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Alginate is one of the natural polymers that are often used in drug- and protein-delivery systems. /e use of alginate can provide
several advantages including ease of preparation, biocompatibility, biodegradability, and nontoxicity. It can be applied to various
routes of drug administration including targeted or localized drug-delivery systems. /e development of alginates as a selected
polymer in various delivery systems can be adjusted depending on the challenges that must be overcome by drug or proteins or the
system itself. /e increased effectiveness and safety of sodium alginate in the drug- or protein-delivery system are evidenced by
changing the physicochemical characteristics of the drug or proteins. In this review, various routes of alginate-based drug or
protein delivery, the effectivity of alginate in the stem cells, and cell encapsulation have been discussed./e recent advances in the
in vivo alginate-based drug-delivery systems as well as their toxicities have also been reviewed.

1. Introduction

1.1. Chemistry and Physicochemical Properties of Alginate.
Alginate is a polysaccharide extracted from brown seaweeds,
including Laminaria hyperborea, Laminaria digitata, Lam-
inaria japonica, Ascophyllum nodosum, and Macrocystis
pyrifera [1, 2]. It is composed by a sequence of two (1Ñ4)-
linked α-L-guluronate (G) and β-D-mannuronate (M)
monomers./e proportion ofM andG blocks may vary with
the type of seaweed from where it is extracted (Figure 1). For
example, alginate extracted from Laminaria digitata and
Ascophyllum nodosum has been shown to haveM/G ratios of
1.16 and 1.82, respectively. Alginate is a biocompatible
polymer with very low toxicity [3]. /ese are the main
advantages that make alginate one of the biopolymers with
the widest biomedical applicability [4, 5]. One of the most
common applications of alginate is their use as an excipient
in drug-delivery systems, namely, acting as a stabilizer agent
in various pharmaceutical formulations [6, 7].

Alginate has carboxyl groups which are charged at pH
values higher than 3-4, making alginate soluble at neutral

and alkaline conditions to promote the widespread use of
alginates. For some drugs which require greater protection
with preferential absorption in the intestinal tract or other
conditions such as modified drug release, alginate is a
preferable polymer. /us, solubility and pH sensitivity make
alginate a good biomaterial for drug-delivery systems [8].
Sodium alginate is the type of alginate mainly used in the
pharmaceutical industry and may be used for the purpose of
extending the drug release. Using sodium alginate with
different chemical features and degree of viscosities, the slow
release of ibuprofen from press-coated tablets was reported
[8]. In acidic environments, alginate carboxyl groups are
protonated, thereby limiting drug release. Alginate has the
ability to crosslink with Ca2+ ions through an ionotropic
gelation process, usually above pH 6. Ba2+ or Zn2+ ions are
also used as crosslinkers [9–11].

Alginate hydrogels are applied in wound healing treat-
ments through the construction of wound dressings [12–15].
Several studies showed that the bioavailability of drugs
encapsulated in alginate hydrogels is greater than that of the
free drug applied directly at the lesion site, thus increasing

Hindawi
Advances in Pharmacological and Pharmaceutical Sciences
Volume 2020, Article ID 8886095, 16 pages
https://doi.org/10.1155/2020/8886095

mailto:dewi-m-h@ff.unair.ac.id
https://orcid.org/0000-0001-9357-3913
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8886095


the efficacy of healing. Alginate hydrogels are also used
widely in tissue regeneration treatments and cell encapsu-
lation [16–22]. Alginate may be used in the construction of
capsules for cell encapsulation often associated with cyto-
therapy treatments or simply the creation of cellular mi-
crocultures inmore complex systems. A new approach to the
construction of alginate-based capsules for the incorpora-
tion of different types of cells has been demonstrated [23].
Cells were encapsulated in alginate liquefied particles, fol-
lowed by coating it with chitosan and alginate. Poly(lactic
acid)microparticles along with the cells were coencapsulated
to protect cell survival with high viability of the encapsulated
cells. Hydrogels obtained from alginate nowadays present
some advantages of being appropriate materials to be used in
tissue engineering and regenerative medicine applications
[23–31].

Some important uses of alginates in nanomedicines in
the forms of dendrimers, nanocrystals, emulsions, lipo-
somes, solid lipid nanoparticles, micelles, and polymeric
nanoparticles have provided advantages over conventional
medicines including efficacy, safety, physicochemical
properties, and pharmacokinetic/pharmacodynamic profiles
[32].

1.2. Crosslinker for Alginate Micro/Nanoparticles to Encap-
sulate Drugs. Typical shapes of alginate are processing
through several different techniques, including emulsion,
multiple-phase emulsion, and cation crosslinked encapsu-
lation (Ca2+, Ba2+, or Cu2+) [33–37]./e ability of alginate to
create complexes with other biomaterials by electrostatic
interactions, chemical modification, or crosslinking can be

exploited for building hybrid and more versatile DDSs.
Capsules constructed from chitosan/alginate-PEG com-
plexes are reliable models for encapsulating proteins, such as
albumin, one of the most common model proteins used in
controlled release studies [38–43]. /is approach can pro-
mote higher control release of drugs, proteins, and other
biomolecules.

1.2.1. Effect of Different Classes of Crosslinkers on Alginate
Polyelectrolyte Nanoparticle. Mirtic et al. [10] investigated
the preparation of alginate nanoparticles using complexa-
tion of different classes of crosslinkers (divalent cations,
polycations, and positively charged surfactants) and found
that alginate nanoparticles were formed across a limited
range of molar ratios that were specific for each crosslinker
and had different size and stability. Additionally, the ionic
strengths of the media influenced the characteristics and
stabilities of the polyelectrolyte nanoparticles.

1.2.2. Effect of Divalent Cation on Morphology and Drug-
Delivery Efficiency. A study by Deepika et al. [44] was about
the formation of levofloxacin in chitosan-alginate hybrid gel
for controlled release and effect of divalent alkaline ions
(Mg2+, Ca2+, Sr2+, and Ba2+) on encapsulation efficiency and
drug release kinetics from chitosan-alginate nanostructure
was investigated. /e particle size increases and encapsu-
lation efficiency decreases with the size of the divalent ions.
Spherical shaped particles were formed by Mg2+ and Ca2+,
whereas Sr2+ and Ba2+ produced nonspherical particles.
Transformation of microspheres is shown by SEM as
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Figure 1: Chemical structures of G-block, M-block, and alternating block in alginate [1].
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truncated tetrahedron by Sr2+ and clear rod shape by Ba2+

was identified. /is suggested that metal ions have a sig-
nificant influence on the morphology, drug encapsulation,
and release profile of the chitosan-alginate hybrid polymer
nanoparticles.

