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Dengue is a significant global health problem. Even though a vaccine against dengue is now available, which is a notable achievement,

its long-term protective efficacy against each of the 4 dengue virus serotypes remains to be definitively determined. Consequently,

drugs directed at the viral targets or critical host mechanisms that can be used safely as prophylaxis or treatment to effectively ame-

liorate disease or reduce disease severity and fatalities are still needed to reduce the burden of dengue. This review will provide a brief

account of the status of therapeutics research and development for dengue.
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The geographic distribution of dengue has expanded globally in

the past 5 decades. This mosquito-borne acute disease is now en-

demic in >100 countries, with an estimated 400 million infections

each year [1]. Recently, Dengvaxia (CYD-TDV), a tetravalent

vaccine developed by Sanofi Pasteur that consists of genes encod-

ing the premembrane (prM) and E proteins of dengue virus

(DENV) serotypes 1–4 (DENV 1–4) inserted onto the genomic

backbone of live attenuated yellow fever vaccine strain, was li-

censed in several dengue-endemic countries [2]. The vaccine ef-

ficacy, however, varied by age and serostatus of the vaccine

recipient at baseline and by the DENV serotype causing the in-

fection; lower efficacy was observed for DENV 1 and 2 as com-

pared to DENV 3 and 4 [3–5].Hence, despite the availability of a

dengue vaccine, improvements in case management to reduce the

risk of severe dengue are still needed. Current approaches are en-

tirely supportive care in the form of judicious fluid replacement

and close clinical monitoring during the critical phase of illness

[6]. No antiviral drug has been developed despite the association

between higher viremia levels and severe dengue. The current sta-

tus of dengue burden and impact of various countermeasures is

summarized in Figure 1.

Dengue Drug Targets

The RNA genome of DENV is translated as a single polypeptide

that is then cleaved into 3 structural proteins (capsid [C], prM,

and E) and 7 nonstructural (NS) proteins (NS1, NS2A, NS2B,

NS3, NS4A, NS4B, and NS5) by cellular proteases and viral ser-

ine protease, composed of NS2B and NS3 [7]. The NS proteins

are essential components of replication machinery of the DENV

genome. Several recent studies have also shown that their inter-

action with host factors lead to suppression of natural innate

immune responses that may contribute to the epidemiology

and pathogenesis that drive the spread of dengue [8].

Antiviral approaches explored thus far have targeted both

structural and nonstructural proteins of DENV. Small mole-

cules that target viral entry have been examined, although the

most advanced intervention against virus entry is in the form

of therapeutic antibodies. These are at various stages of clinical

development [9–11]. The search for small-molecule inhibitors

has focused on the multifunctional enzymes NS3 and NS5,

the supposedly “low-hanging” antiviral targets [12, 13]. In addi-

tion, the C protein and NS4B are also being explored as drug

targets [14–17]. However, no antiviral that has been developed

exclusively for DENV has entered clinical trials. The only drug

that is believed to directly target one of the viral proteins (NS5)

that has been clinically investigated is balapiravir. This nucleo-

side analogue, developed by Roche Pharmaceutical originally

for hepatitis C, was examined as a short-course indication

against dengue because of its useful short-course safety profile

[18]. This compound, however, did not meet the efficacy end

point, possibly because of altered host cell kinase expression

or activity during DENV infection [19].

Antiviral drug development can, however, now benefit from

advances in molecular and structural virology. Structural infor-

mation of the virus and several NS proteins that are critical for

the virus life cycle have been determined by nuclear magnetic

resonance spectroscopy, X-ray crystallography, or cryo–electron

microscopy. A portrait of the important elements that can con-

tribute to the drug discovery effort is shown in Figure 2. These

high-resolution structures could be combined with molecular

tools such as in silico approaches and infectious clone
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technology to identify new and thus hitherto unexplored drug

targets for DENV and possibly other flaviviruses [12, 20].

An RNA-based approach to inhibit gene expression and serve

as antivirals is another strategy that can be potentially exploited

if the current limitations such as stability and mode of delivery

can be adequately addressed [21].

