).
The regulation of the biological features of MSCs is

complex and multi-layered. The microenvironment con-
ditions in different sources is thought to be the main
reason for the slight differences in biological characteris-
tics and genome patterns of MSCs. In vitro, TGF-β, bone
morphogenetic proteins, insulin, dexamethasone, and
other differentiation factors could induce MSCs into
multiple cell lines [32–35]. Several signalling pathways,
such as the TGF-β superfamily [36, 37], Hedgehog [38],
and Wnt signalling [39], regulate and control the bio-
logical characteristics of MSCs. Recently, some new
mechanisms, including miRNAs [40, 41] and lncRNAs
[42], were reported to regulate the biological features.
With a better understanding of MSCs, studies have
aimed to modulate the biological characteristics of MSCs
to treat several diseases, such as myocardial infarction,
nerve injury, and arthritis.

Tumour-specific tropism of MSCs
Recently, tumour-associated MSCs (TA-MSCs) have been
regarded as integral components involved in several hall-
marks of different tumours, such as initiation, promotion,
progression, and metastasis. Some of these TA-MSCs
already exist in many tissues, but some of them are re-
cruited into tumour microenvironments to take part in
the progression of tumours via the production of various
growth factors, chemokines, and cytokines and to
cross-talk with tumour cells [43, 44].
MSCs are rarely found in the brains of normal mice and

humans, and these MSCs with classical features are lo-
cated in a vascular niche [25, 43]. An increasing number
of studies have reported that MSCs could be recruited
into the tumour microenvironment of gliomas. For ex-
ample, SP-DiI-labelled human MSCs, but not fibroblasts,
were detected in U87 tumour masses after intra-vascular
or intra-cranial administration in vivo [45]. However,
the exact mechanism of the tumour-tropism of MSCs
in a glioma microenvironment has not yet been fully
elucidated. SDF-1α, VEGF, platelet-derived growth fac-
tor (PDGF), endothelial cell growth factor (EGF),

Table 1 Cell surface markers of mesenchymal stem cells (MSCs) from four different sources

MSC source Cell surface marker References

Bone marrow Positive: SH2, SH3, CD29, CD44, CD71, CD73, CD124, CD90, CD105, CD106, CD120a
Negative: CD34, CD45, CD19, CD3, HLA-DR, CD31, CD11b

[12, 19, 24]

Adipose tissue Positive: CD13, CD29, CD44, CD73, HLA-I, CD90, CD105, CD166, HLA-ABC,
Negative: CD10, CD14, CD24, CD31, HLA-DR, CD36, CD38, CD45, CD49d, CD117, CD133, CD34, CD106, HLAII, SSEA4

[24, 44, 56, 72]

Umbilical cord Positive: CK8, CK18, CK19, CD10, CD13, HLA-I, CD29, CD73, CD105, CD106, CD90, CD44, CD73
Negative: CD14, CD31, CD33, CD34, HLA-DR, CD45, CD38, CD79, CD133, VWF

[9, 16, 24]

Human glioma Positive: CD90, CD105, CD73, CD44, CD151, α-SMA, desmin, VE-cadherin, NG2, STRO-1, HLA-I
Negative: CD31, CD34, CD133, CD45, HLA-DR, CD14, CD19, Nestin, SMM

[25, 85–87]
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TGF-β1, interleukin (IL)-8, and monocyte chemo-
attractant protein-1 (MCP-1) have been found to be se-
creted by glioma cells or stromal cells and to contribute
to tumour-tropism of MSCs [12–14].
Based on their tumour-tropism and facile ability to

cross the blood-brain barrier, MSCs have been utilised
as carrying vectors for glioma therapy.

MSC-based therapy for gliomas
MSC-based therapy for gliomas is a promising novel ap-
proach to transport different genes, proteins, and viruses.
Various therapy approaches could suppress the growth of
gliomas through different mechanisms, such as immuno-
therapy, suicide protein therapy, virus-based therapy, cyto-
toxic factor-based therapy, and anti-angiogenesis therapy,
which are discussed more in the following sections.