1.2.3. Effect of Zinc-Ion Complex with Alginates.
Kotagale et al. [45] complexed alginates with zinc metal ion
to improve beads’ physicochemical and biological properties
for controlling the drug release. /ey found that the ate-
nolol-zinc polymeric beads exhibited pulsed release with
increased half-life. Moreover, no significant differences in in
vitro and in vivo atenolol release behavior among the N,O-
dimethyl, N-methyl, or N-benzyl hydroxylamine derivatives
of sodium alginate were observed.

1.2.4. Effect of Ferric Ion Crosslinker on Alginates.
Microspheres of acrylamide- (AAm-) grafted poly(vinyl
alcohol) (PVA)/sodium alginate (NaAlg) were prepared
by crosslinking with FeCl3 and 5-fluorouracil (5-FU)
[46]. Microspheres were characterized by particle diameter,
equilibrium swelling values and morphology, elemental
analysis, and release profiles./is group studied the effects of
PVA-g-PAAm/NaAlg ratio, drug/polymer ratio, crosslinker
concentration, and exposure time to FeCl3 on the release of
5-FU. /e highest 5-FU release was found to be as 99.57%
after 6 h for PVA-g-PAAm/NaAlg and release kinetics was
described by Fickian and non-Fickian approaches.

1.3. Purposes of Encapsulation of Drugs Using Alginates.
Alginate can also undergo complexation with natural
polymers, like chitosan, to enhance the absorption and
cargo protection in oral delivery, for example, for the
administration of insulin [47, 48]. Alginate was also
combined with pectin polymer which has a similar
mechanism. /is research also showed successfully en-
capsulated drugs [49–52]. Alginate-based drugs encapsu-
lated into nanoparticles/microparticles with various
purposes are presented in Table 1.

1.4. Use of Alginates in the Pharmaceutical Industry.
Many application areas of sodium alginate-based drug-de-
livery systems, and these systems can be formulated as gels,
matrices, membranes, nanospheres, microspheres, and
others [2, 81]. Researchers are exploring possible applica-
tions of alginates as a coating material and preparation of
controlled release drug-delivery systems.

1.4.1. Alginate for Protein Delivery and Cell Encapsulation.
Alginate microparticles as a carrier for protein delivery
prepared by spray-drying processes have been studied for
their application in nasal and pulmonary drug delivery
[85–87] prepared inhalable alginate particles (of an average
diameter 3.23± 0.25 μm) with a high encapsulation effi-
ciency of 97% with the preserved structure and bioactivity of
BSA. /e alginate particles released approximately 20% of

the loaded BSA over 24 h and then a slow release occurred,
reaching a cumulative release of only 35% after 180 h.Möbus
et al. [88] prepared Zn2+-crosslinked alginate microparticles
containing the model protein BSA via a simple one-step
spray-drying process to produce microparticles of 2–4 µm
size. /ey found BSA release into the simulated lung fluid
increased with an increasing content of protein in the al-
ginate microparticles. Alginate hydrogels have also been
studied for oral delivery of proteins [89, 90]. Hariyadi et al.
[91] prepared alginate microspheres containing lysozyme
and insulin resulting in 30 to 60 μm in size with high protein
loadings. Moreover, it was found to retain 75% activity using
the ARCHITECT® assay and exhibit at least 80% bioactivity
using the Micrococcus lysodeikticus assay. Another study
using BSA demonstrated that the BSA release from the
hydrated microparticles reached less than 7% in the simu-
lated gastric fluid over 2 h, whereas 90% of the protein load
was gradually released in the simulated intestinal fluid over
10 h. Another cell viability study was also conducted by
Morachis et al. [92]; Severino et al. [93]; Joddar et al. [94];
Ciriza et al. [95]; Yoncheva et al. [96]; and Gurruchaga [18].
Applications of alginates for protein delivery and cell en-
capsulation are presented in Tables 2 and 3.

1.4.2. Alginate Particles with Ovalbumin (OVA)

(1) Peptide as a Carrier and Adjuvant. Ovalbumin (OVA)
peptide 323–339 encapsulated in alginate has been reported
to be involved in immune response as carrier and adjuvant
for the immune therapy of cancer [53]. A tumor model was
established in C57BL/6J mice via subcutaneous injection of
3×105 B16-OVA tumor cells. Alginate/OVA peptide
inhibited tumor progression more effectively than using the
peptide alone. /e viability and uptake study illustrated that
this particle is safe and nontoxic. Furthermore, alginate
particles can promote the activation of surface markers on
macrophages. ELISA assay showed that the particles with
peptide can promote the secretion of inflammatory and
effector cytokines from macrophages.

1.4.3. Liposomal Alginate for Bupivacaine Delivery and MSC
Function. Mesenchymal stromal cell (MSC) therapies have
become potential treatment options for multiple ailments
and traumatic injuries. Davis et al. [103] developed and
characterized a sustained release delivery formulation
comprised of alginate-encapsulated liposomal bupivacaine
to evaluate the effect of this formulation on the secretion of
three key MSC regulatory molecules, interleukin 6 (IL-6),
prostaglandin E2 (PGE2), and transforming growth factor-
beta 1 (TGF-β1). Bupivacaine release profile analyses
indicated that the mode of drug delivery controlled the li-
posomal-alginate (LA) concentration over time and pathway
analysis identified several shared and cytokine-specific mo-
lecular mediators for IL-6, PGE2, and TGF-β1. /ese studies
support the potential utility of LA for anti-inflammatory cell
therapy coadministration.
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1.4.4. Curcumin-Alginate-Based Composite Sponges.
Alginate-based composite sponges were developed as car-
riers to prolong the gastric retention time and controlled
release of curcumin-loaded self-microemulsifying drug-

delivery systems (Cur-SMEDDS) [104]. Researchers used
adsorbent (colloidal silicon dioxide) and additional poly-
mers such as sodium carboxymethyl cellulose (SCMC) and
hydroxypropyl methylcellulose (HPMC) to form composite

Table 1: Drugs or substances encapsulating in alginate nanoparticles/microparticles.