Target Product Profile That Can Have Maximum Clinical Utility

Dengue is an acute, self-limiting disease in most instances, with

a small proportion of patients progressing to severe disease

manifested by increased plasma leakage, hemodynamic com-

promise, shock, and bleeding. If dengue is left untreated, mor-

tality can reach as high as 30%. The acute and self-limiting

nature of the disease in the majority of cases thus require that

an effective antiviral should have an excellent safety profile and

be active against all 4 serotypes of DENV. Ideally, an oral drug

that is dissolvable would be available, because there is a large

disease burden in the pediatric population. A once-daily dosing

schedule would also be useful for good compliance. Pragmati-

cally, however, dosing of up to 3 or 4 times per day may be

necessary to maintain drug levels above a minimum effective

concentration, as exemplified by antivirals against other acute in-

fections, such as acyclovir for varicella zoster and antibiotics

against common acute bacterial infections [22, 23]. The use of bi-

ologics such as therapeutic antibodies may overcome the chal-

lenges faced in the field with small-molecule drugs, as human

immunoglobulin G1 is known to have long half-life. These

could be used as a single-dose treatment or as short-term prophy-

laxis for travelers from countries where dengue in not endemic.

Indeed, the use of antivirals as a tool to prevent infection, ei-

ther in travelers or in populations living in areas with focal out-

breaks, could augment public health measures currently

available to prevent dengue. Besides therapeutic antibodies,

small molecules administered either once daily or even at longer

intervals, such as antimalarial prophylaxis, could be clinically

beneficial. In this respect, the pharmacokinetic properties to

prevent infection may be less demanding than that needed to

rapidly reduce viremia levels in patients with dengue. A strong

safety profile in a drug that broadly acts on all DENV serotypes

will be necessary for good compliance. However, clinical trials

Figure 1. Schematic diagram summarizing the state of the global dengue epidemic, showing countermeasures and their impact on the total dengue burden. Abbreviations:

GM, genetically modified; R0, basic reproduction number.
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to evaluate such therapy could be challenging to conduct, as

they will require treatment of large number of volunteers over

long periods, coupled with active surveillance for febrile illness

and DENVs.

Therapeutic Development Landscape

Several therapeutic trials performed in Asia and South America

that used antivirals or disease modulators have been described

since early 2000. Unfortunately, interpretations of results of

these early trials are confounded by lack of information on pa-

tient demographic characteristics, dengue severity at recruit-

ment, and defined end point measurements [24–30].

Because the pathway to discovery of new small-molecule

drugs take a long time to reach the clinic, dengue researchers

have taken advantage of the cost-saving and time-saving bene-

fits of drug repurposing [13]. The most recent proof-of-concept

clinical trials for dengue have been performed using repurposed

or off-patent drugs, namely chloroquine, prednisolone, balapir-

avir, celgosivir, and lovastatin (Table 1). These trials have all

used the conventional double-blinded, randomized, placebo-

controlled design with clearly defined primary end points.

The drugs were found to be safe in patients with acute dengue,

but all of these compounds failed to meet a priori–defined trial

end points [18, 31–34].

Two other trials (involving ivermectin and ketotifen) are cur-

rently recruiting in Thailand and Singapore, respectively (clin-

ical trials identifiers NCT02045069 and NCT026773840,

respectively). Interestingly, the preliminary findings from

the phase 2 ivermectin study suggests a reduction in serum

NS1 levels and body temperature with high-dose ivermectin,

despite no detectable difference in viremia levels (as mea-

sured by real-time quantitative polymerase chain reaction

[qPCR]) [35].

Although all of the clinical trials thus far have failed to meet

their primary efficacy end points, they have provided unique in-

sights into dengue viremia and NS1 antigenemia. This new in-

formation is useful for clarifying efficacy end points for future

trials.

Lessons Learned From Using Fever and Viremia as a Primary End

Points in Clinical Trials

The rationale of using fever and viral load reduction in these

trials stemmed from earlier observational studies that showed

a positive correlation between viremia level and disease severity

[36, 37]. These observations, together with the known profile of

patients with DENV viremia led to the hypothesis that early

treatment within 48–72 hours of fever onset with an effective

anti-DENV drug could potentially lower the viral load and

Figure 2. The dengue genome and proteome. The 5′ and 3′ untranslated regions and the arrangement of the genes encoding 3 structural and 7 nonstructural (NS) proteins

are shown. The structures for capsid protein (C; PDB code: 1R6R), E-dimer (PDB code: 1UZG), premembrane and E (prM/E) proteins (PDB code: 3C6E), E-trimer (PDB code: 1OK8),

and various images of the dengue virus virion reconstructed on the basis of cryo–electron microscopy (kindly provided by Dr Shee Mei Lok) are shown above the schematic of

the genome, while the NS1 (PDB code: 4O6B), NS3 (PDB code: 2VBC), and NS5 (PDB code: 4V0R) structures are shown below. The figure was provided by Dr Dahai Luo.
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reduce dengue severity. In reality, however, this approach poses

several challenges and limitations in field sites. Patient report-

ing of fever duration can be highly unreliable in dating the

onset of illness. As with management of most acute febrile ill-

nesses, individuals with dengue fever often take a wait-and-see

approach with home rest and self-medication, deferring seeing

a physician until later stages of illness. In most instances, the

stage of peak viremia level would have passed by the time

they present to the clinics or get enrolled into a clinical trial.