Immunotherapy
Over the past decade, the ability of tumours to evade the
immune system has always been a significant research dir-
ection for the rapid development of tumour immunother-
apy. Malignant gliomas could escape the host immune
system by secretion of immunosuppressive agents, inhib-
ition of T-cell proliferation, and reduction in immune re-
sponses [46, 47]. Thus, the delivery of genes encoding
cytokines, including interleukins (ILs) and interferon
(IFN) family genes, to stimulate an immune response has
been studied as an immunotherapy strategy in gliomas.
In 2004, Nakamura et al. found that intra-cranial admin-

istration of gene-modified MSCs expressing IL-2 could
migrate towards a glioma site [48] and then infiltrate CD4
and CD8 lymphocytes, thus inducing strongly specific and
curative anti-tumour immunity. Subsequently, researchers
applied the same strategy using MSCs transduced to ex-
press other interleukins, such as IL-12, IL-7, and IL-18,
and discovered that the anti-tumour effects of these

agents were closely associated with enhancement of T-cell
infiltration and tumour-specific T-cell responses, as well
as the noting the occurrence of similar therapeutic efficacy
in vivo [49–51]. In another attempt to target the immune
system, Nakamizo et al. found that modified MSCs re-
leased soluble protein IFN-β, which significantly extended
the survival of animals with established intra-cranial gli-
omas, and the inhibition of tumour cell growth correlated
with dose-dependent increases [45].
This review provides a summary of currently open and

recruiting MSC-based immune-therapy studies for gli-
omas, as shown in Table 2.The patterns of MSC-based
therapy studies for glioma are particularly illuminated in
Fig. 2. The results showed that MSCs can be genetically
engineered to express cytokines and augment the immune
response via enhancing CD4+ and CD8+ T-cell infiltration
and then stimulating subsequent cascade immune net-
works; these modified MSCs can be exploited to a thera-
peutic advantage against gliomas.

Suicide protein-based therapy
Suicide protein-based therapy is a widely applied form of
gene therapy in the cancer field. This approach entails
mRNA encoding a pro-drug-activating enzyme (suicide
protein) transduced into MSCs, the injection of these
MSCs into the tumour sites, and the subsequent conver-
sion of non-toxic pro-drugs into toxic pro-drugs, leading
to regression of tumour cells in vivo [52, 53]. To date,
the most commonly studied suicide genes in gliomas in-
clude herpes simplex virus thymidine kinase (HSV-TK)
[54], cytosine deaminase/5-fluorocytosine (CD/5FC) [55],
and rabbit carboxylesterase (rCE)/CPT-11 [56].
The HSV-TK/GCV system has been most reported in

glioma treatment. This system is based on the ability of
HSV-TK to efficiently phosphorylate the pro-drug ganci-
clovir to its monophosphate state, which is further

Fig. 1 Source of mesenchymal stem cells (MSCs) and various signalling pathways regulating MSC differentiation. Multiple signalling pathways and
cytokines have also been found to be involved in lineage commitment. BMP bone morphogenetic protein, EGF endothelial growth factor, FGF
fibroblast growth factor, HGF hepatocyte growth factor, PDGF platelet-derived growth factor, TGF transforming growth factor
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phosphorylated by cellular enzymes to GCV-triphosphate
(GCV-TP) [57]. MSCs expressing HSV-TK would be more
feasible for clinical applications than the method using
NSC therapy [54].
Later, De Melo et al. designed a strategy using

adipose-derived MSCs (AT-MSCs) expressing HSV-TK
combined with GCV, which was able to exert a cytotoxic
effect on U87 cells in vitro and diminish tumour size [58,
59]. Similarly, data has shown that a TK-MSC combin-
ation with valproic acid could selectively exert a profound
bystander effect on glioblastoma cells in vivo and that it
did not injure normal brain tissues [60, 61]. This com-
bined treatment significantly inhibited tumour growth
and prolonged survival compared with glioma-bearing

mice treated with MSC-TK in the absence of valproic acid
(VPA) [58, 59].
Cytosine deaminase (CD) is another pro-drug-activating

enzyme that can convert the non-toxic pro-drug
5-fluorocytosine (5-FC) to toxic 5-fluorouracil (5-FU),
which effectively inhibits tumour growth. Early in
2012 a related study reported the use of CD-expressing
MSCs combined with 5-FC for the treatment of
intra-cranial rat gliomas and protected normal brain tissue
from damage [62]. The CD/5-FC system demonstrated a
potent bystander effect, with the ability to kill tumour cells
even when the MSCs and tumour cells were not in direct
contact, leading to the invading glioma cells becoming ex-
tensively disordered [63]. This system may represent a