Drug/protein/substances Polymer Aims of encapsulation References

Nanoparticles

Indomethacin Alginate-mesoporous silica
Sustained drug-delivery system for poorly water-

soluble drug
[53, 54]

Bacteriophages Alginate-nanohydroxyapatite
Delivery system to prevent orthopedic implant-

associated infections
[55]

Bacteriophage Alginate-CaCO3 Encapsulation of bacteriophages [56]
VEGF Alginate Injectable hydrogels for implant [57]
Prednisolone and inulin Alginate-chitosan Nanoparticles for colon delivery [58]

Amphotericin B Sodium alginate glycol chitosan stearate
Nanoparticles for better chemotherapy in visceral

leishmaniasis
[59]

R6G Sodium alginate and hydroxyapatite (HAP)
/e HAP@Alg nanoparticles show significant

potential for the intracellular controlled release of
cell-membrane-impermeable drugs

[60]

Dasatinib and zein-
lactoferrin

Sodium alginate
Nano-in-micro drug-delivery system for

anticancer
[61]

Curcumin and resveratrol Alginate
Evaluation against DU145 prostate cancer cell

line
[62]

Amygdalin Alginate-chitosan
Biocompatible drug-delivery carriers for

anticancer
[63]

5-Fluorouracil Alginate Treatment for colon cancer liver metastasis [64, 65]
Doxorubicin
hydrochloride

Alginate/CaCO3/DNA
Mediate gene transfection and deliver drug to the

cells for cancer treatments
[66]

Tilmicosin
Sodium alginate and carboxymethyl chitosan

(CMCS)
/e novel TIL-nanogel for treatment of

Staphylococcus aureus (S. aureus) cow mastitis
[67]

Microparticles

Bismuth sulfide Alginate
Microfluidic alginate microspheres and

photothermal effect
[41]

Polystyrene Sodium alginate
Microspheres of 400 µm to 900 µm produced pH-

responsive smart drug-delivery systems
[68]

Gold NPs Sodium alginate
Alginate hydrogels of higher than 10 nm released

PEG-AuNPs for diagnostic and therapeutic
purposes

[69]

D-Mannitol
Sodium alginate, sodium cellulose sulfate

(SCS), and poly(methylene-co-
cyanoguanidine) hydrochloride (PMCG)

Alginate microbeads of 600 to 800 μm stabilized
by two coexisting networks for the treatment of

diabetes or others
[70]

Sorbitan ester-based
organogels

Alginate Organogels in alginate microparticles [71]

Corticosteroids Alginate Microparticles for colon delivery [72]

Vancomycin Chitosan-alginate polyelectrolyte
Vancomycin-chitosan-alginate polyelectrolyte
microparticles as the controlled drug-delivery

system
[73]

Other substances

Allogeneic pancreatic islet Alginate
Long-term immune protection of allogeneic

pancreatic islet cells
[74]

Lactoferrin Alginate Target Clostridioides difficile infection [75]
Probiotic bacteria Alginate and silica Freeze-dried microparticles [76]
Micronutrient Alginate and chitosan Functionalization for micronutrient [77]

E. coli Nissle (EcN) Sodium alginate and chitosan
Alginate-chitosan microcapsule enhanced the

survival of EcN
[78]

Cefdinir Alginate Floating system and Box–Behnken design [79]
MICP bacterial spores Alginate Self-healing concrete [80]
SiRNA Alginate Vaginal delivery using the scaffold system [81, 82]

Bacillus subtilis Alginate-chitosan
Alginate microcapsule for uranium ion

absorption
[83]

Hyaluronate Alginate Regenerating cartilage [84]
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sponges. /e formulation exhibited a droplet size of ap-
proximately 30 nm and provided a sustained release.

2. Application of Alginates in Context of the
Routes of Drug Administration

Alginates have been extensively investigated for delivering
drugs via oral, parenteral, pulmonary, and transdermal routes
(Table 4). Using alginate as a single polymer or the combined
polymer, controlled or sustained release delivery of quercetin,
isoniazid, rifampicin, ciprofloxacin, bovine insulin, and lenti-
vectors has been investigated. All formulations showed in-
creased entrapment efficiency of drugs, increased dissolution
and bioavailability, and reduced degradation of drugs
[105–107, 109–112, 130–132]. Some chemotherapeutic agents
encapsulated in alginate polymer showed enhanced penetra-
tion in the target cells. Antigen-encapsulated alginate showed
enhanced immune response [8, 115, 116, 133, 134]. Alginates
have been also widely investigated for pulmonary drug delivery
[99, 117, 119–128]. Alipour et al. developed paclitaxel-alginate
microparticles which increased the site-specific efficacy of
drugs with reduced toxicity [117]. Using alginate and PLGA
polymers, Abdelaziz et al. studied inhalable particulate delivery
of cisplatin and doxorubicin for lung cancer therapy [120]./e
alginate-based BSA and BCG vaccines have been used to study
the efficacy of smaller inhalable vaccines, which provided better

protection and more immunogenic effect [99, 124, 125]. Ap-
plications of alginate in transdermal delivery for wound
dressing or wound healing were shown to be effective to
produce a high porosity and sustained release and able to
inhibit preinfection [126–128, 135].

2.1.Alginate-BasedHybridAerogelMicroparticles forMucosal
Drug Delivery. Some polysaccharides (e.g., alginate, chito-
san, and pectin) have been applied as biopolymer aerogels to
have mucoadhesive properties for mucosal drug delivery
[136] Alginate-based hybrid aerogels of microparticles
(<50 μm) were produced. Low methoxyl pectin and κ-car-
rageenan were also cogelled with alginate and further dried
with supercritical CO2 (sc-CO2). Spherical mesoporous
aerogel microparticles were obtained for alginate, hybrid
alginate/pectin, and alginate/κ-carrageenan aerogels, pre-
senting high specific surface area and mucoadhesive prop-
erties. /e microparticles were loaded with ketoprofen and
quercetin. Release of both drugs from alginate/κ-carra-
geenan aerogel was slightly faster compared to alginate/
pectin indicating that alginate-based aerogel microparticles
are potential for mucosal drug-delivery applications.