By comparison, the first studies in the clinical development

of oseltamivir as an anti-influenza drug started with human

challenge trials, where the onset of infection could be clearly

defined [38].

DENV detection and quantification using real-time qPCR

has become the method of choice in the past 20 years. This

method measures RNAemia, rather than quantifies infectious

viruses. RNA copy number can exceed infectious viral titers

by 2–5 logs. However, direct measurement of infectious viruses

is technically difficult because some clinical isolates grow poorly

in cell cultures. Moreover, not all unpassaged DENVs form con-

sistent plaques, and hence estimating the number of infectious

viral particles in clinical serum samples by using a plaque assay

is inherently inaccurate. The most sensitive biological assay

available for measuring unpassaged infectious DENV is the

mosquito inoculation technique, but the technique is hard to

master and requires an insectary, which is not available in

most diagnostic virology laboratories [39].

Besides difficulty in the timing of patient enrollment into tri-

als and limitations in viremia measurements, there is also a wide

variation in the rate of viral clearance, which is influenced by

factors such as DENV serotype and primary versus secondary

infection. These factors thus collectively contribute to the

large standard deviation often observed in viremia measure-

ments stratified by day from fever onset. Statistical consider-

ations for sample size must thus take into account this

expected variability in viremia levels.

DENV NS1 antigen detection is often used to diagnose

dengue in patients early, for enrollment into clinical trials [33,

34], and it may have a role in dengue pathogenesis [40, 41]. Its

usefulness as a reliable therapeutic efficacy end point through

time-to-clearance monitoring, however, is uncertain. A major

problem is that the level of NS1 and the duration in which

this antigen can be detected in serum differ significantly be-

tween DENV serotypes, as well as primary and secondary

dengue cases [42]. Nevertheless the recent surge in structural

and mechanistic studies of NS1 suggests that more-quantitative

NS1 tests whose findings may correlate with disease status, per-

haps by using a second host dependent biomarker, may provide

reliable end points for application of a therapeutic intervention

[40, 41, 43, 44].

Table 1. List of Clinical Studies on Dengue Therapeutics

Compound Rationale Study Site(s)
Study Drug

Characteristics Subject Characteristics Primary End Point(s) Results Reference

Chloroquine Widely used antimalarial
drug presumed to
interfere with virus entry
mechanism by inhibiting
fusion between virus and
host membrane

OUCRU, Ho Chi
Minh City,
Vietnam

Placebo vs
chloroquine
(600 mg on d 1,
600 mg on d 2,
300 mg on d 3)

Age, >18 y; trial size,
307 (154 received
placebo, 153
received
chloroquine)

Laboratory: time to
resolution of
viremia, time to
resolution of NS1
antigenemia

No change in viremia
and NS1
antigenemia

[31]

Prednisolone Antiinflammatory
properties, publication of
studies supporting
modulation of the
function of endothelial
glycocalyx

OUCRU Placebo or
prednisolone
(0.5 mg/kg or 2
mg/kg once
daily for 3 d)

Age, 5–20 y; trial size,
225 (75 received
placebo, 75 received
prednisolone 0.5
mg/kg, 75 received
prednisolone 2 mg/
kg)

Clinical: safety;
laboratory:
virological log
reduction

Not powered for
efficacy; no change
in hematological,
virological, or clinical
end points

[32]

Balapiravir Presumed to be an NS5
nucleoside inhibitor
developed for HCV by
Roche

OUCRU Placebo vs
balapiravir (1500
mg or 3000 mg
twice daily for 5
d)

Age, 18–65 y; trial size,
64 (32 placebo
recipients, 10
balapiravir 1500 mg
recipients, 22
balapiravir 3000 mg
recipients)

Laboratory: viral log
AUC from first dose
to study d 7, time to
first viremia level of
<1000 copies/mL,
time to resolution of
NS1 antigenemia

No change in virological
and immunological
end points

[18]