Fig. 2 The pattern of mesenchymal stem cell (MSC)-based therapy studies for glioma. By means of tumour-specific tropism of MSCs, BMSCs,
AT-MSCs, or UC-MSCs can be transduced to deliver anticancer agents such as TRAIL, interferon (IFN-β and IFN-γ) and interleukins (IL-2, IL-7, IL-18,
and IL-12) directly to glioma sites to kill tumour cells or to regulate immune responses. MSCs can also be engineered with enzymes to convert
pro-drugs into active drugs at the glioma site. For example, MSCs engineered to express yeast cytosine deaminase (CD), herpes simplex virus
thymidine kinase (HSV-TK), and rabbit carboxylesterase (rCE) can convert systemically administered anti-tumour pro-drugs (5-fluorocytosine (5-FC),
ganciclovir, and CPT-11, respectively) to their active form at the glioma site and thereby inhibit glioma growth while limiting peripheral toxicity.
In addition, MSCs loaded with oncolytic adenovirus CRADs and Delta-24-RGD have been shown to have activity against glioma. 5-FU 5-fluorouracil,
ECM extra-cellular membrane, SN-38 7-ethyl-10-hydroxycamptothecin, TP triphosphate

Table 2 Summary of currently open and recruiting mesenchymal stem cell (MSC)-based immunotherapy studies for glioma

MSC source (species) Tumour type (species) Route of administration Experimental animal Immunomodulatory gene Year References

Bone marrow (rat) 9 L (rat) Intra-tumoural/contralateral Fischer rat IL-2 2004 [48]

Bone marrow (rat) N32 (rat) Intra-tumoural Fischer rat IL-7 2010 [50]

Bone marrow (human) U87 (human) Intra-tumoural/intra-carotid Nude mice IFN-β 2005 [45]

Bone marrow (rat) C6 (rat) Intra-tumoural Spraguee-Dawley rat IL-18 2009 [49]

Umbilical cord blood
(human)

GL26 (mouse) Contralateral/ipsilateral C57BI/6 mice IL-12 2011 [51]

Umbilical cord blood
(human)

U87 (human) Intra-tumoural/contralateral Nude mice TRAIL 2008 [71]

IFN interferon, IL interleukin, TRAIL tumour necrosis factor-related apoptosis-inducing ligand
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promising new therapeutic approach for highly invasive
malignant gliomas. rCE enzymes can efficiently convert
the pro-drug CPT-11 (irinotecan-7-ethyl-10-[4-(1-pi-
peridino)-1-piperidino]carbonyloxycamptothecin) into
the active drug SN-38 (7-ethyl-10-hydroxycamptothe-
cin). Using the same enzyme/pro-drug therapy, Danks
et al. explored intra-tumoural injection by combining gen-
etically modified MSCs expressing rCE with CPT-11. The
results showed that the therapy more effectively prolonged
the survival of brain stem glioma-bearing rats than did
treatment using only CPT-11 [64]. These strategies should
provide an enhanced therapeutic effect for malignant
gliomas.

Virus-based therapy
Oncolytic virotherapy is also a novel approach in
which viruses are genetically modified to selectively
replicate in tumour cells. The virus is released from
its carrier at tumour sites and then selectively kills
tumour cells and protects normal tissues from injury.
However, the viral particles could be attacked and
eliminated by the host immune system. In addition,
the low-efficiency virus is far away from the tumour
site. To overcome the barriers, tumour-tropic migra-
tory cells may be used to deliver viral particles to the
distant sites of tumours and shield a therapeutic virus
from the host immune system [65].
Many studies using MSCs loaded with oncolytic

adenovirus CRADs and Delta-24-RGD have demon-
strated extended delivery of oncolytic viruses and pro-
longed survival of glioma-bearing animals treated with
stem cell-mediated oncolytic virotherapy. In 2008, Sona-
bend et al. reported that MSCs provide CRAD delivery
to distant glioma cells and that this delivery significantly
enhanced the infection and apoptosis of tumour cells
compared with injection of distant CRADs alone, show-
ing a therapeutic advantage. Later, MSCs carrying
Δ24-RGD (hMSC-Δ24) were injected into the carotid ar-
tery of mice and then migrated to tumour sites, resulting
in inhibited growth and improved survival of mice.
Taken together, previous results indicated that MSCs mi-
grate and deliver CRADs and Delta-24-RGD to distant
glioma cells and improved the outcome of oncolytic vir-
otherapy for glioma [66–69]. These results have consist-
ently shown that virus-loaded MSCs are capable of
migrating towards glioma sites and releasing viral parti-
cles that selectively infect tumour cells, the effects of
which ultimately kill tumour cells.
In the future, there is a possibility that tumour-specific

antigens will replace the use of viruses in which the
anti-viral immune response is caused by carrier proteins,
and thus the virus could combine the benefits of vir-
otherapy with immune-therapy to achieve the aim of
treating cancer.