2.2. Alginates for Ocular Drug Delivery. To develop potential
ocular drug delivery, mucoadhesive microspheres is one of
the best approaches to prolong the drug residence inside the

Table 2: Alginate nano/microparticles with protein content.

Protein types Polymer Method for encapsulation Significant findings References

Salmonella effector
enzyme (AvrA)

Alginate-
chitosan

Microfluidics
Capable of releasing AvrANPs in the small intestine

and colon
[97]

Silk fibroin
Alginate and

PLGA
Layer-by-layer deposition Silk coatings provide stable-encapsulated protein [98]

Bovine serum albumin
Alginate-
poloxamer

Spray drying
Spherical in shape with a size range of 4–6 μm and

faster protein release
[99]

Bovine serum albumin Alginate
Microemulsions-based

reactors
Microemulsions of 6 nm stabilized the protein [100]

Dextran-HEMA Alginate Partial oxidation Good gelling ability [101]

Table 3: Cell studies using alginate nano/microparticles.

Cell types Polymer Parameter study Significant findings References

Tumor
therapeutic
cells

Alginate
Encapsulation of cytotoxic

compounds encapsulated into
liposomes, micelles, and nanoparticles

Long-time release of nanoparticles in the brain
parenchyma

[16]

Epithelial cells Alginate
Physicochemical characteristics and
biological properties of the airways

Solubility, lipophilicity, and therapeutic
efficacy of microparticles

Shape, size, and density have an impact on the
microparticles

[19]

Cell-dispersed
collagen

Alginate
Microfluidic-based by anisotropic

gelation of the capillary

Magnetic-responsive nanoparticles or cell-
dispersed collagen for tissue scaffold was

functionalized microsprings
[21]

Pancreatic rat
islets

Alginates
Cell encapsulation by zwitterionic

group

Alginates improved outcome of islet
encapsulation in a chemically induced diabetic

mouse model
[22]

Riboflavin
Sodium alginate
and furfurylamine

Coupling and photo-crosslinked
method

Photo-crosslinked F-alginate resulted in slow
release and potential for cell growth
enhancement for medical application,

biomaterials, soft and hard tissue applications,
and tissue interfaces

[102]
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cul-de-sac, consequently increasing the bioavailability./us,
some researchers worked to overcome the limitations of
ocular drug delivery [137–139]. /e chitosan-sodium algi-
nate microspheres or other polymers encapsulating of ocular
drugs have been investigated widely. Sodium alginate mi-
crospheres prepared were in particle size range suitable for
ocular purpose and were able to improve the therapeutic
efficacy.

2.3. Alginates for Stem Cell Purposes. Alginates as polymer
have been used for stem cell studies. For example, Leslie et al.
studied the controlled release of rat adipose-derived stem
cells from alginate microbead [140]. Maia et al. formed
hydrogel depots for local codelivery of osteoinductive
peptides and mesenchymal stem cells [141]. Another study

used cartilage cells in a combination of alginate and hya-
luronate hydrogels for cartilage regeneration [37, 84, 142,
143]. Ulker and Erkey studied spermatogonial stem cells
and evaluated alginate hydrogel cytotoxicity on three-di-
mensional culture [144].

3. Various Techniques to Produce Alginate
Micro/Nanoparticles for Drug Delivery

Over the years, various methods have been developed to
fabricate drug-delivery particles of bioactive substances.
Using superhydrophobic surfaces, it is possible to produce
polymer particles suitable as DDSs. /is method allowed
loading drugs into spherical structures with an encapsula-
tion efficiency close to 100% [145, 146]. Goncalves et al. [136]
developed alginate microparticles which were shown to have

Table 4: Route of administration of drug delivery.

Drugs Polymer Route Formulation/design approach References

Quercetin Na alginate and chitosan Oral
Ionic crosslinking method for oral controlled

release
[105]

Isoniazid and rifampicin Sodium alginate Oral
Drop technique for oral sustained delivery

carriers
[106, 107]

4-(2-Aminoethyl) benzoic
acid

Sodium alginate Oral
Chemically modified (amidation and reductive

amination)
[108]

Ciprofloxacin Alginate-gelatin Oral Crosslinked method [109, 110]

Bovine insulin Sodium alginate Oral
Ionotropic gelation using calcium chloride

dihydrate
[111]

Lentivectors Alginate Oral
Polymers were ionically crosslinked to create

bimodal hydrogel
[112]

Resveratrol Alginate Oral Ionic and shelled with soy protein isolate (SPI) [5]
Metformin Alginate Oral DDS for oral antidiabetic [113]
Metronidazole Alginate Oral Matrix for oral DDS [114]

Recombinant hepatitis B
surface antigen (rHBsAg)

Alginate Parenteral
Antigen delivery system for intramuscular
administration by mild ionic crosslinking

technique
[8]

Furosemide Alginate-chitosan Parenteral
Mucopenetrating nanoparticles for
enhancement of oral bioavailability

[115]

Exemestane Sodium alginate Parenteral
Simple controlled gelation method for oral

chemotherapeutic drug
[116]

Paclitaxel Alginate Pulmonary Emulsification technique [117]
Isoniazid rifampicin,
pyrazinamide, and
paclitaxel

Chitosan, alginate, PLGA, and
polysaccharides

Pulmonary Emulsification and complexation [118]

Amikacin, ciprofloxacin,
and polymyxin

PLGA and alginate Pulmonary Spray drying [119]

Cisplatin and doxorubicin
Alginate, HAS, chitosan, and

PLGA
Pulmonary Emulsification/gelation and spray drying [120]

Ciprofloxacin
Polyethylene glycol, phthaloyl
chitosan, and sodium alginate

Pulmonary Grafted and spray drying [121]

BCG vaccine Alginate Pulmonary Emulsification [122]
Tobramycin Alginate and chitosan Pulmonary Precipitation [123]
BCG vaccine Alginate Pulmonary Aerosol liquid encapsulation [124]
BSA Alginate Pulmonary Spray drying [99]

BSA
Alginate, chitosan, and

trimethyl chitosan
Pulmonary Liposomal formulation [125]

Ciprofloxacin Calcium alginate Transdermal Lyophilized hydrogels for wound dressing [126]

Resveratrol
Chitosan, alginate, and poly(d,l-

lactide-co-glycolide)
Transdermal Nanoprecipitation [127]

Metronidazole Alginate Transdermal
Ionotropic gelation combination with freeze-

thawing cycle
[128, 129]
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perfluorocarbon breakthrough capacity when subjected to
vibration by ultrasound waves. Results showed a disruption
of these microparticles after 15min of exposure, suggesting
that such structures are promising DDSs controlled exter-
nally by acoustic stimuli.

Another strategy to synthesize particles relies on com-
plexation, based on the electrostatic interactions between
alginate at neutral and alkaline pH values, bioactive agents,
and other kinds of naturally occurring polymers, such as the
polycation chitosan [147–149].

3.1. Preparation Techniques for Production of
Alginate Nanoparticles

3.1.1. Oligopeptide-Side Chained Alginate via the Amidation
Method. A melittin-targeting drug carrier was successfully
synthesized by the grafting of sodium alginate to an oli-
gopeptide via an amidationmethod at different oligopeptide:
alginate unit molar ratios [150]. /e average sizes of the
oligopeptide-alginate nanoparticles formed decreased with
increasing oligopeptide contents, indicating intramolecular
interactions between oligopeptide-side chains. /e results
confirm that the derivation of an oligopeptide-side chain in
alginate offers a specific binding site for melittin and ef-
fectively works in cancer chemotherapy.

3.1.2. Chitosan/Alginate Nanoparticles by Emulsification and
Ionotropic Gelification. Curcumin-diglutaric acid (CG) is a
prodrug of curcumin encapsulated into chitosan/alginate
polysaccharide-based nanoparticles [151]. CG-loaded chi-
tosan/alginate nanoparticles were prepared by o/w emulsi-
fication and ionotropic gelification, with the conditions
optimized using response surface methodology. /e CG-
loaded chitosan/alginate nanoparticles showed better stability
compared to a CG dispersion in water. /e nanoparticles
showed slow cumulative release and the release pattern was
mainly controlled by Fickian diffusion and erosion of
polymer materials. CG-loaded chitosan/alginate nano-
particles showed higher in vitro cellular uptake in human
epithelial colorectal adenocarcinoma (Caco-2 cells) and
better anticancer activity against Caco-2, human hepato-
cellular carcinoma (HepG2), and human breast cancer
(MDA-MB-231) cells.

3.1.3. Alginate/Chitosan Nanoparticles for Controlled Release
of Vitamin B2. Work by Azevedo et al. [152] encapsulating
vitamin B2 with alginate/chitosan nanoparticles using
ionotropic polyelectrolyte pregelation was conducted. Al-
ginate/chitosan nanoparticles were 104.0± 67.2 nm, PDI of
0.319± 0.068, encapsulation efficiency, and loading capacity
values of 55.9± 5.6% and 2.2± 0.6%, respectively. Sizes and
PDI during 5 months showed that vitamin B2-loaded
nanoparticles were stable.

3.1.4. Nutraceutical Nanodelivery System. Alginate nano/
microspheres were produced by emulsification/internal
gelation of sodium alginate within vegetable oils containing

surfactant, followed by CaCl2 addition resulting in hardened
particles [153]. Size of nanoparticles decreased at higher oil
and surfactant contents, higher molarity of CaCl2, and lower
alginate concentrations. Moreover, encapsulation efficiency
was inversely proportional to the size of nanoparticles.

3.1.5. Alginate/Chitosan Formulations for Ciprofloxacin-
Controlled Delivery. Kyziol et al. loaded ciprofloxacin in
alginate beads with an emulsification technique in combi-
nation with an internal gelation method [154]. Hydrody-
namic diameter and zeta potential showed of 160 nm and
−32mV in the case of AL_CP and ca. 240 nm and ca.
+14mV in the case of AL_CP_CS, respectively. /ey found
that alginate beads with encapsulated ciprofloxacin covered
with chitosan were effective oral delivery system since
limited ciprofloxacin was release in gastric.

Various techniques which have been used to produce
alginate nanoparticles are presented in Table 5.

3.2. Preparation Techniques for Production of Alginate
Microparticles. Some techniques were used to produce al-
ginate microparticles. Production is by conventional
emulsification using sodium alginate single or combination
polymer with chitosan to encapsulate a variety of drugs
including glucose oxidase [167], paclitaxel [168], cocoa
extract [169], and diclofenac sodium [170] or double
emulsification techniques [171].

Another method is internal gelation technique, which by
using sodium alginate polymer to entrap drug of doxoru-
bicin was done by Giovagnoli et al. [35], diclofenac by
Ahmed et al. [172], L-α-phosphatidylcholine by Semmling
et al. [173], and sulfasalazine by Tavakol et al. [174]. Ex-
trusion dripping method was also used to optimize sphe-
ricity of particles and shape deformation [175].

/e more recent technique to produce microparticles
was an impinging aerosol technique to successfully encapsulate
propranolol HCl by Hariyadi et al. [89] and high-voltage
electrostatic bead generator for BSA-alginate microparticles by
Ørning et al. [176]. Mishra et al. [177] used gas blowing
technique to contain verapamil HCl resulting in faster/burst
drug release; however, importantly a strong mechanical
strength and drug integrity were maintained in hydrogel
polymeric network.

4. Mechanism of Drug Release from
Alginate Nano/Microparticles

Some researchers focused on investigating release behavior
of polymer in nanoparticles and microparticles by modified
polymers which are used to form hydrogels or other ways
such as producing smart polymers consisting of copoly-
merized agents as additional polymer, change the pH of the
encapsulation process, temperature changes, and others
[178–184]. James et al. designed smart polymers in order to
achieve mechanism of release of swelling, contraction, and
disintegration mechanism, although these additional agents
must be programmable to show depot mechanism for
sustained release, for example, the formation of complex
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from chitosan and glycerophosphate [179]. /ere are dif-
ferent mechanisms of release of a bioactive agent from the
carrier, such as through variations of temperature and pH
and the use of biodegradable materials or enzymatic deg-
radation, among other chemical and physical stimuli-re-
sponsive methods [42, 185–189]. Hadijev et al. [180] studied
hydrogels which mostly applied drug diffusion as a release
mechanism; however, this can be changed with the prop-
erties to broadly change the solute diffusion coefficient as the
gel system swells. According to Gao et al. [183], mechanism
of release of hydrogels can be modified to have more steady
release behavior by adding some copolymer which is able to
interact and may change the chemical structure, morphol-
ogy, and rheology characteristics, thus affecting release
behavior and mechanism.