Cytotoxic factor-based therapy
One novel strategy of tumour treatment is to induce
apoptosis of tumour cells. Tumour necrosis factor
(TNF)-related apoptosis-inducing ligand (TRAIL) is a
member of the tumour necrosis factor (TNF) superfam-
ily and could induce apoptosis of tumour cells through
activation of the TNF/CD95L axis and spare the majority
of non-malignant cells [70]. Studies have shown that
MSCs expressing TRAIL could migrate towards a gli-
oma, maintain their stem-like properties, induce the
cytotoxic effects of glioma cells, and show prolonged
survival in glioma animal models. TRAIL-secreting
MSCs have the migration capacity towards tumour cells
and can directly target glioma. In 2008, Kim et al. used
umbilical cord-derived MSCs (UC-MSCs) expressing
TRAIL to demonstrate a reduction in tumour volume
and improvement in survival rate in glioma-bearing mice
in vivo compared with controls [71]. Subsequently, Choi
et al. reported the therapeutic efficacy and safety of
TRAIL-producing human AT-MSCs against glioma, pro-
viding significant data for clinical trials using MSCs with
therapeutic genes against brain gliomas [72]. The above
studies demonstrate that MSCs expressing cytotoxic fac-
tors could migrate to tumour sites and induce apoptosis
of tumour cells. Therefore, these results suggest that
MSCs expressing TRAIL could provide an interesting
approach for anti-glioma therapy.

Anti-angiogenesis therapy
Angiogenesis is an important characteristic event in the
development and progression of gliomas. The use of fac-
tors that inhibit angiogenesis is thought to be one of the
strategies for glioma treatment.
Pigment epithelial-derived factor (PEDF) is a 50-kDa se-

creted glycoprotein that can activate the Fas/FasL pathway
to induce endothelial cell death and regulate the balance
between inducers and inhibitors of angiogenesis [73, 74].
Previously, Zhang et al. discovered that PEDF played an
important role in angiogenesis and tumourigenesis of gli-
omas [75]. In 2013, Wang et al. proved that MSCs express-
ing PEDF effectively induced tumour cell apoptosis and
inhibited angiogenesis, thereby decreasing tumour volume
and prolonging the survival of glioma-bearing mice [74].
However, the molecular mechanism by which PEDF causes
glioma apoptosis and anti-angiogenesis was not fully
understood. Afterwards, Guo et al. found that the condi-
tioned medium from phosphatase and tensin homologue
(PTEN) mRNA-engineered MSCs induced U251 cell death
via PI3K-AKT-mTOR pathways in vitro [76].
Thus, engineered MSCs act as an inhibitory molecular

vehicle to promote apoptosis and attenuate angiogenesis
in gliomas, and they may have the potential as a thera-
peutic agent in the clinical application of stem cell ther-
apy against gliomas.
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Potential challenges
Although MSC-based therapy for malignant gliomas has
become increasingly popular, all MSC-based therapies,
similar to other stem cell-based therapies, appear to be
limited in their effectiveness. Some recent studies on
cross-talk between MSCs and glioma cells reveal the po-
tential challenges to MSC-based therapy for gliomas.