5. Toxicity and In Vivo Study

5.1.Toxicity. Alginate nanoparticles andmicroparticles were
considered safe, although some studies about safety and
toxicity were widely conducted. For example, Spadari et al.
[120] investigated alginate nanoparticles as a nontoxic de-
livery system for miltefosine (MFS) in the treatment of
candidiasis and cryptococcosis. Alginate nanoparticles were
produced using the external emulsification/gelation method
and toxicity on red blood cells and Galleria mellonella larvae
were assessed. MFS in alginate nanoparticles presented no
hemolytic effect and no toxicity inG. mellonella larvae./ese
results showed the potential and nontoxic use of alginate-
based drug-delivery systems as carriers to control the fungal
infection in the in vivo model of G. mellonella.

Table 5: Various techniques used to produce alginate nanoparticles.

Drugs Polymer Method Size Main findings References

Recombinant
hepatitis B surface
antigen (rHBsAg)

Sodium alginate Ionic crosslinking 80–400 nm
Size and surface charge could be
modulated by adjusting the

ratio of polymer
[155]

Curcumin
Alginate, chitosan, and

pluronic
Ionic gelation 100± 20 nm Composite nanoparticles (NPs)

were successfully prepared
[156]

Doxorubicin Alginate and chitosan
Novel ionic gelation

method
100 nm

Chitosan-alginate nanoparticle
produced higher zeta potential
and encapsulation efficiency
than chitosan nanoparticles

[157]

Hyaluronic acid Chitosan and alginate Ionic gelation 100 nm
Cryoprotectants provided

stability for the NPs
[158]

Tobramycin Alginate and chitosan
Isothermal titration

calorimetry
±500 nm High survival rates and low

toxicity were observed
[159]

ZnO Alginate
Pumped dropwise
using a peristaltic
pump and tubing

120 to 236 nm

Inactivation of antibiotic-
resistant bacteria by ZnO NP-
alginate beads was improved by
increasing the nanocomposite
amount and contact time

[160]

Curcumin-loaded
zein

Sodium caseinate (SC)
and sodium alginate

(SA)

Liquid-liquid
dispersion and
encapsulation

nm

A significantly improved
encapsulation efficiency and

controlled release was
successfully produced

[161]

trans-
Cinnamaldehyde

Chitosan-alginate

Ionic gelation and
polyelectrolyte
complexation
technique

166.26 nm
(i) Small size and high

encapsulation efficiency was
found

[162]

Imazapic and
imazapyr herbicides

Alginate/chitosan and
chitosan/

tripolyphosphate
nanoparticles

Ionic encapsulation 400 nm

(ii) High efficiency and stable
nanoparticles resulted during
30 days of storage at ambient

temperature

[163]

Genipin

Silver nanoparticles
(AgNPs)-loaded
alginate in gelatin

scaffolds

Electrospraying and
freeze-drying

154 and 171 μm

Swelling and weight loss
behaviors of the AgNPs-loaded
alginate beads embedded in

gelatin scaffolds increased and
nontoxic as wound dressings

[164, 165]

Vancomycin (VCM)
and glyceryl
tripalmitate

Oleic acid (OA),
chitosan (CHT), and
sodium alginate (ALG)

Hot high-pressure
homogenization
followed by

ultrasonication

202.5± 3.81 to
250.9± 9.04

(i) Rod-shaped LPNs with
suitable size, PDI, zeta potential,
higher encapsulation efficiency,
and potency as antibacterial

activity

[87]

CM-chitin
Polypyrrole (PPY)/
sodium alginate

Oxidative
polymerization and

templating
117–217± 17 nm

(ii) Negative viscosity change of
the dispersions resulting in a
decrease in bulk alginate

concentration

[166]
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5.2. In Vivo Study for Alginate Nano/Microparticles. In vivo
study is usually not directly related to the in vitro
achievement. Here are some potential in vivo studies for
alginate nanoparticles and microparticles. Wang et al.
demonstrated that BaSO4/alginate microspheres possessed
excellent visibility under X-ray and histopathology analysis
for transcatheter arterial embolization (TAE) therapy. In
vivo study verified that the embolic efficacy of microspheres
was similar to that of commercially available alginate mi-
crosphere embolic agents [14]. For colon study, Patole and
Pandit entrapped mesalamine in variety of polymers in-
cluding alginate, HPMC, and Eudragit FS-30D and found
histopathologically no signs of ulceration or bleeding of the
released microspheres [190]. Other in vivo studies including
anti-inflammatory, mucoadhesion test, and histopatholog-
ical were conducted by researchers [191–195].

For vaccine delivery, research using chitosan, trimethyl
chitosan (TMC), and alginate was conducted by Mosafer
et al. using inactivated PR8 influenza virus for mucosal
vaccine delivery. PR8-chitosan formulation elicited higher
IgG2a and IgG1 antibody titers compared with PR8-TMC.
Alginate coating significantly decreased the antibody titers
and less immune response was induced [121].

In vivo study for the transdermal application was done
by Hariyadi et al. [196]. /ey showed the effectiveness of
glutathione-alginate microspheres in decreasing matrix
metalloproteinase-1 (MMP-1) expression in the dermis
tissue of mice.

Natural products have been investigated by researchers
in vivo. Alginate polymer-encapsulated black seed oil for
intestine-targeted drug delivery has been studied by Azad
et al. (2020) in the forms of gastrointestinal distribution
study [197]. /ey found uniform distribution of beads after
oral administration in rats.

Beside in vivo investigation, /ai et al. indicated low
toxicity of lovastatin-alginate and chitosan nanoparticles in
mice in the acute toxicity test [198].