Do MSCs support or suppress glioma growth?
There is no clear conclusion on whether MSCs themselves
support or suppress the progression of glioma. AT-MSCs
can increase the size of glioma tissue by a reduction in
apoptosis and secretion of VEGF [77]. UC-MSCs can in-
hibit migration by the upregulation of PTEN and induce
apoptosis of glioma cells by the downregulation of X-linked
inhibitor of apoptosis (XIAP) [78]. Bone marrow-derived
MSCs (BMSCs) can enhance the invasion of U373 but not
U87 by overexpression of proteases [79]. AT-MSCs can
promote the epithelial-mesenchymal transition in glioma
cells [80]. Moreover, Schichor et al. found that the fusion of
U87 and BMSCs facilitated the proliferation and migration
of both in vitro, and the cross-talk of tumour cells and
MSCs maintained the structural formation of syncytium
[81]. Subsequently, Sun et al. showed that the fused cells
gave rise to an enhanced angiogenesis of gliomas in vitro
and in vivo and a stabilised vascular framework, implying
an improvement in glioma growth [82].
Therefore, MSCs from different sources showed different

abilities to promote or suppress the growth of glioma cells
under different conditions. If these MSCs were investigated
as delivery vectors, the effects of MSCs supporting or sup-
pressing the growth of gliomas should also be considered.

Glioma-associated MSCs (gbMSCs)
gbMSCs were first isolated from fresh glioma tissues and
identified by our team in 2014. We found that gbMSCs
showed classical features of morphology, surface markers,
and differentiation. The gbMSCs secrete different factors
dependent on the inter-cellular cross-talk and hypoxia
conditions [83]. Moreover, the percentage of gbMSCs in
tumour samples correlated with the outcomes of patients
with high-grade gliomas, whereas patients with a high per-
centage of gbMSCs had a poor overall survival rate [84].
Svensson et al. reported there were two distinct subpopu-
lations of gbMSCs with different CD90 expression. CD90−

gbMSCs produced more VEGF and prostaglandin E2
(PGE2) than did CD90+ gbMSCs, and these two subpopu-
lations had 211 differentially expressed genes but showed
no mRNA differences [85]. Our team also found that
CD90− gbMSCs could differentiate into pericytes and con-
tribute to neovascularization in the glioma microenviron-
ment [25]. CD90+ gbMSCs could increase the growth and
invasion of glioma cells under a serum deprivation condi-
tion (data not shown). Figueroa et al. also found that

gbMSCs could increase the tumourigenicity of glioma
stem cells by microRNA-1587 exosome transfer [86] and
maintain the stemness of glioma stem cells by secretion of
IL-6 [87]. All these data suggest the promoting role of
gbMSCs in the aggression and progression of gliomas.

Malignant transformation of MSCs
As well as an assistant role of MSCs in tumour microenvi-
ronments, some studies have reported that MSCs can dir-
ectly transform to malignant cells and have revealed a new
challenge to MSC-based therapy for cancer. In 2004,
Houghton et al. suggested that BMSCs were recruited to
the sites of pre-cancerous lesions by inflammatory cytokines
and then transformed into gastric cancer cells to promote
cancer progression through a series of transformations [88].
Serakinci et al. reported that human adult MSCs had the
neoplastic potential to contribute to mesenchymal tumour
development after transducing the human telomerase re-
verse transcriptase (TERT) gene [89]. Recently, Tan et al.
demonstrated that the proliferation and migration rate of
the transformed mesenchymal stem cells (TMCs) were sig-
nificantly increased compared with that of the MSCs in
vitro and that TMCs led to tumourigenesis in an animal
model [90]. These studies strongly suggest that MSC malig-
nancy is possible under specific conditions, and there is a
clear conclusion about the phenomenon and mechanism of
malignant transformation of MSCs.

MSC-mediated immunosuppression
In tumour microenvironments, MSCs could support
tumour growth by suppression of host immune responses.
Once MSCs are recruited into a tumour microenviron-
ment, they can secrete several ligands to help tumour cells
build the immunosuppressive environment by recruiting
monocytes, macrophages, and myeloid-derived suppressor
cells. These immune cells then inhibit the anti-tumour
immune responses of T cells [43]. In gliomas, some re-
searchers found that CD90− gbMSCs showed stronger
ability for tumour immunosuppression than their CD90+

counterparts [85]. However, there are still too few publica-
tions about the suppressive role of MSCs in glioma.

Conclusions
Currently, MSC-based therapy for gliomas has become an
increasing focus of research. MSCs are regarded as effect-
ive vectors to deliver therapeutic agents to tumour sites.
Despite MSC-related studies making great strides in the
field of glioma treatment, there remain some powerful
challenges. Moreover, there are no on-going clinical trials
on MSC-based therapy for malignant gliomas. In conclu-
sion, MSC-based therapy for glioma is still in its infancy,
and we need a better understanding of the biological con-
sequences of MSC-based therapy before it is widely used
in the treatment of patients with malignant gliomas.
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