6. Conclusions

/is paper provides a comprehensive review of the current
status of alginate and its progress in drug and protein de-
livery. Alginate as a potential carrier has been investigated
for the delivery of a variety of low and high molecular weight
drugs. Applications of alginate polymer in pharmaceutical
and biomedical research have a promising future. /e most
important properties of alginate include safety, biocom-
patibility, and simple methods of preparations. /is review
highlights the recent advances in the alginate polymers in
pharmaceutical and biomedical fields. Because of its bio-
compatibility, biodegradability, and nontoxicity, it is applied
to various drug-delivery technologies. /us, researchers
need to update the advances in the alginate-based drug-
delivery systems and this review is a source of guidance for
future research.
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[24] R. Malpique, L. M. Osório, D. S. Ferreira et al., “Alginate
encapsulation as a novel strategy for the cryopreservation of
neurospheres,” Tissue Engineering Part C: Methods, vol. 16,
no. 5, pp. 965–977, 2010.

[25] G. J. Christ, J. M. Saul, M. E. Furth, and K.-E. Andersson,
“/e pharmacology of regenerative medicine,” Pharmaco-
logical Reviews, vol. 65, no. 3, pp. 1091–1133, 2013.

[26] J. Poels, G. Abou-Ghannam, A. Decamps, M. Leyman,
A. d. Rieux, and C. Wyns, “Transplantation of testicular
tissue in alginate hydrogel loaded with VEGF nanoparticles
improves spermatogonial recovery,” Journal of Controlled
Release, vol. 234, pp. 79–89, 2016.

[27] T. Richardson, P. N. Kumta, and I. Banerjee, “Alginate
encapsulation of human embryonic stem cells to enhance
directed differentiation to pancreatic islet-like cells,” Tissue
Engineering Part A, vol. 20, no. 23-24, pp. 3198–3211, 2014.

[28] X. Chen, M. Fan, H. Tan et al., “Magnetic and self-healing
chitosan-alginate hydrogel encapsulated gelatin micro-
spheres via covalent cross-linking for drug delivery,” Ma-
terials Science and Engineering: C, vol. 101, pp. 619–629, 2019.

[29] M. Jalayeri, A. Pirnia, E. P. Najafabad, A. M. Varzi, and
M. Gholami, “Evaluation of alginate hydrogel cytotoxicity on

three-dimensional culture of type a spermatogonial stem
cells,” International Journal of Biological Macromolecules,
vol. 95, pp. 888–894, 2017.

[30] A. S. Mao, J.-W. Shin, S. Utech et al., “Encapsulation of single
cells in thin tunable microgels for niche modelling and
therapeutic delivery,” Nature Materials, vol. 16, no. 2,
pp. 236–243, 2017.

[31] R. Poojari and R. Srivastava, “Composite alginate micro-
spheres as the next-generation egg-box carriers for bio-
macromolecules delivery,” Expert Opinion on Drug Delivery,
vol. 10, no. 8, pp. 1061–1076, 2013.

[32] Y. H. Choi and H.-K. Han, “Nanomedicines: current status
and future perspectives in aspect of drug delivery and
pharmacokinetics,” Journal of Pharmaceutical Investigation,
vol. 48, no. 1, pp. 43–60, 2018.

[33] K.-S. Huang, C.-H. Yang, Y.-S. Lin et al., “Electrostatic
droplets assisted synthesis of alginate microcapsules,” Drug
Delivery and Translational Research, vol. 1, no. 4, pp. 289–
298, 2011.

[34] S. Giovagnoli, P. Blasi, G. Luca et al., “Bioactive long-term
release from biodegradable microspheres preserves
implanted ALG-PLO-ALG microcapsules from in vivo re-
sponse to purified alginate,” Pharmaceutical Research,
vol. 27, no. 2, pp. 285–295, 2009.

[35] S. Giovagnoli, T. Tsai, and P. P. DeLuca, “Formulation and
release behavior of doxycycline-alginate hydrogel micro-
particles embedded into pluronic F127 thermogels as a
potential new vehicle for doxycycline intradermal sustained
delivery,” AAPS PharmSciTech, vol. 11, no. 1, pp. 212–220,
2010.

[36] A. T. Holkem, G. C. Raddatz, G. L. Nunes et al., “Devel-
opment and characterization of alginate microcapsules
containing bifidobacterium BB-12 produced by emulsifica-
tion/internal gelation followed by freeze drying,” LWT-Food
Science and Technology, vol. 71, pp. 302–308, 2016.

[37] A. Cañibano-Hernández, L. Saenz del Burgo, A. Espona-
Noguera et al., “Alginate microcapsules incorporating hyalur-
onic acid recreate closer in vivo environment for mesenchymal
stem cells,” Molecular Pharmaceutics, vol. 14, no. 7,
pp. 2390–2399, 2017.

[38] P. V. Finotelli, D. Da Silva, M. Sola-Penna et al., “Micro-
capsules of alginate/chitosan containing magnetic nano-
particles for controlled release of insulin,” Colloids and
Surfaces B: Biointerfaces, vol. 81, no. 1, pp. 206–211, 2010.

[39] D. H. Choi, C. H. Park, I. H. Kim, H. J. Chun, K. Park, and
D. K. Han, “Fabrication of core-shell microcapsules using
PLGA and alginate for dual growth factor delivery system,”
Journal of Controlled Release, vol. 147, no. 2, pp. 193–201,
2010.

[40] G. Ma, “Microencapsulation of protein drugs for drug de-
livery: strategy, preparation, and applications,” Journal of
Controlled Release, vol. 193, pp. 324–340, 2014.

[41] L. Zou, Z. Zhang, R. Zhang et al., “Encapsulation of protein
nanoparticles within alginate microparticles: impact of pH
and ionic strength on functional performance,” Journal of
Food Engineering, vol. 178, pp. 81–89, 2016.

[42] C. Jin, C. Jin, X. Siyu, Q. Xueyong, S. Song, and G. Yanru,
“Alginate/chitosan microcapsules for in-situ delivery of the
protein, interleukin-1 receptor antagonist (IL-1Ra), for the
treatment of dextran sulfate sodium (DSS)-induced colitis in
a mouse model,” European Journal of Pharmaceutics and
Biopharmaceutics, vol. 137, pp. 112–121, 2019.

[43] L. Yu, Q. Sun, Y. Hui, A. Seth, N. Petrovsky, and C.-X. Zhao,
“Microfluidic formation of core-shell alginate microparticles

10 Advances in Pharmacological and Pharmaceutical Sciences



for protein encapsulation and controlled release,” Journal of
Colloid and Interface Science, vol. 539, pp. 497–503, 2019.

[44] R. Deepika, K. Girigoswami, R. Murugesan, and
A. Girigoswami, “Influence of divalent cation on morphology
and drug delivery efficiency of mixed polymer nanoparticles,”
Current Drug Delivery, vol. 15, no. 5, pp. 652–657, 2018.

[45] N. Kotagale, N. Raut, M. Umekar, and P. Deshmukh, “Zinc
cross-linked hydroxamated alginates for pulsed drug re-
lease,” International Journal of Pharmaceutical Investigation,
vol. 3, no. 4, p. 194, 2013.

[46] O. Şanli and M. Olukman, “Preparation of ferric ion
crosslinked acrylamide grafted poly (vinyl alcohol)/sodium
alginate microspheres and application in controlled release
of anticancer drug 5-fluorouracil,” Drug Delivery, vol. 21,
no. 3, pp. 213–220, 2014.

[47] Y. Zhang, W. Wei, P. Lv, L. Wang, and G. Ma, “Preparation
and evaluation of alginate-chitosan microspheres for oral
delivery of insulin,” European Journal of Pharmaceutics and
Biopharmaceutics, vol. 77, no. 1, pp. 11–19, 2011.

[48] A. Bhattacharyya, D. Mukherjee, R. Mishra, and P. P. Kundu,
“Preparation of polyurethane-alginate/chitosan core shell
nanoparticles for the purpose of oral insulin delivery,” Eu-
ropean Polymer Journal, vol. 92, pp. 294–313, 2017.

[49] K. Chen and H. Zhang, “Alginate/pectin aerogel micro-
spheres for controlled release of proanthocyanidins,” In-
ternational Journal of Biological Macromolecules, vol. 136,
pp. 936–943, 2019.

[50] P. Del Gaudio, P. Russo, M. Rosaria Lauro, P. Colombo, and
R. P. Aquino, “Encapsulation of ketoprofen and ketoprofen
lysinate by prilling for controlled drug release,” AAPS
PharmSciTech, vol. 10, no. 4, pp. 1178–1185, 2009.

[51] G. Auriemma, A. Cerciello, R. P. Aquino, P. Del Gaudio,
B. M. Fusco, and P. Russo, “Pectin and zinc alginate: the right
inner/outer polymer combination for core-shell drug de-
livery systems,” Pharmaceutics, vol. 12, no. 2, p. 87, 2020.

[52] M. Palombo, M. Deshmukh, D. Myers, J. Gao, Z. Szekely,
and P. J. Sinko, “Pharmaceutical and toxicological properties
of engineered nanomaterials for drug delivery,” Annual
Review of Pharmacology and Toxicology, vol. 54, no. 1,
pp. 581–598, 2014.

[53] L. Zhu, F. Ge, L. Yang et al., “Alginate particles with oval-
bumin (OVA) peptide can serve as a carrier and adjuvant for
immune therapy in B16-OVA cancer model,” Medical Sci-
ence Monitor Basic Research, vol. 23, pp. 166–172, 2017.

[54] L. Hu, C. Sun, A. Song et al., “Alginate encapsulated mes-
oporous silica nanospheres as a sustained drug delivery
system for the poorly water-soluble drug indomethacin,”
Asian Journal of Pharmaceutical Sciences, vol. 9, no. 4,
pp. 183–190, 2014.

[55] J. A. R. Barros, L. D. R. d. Melo, R. A. R. d. Silva et al.,
“Encapsulated bacteriophages in alginate-nanohydroxyapatite
hydrogel as a novel delivery system to prevent orthopedic
implant-associated infections,” Nanomedicine: Nanotechnol-
ogy, Biology and Medicine, vol. 24, p. 102145, 2020.

[56] J. Colom, M. Cano-Sarabia, J. Otero et al., “Microencap-
sulation with alginate/CaCO3: a strategy for improved phage
therapy,” Scientific Reports, vol. 7, no. 1, 2017.

[57] R. Scott, E. Antoniadou, and H. Kong, “Enzymatically cross-
linked injectable alginate-g-pyrrole hydrogels for neo-
vascularization,” Journal of Controlled Release, vol. 172, no. 1,
pp. 30–37, 2013.

[58] A. Gamboa, V. Araujo, N. Caro, M. Gotteland, L. Abugoch,
and C. Tapia, “Spray freeze-drying as an alternative to the
ionic gelation method to produce chitosan and alginate

nano-particles targeted to the colon,” Journal of Pharma-
ceutical Sciences, vol. 104, no. 12, pp. 4373–4385, 2015.

[59] P. K. Gupta, A. K. Jaiswal, S. Asthana et al., “Self assembled
ionically sodium alginate cross-linked amphotericin B en-
capsulated glycol chitosan stearate nanoparticles: applicability
in better chemotherapy and non-toxic delivery in visceral
leishmaniasis,” Pharmaceutical Research, vol. 32, no. 5,
pp. 1727–1740, 2015.

[60] Y.-H. Liang, C.-H. Liu, S.-H. Liao et al., “Cosynthesis of
cargo-loaded hydroxyapatite/alginate core-shell nano-
particles (HAP@alg) as pH-responsive nanovehicles by a
pre-gel method,” ACS Applied Materials & Interfaces, vol. 4,
no. 12, pp. 6720–6727, 2012.

[61] D. Ragab, S. Sabra, Y. Xia, D. Goodale, A. L. Allan, and
S. Rohani, “On-chip preparation of amphiphilic nano-
micelles-in-sodium alginate spheroids as a novel platform
against triple-negative human breast cancer cells: fabrication,
study of microfluidics flow hydrodynamics and proof of
concept for anticancer and drug delivery applications,”
Journal of Pharmaceutical Sciences, vol. 108, no. 11,
pp. 3528–3539, 2019.

[62] P. Saralkar and A. K. Dash, “Alginate nanoparticles containing
curcumin and resveratrol: preparation, characterization, and
in vitro evaluation against DU145 prostate cancer cell line,”
AAPS PharmSciTech, vol. 18, no. 7, pp. 2814–2823, 2017.

[63] A. Sohail, M. S. Turner, A. Coombes, and B. Bhandari, “/e
Viability of Lactobacillus rhamnosus GG and Lactobacillus
acidophilus NCFM following double encapsulation in algi-
nate and maltodextrin,” Food and Bioprocess Technology,
vol. 6, no. 10, pp. 2763–2769, 2012.
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