Celgosivir Inhibitor of ER-associated α

glucosidase
SGH/Duke-NUS,

Singapore
Placebo vs

celgosivir
Age, 21–65 y; trial size,

50 (26 placebo
recipients, 24
celgosivir recipients)

Clinical: fever
reduction;
laboratory:
virological log
reduction

No statistically
significant reduction
of viral load or fever

[33]

Lovastatin Cholesterol synthesis
inhibitor thought to limit
membrane mobilization
required for viral RNA
replication complex
assembly

OUCRU Placebo vs
lovastatin (80
mg once daily
for 5 d)

Age, >18 y; trial size,
300 (149 placebo
recipients, 151
lovastatin recipients)

Clinical: safety and
tolerability

Not powered to
address efficacy; no
evidence of
beneficial effect on
any clinical
manifestations or
DENV viremia

[34]

Abbreviations: AUC, area under the curve; DENV, dengue virus; ER, endoplasmic reticulum; HCV, hepatitis C virus; NUS, National University of Singapore; OUCRU, Oxford University Clinical

Research Unit in Vietnam; SGH Singapore General Hospital.
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Utility of Animal Models for Dengue Drug Efficacy Study

No animal model exists that is capable of approximating human

disease [45, 46]. Among the many small-animal models devel-

oped, the AG129 mouse, which is deficient in types I and II in-

terferon receptors, has been the most widely used for

pathogenesis and immunity studies. It is also the most widely

used model to evaluate dengue vaccine and antivirals [47, 48].

The 2 most recent clinical trials of celgosivir and lovastatin were

extensively evaluated using this model. Although both com-

pounds showed reduction in viremia levels and increased sur-

vival rates in treated mice [49–51], neither compound met

efficacy end point in clinical trials. A contributory factor to

this disparity between laboratory animal and clinical outcome

could be due to the time of dosing. Typically, drug dosing in

animals begins soon after viremia onset, whereas in patients

with dengue, viremia is mostly in the declining phase by the

time they are enrolled into any trial. Dosing regimens in animal

studies should thus only be initiated at or after the point of peak

viremia level. Consequently, the use of a nonlethal viremia

AG129 model could be more useful to inform appropriate dos-

ing for human trials [52].

Nonhuman primates are natural hosts to DENV, with the ca-

pability to develop viremia, but they do not manifest the disease

and its complications. Although several newer nonhuman pri-

mate models have been developed that can capture different as-

pects of dengue manifestations, their utility is limited by scarce

laboratory expertise and cost [22].

For the reasons highlighted above, there is a case for a DENV

human infection model that mimics some aspects of natural in-

fection to be developed. Besides being cost saving in the long

run, the DENV human infection model has the potential to

change the way early phase therapeutic drug trials are conduct-

ed and evaluated by allowing for controlled timing of infection

and treatment. It can also provide valuable opportunities for op-

timal pharmacokinetic studies [53].This work is currently being

performed at the State University of New York Upstate Medical

University (Syracuse) and John Hopkins University (Baltimore)

[54, 55].

Future of Monoclonal Antibodies as Therapeutics Against Dengue

Major advances in our understanding of the structure the

DENV virion have been made in the fields of X-ray crystallog-

raphy and cryo–electron microscopy in the last decade [56–60].

Studies of human monoclonal antibodies isolated from conva-

lescent patients with dengue have led to a greater understanding

of the epitopes that need to be targeted for effective virus neu-

tralization. Both serotype-specific and cross-reactive neutraliz-

ing monoclonal antibodies are being explored for therapeutic

application. The most advanced candidate, Ab513, developed

by Visterra (Cambridge, Massachusetts), was engineered to

bind domain III of the E protein of all 4 DENV serotypes.

This antibody has been shown to bind and neutralize multiple

genotypes within each of the 4 serotypes. This antibody also ap-

pears to neutralize DENV in target cells that express Fc gamma

receptor, such as monocytes, and demonstrates in vivo efficacy

despite the presence of cross-reactive antibodies that would oth-

erwise enhance infection [61, 62]. This antibody is poised to

enter clinical trials by early 2017 [10, 11, 63].

While Ab513 targets a linear epitope, more-recent discoveries

of potent broadly neutralizing antibodies against the quaternary

E protein dimer epitope (EDE) by other groups could also have

huge therapeutic potential. These antibodies bind across E pro-

teins and act by inhibiting the conformational changes that

occur during viral fusion with endosomal membranes. Structur-

al information derived from such studies also has important

implications in the future design of new therapeutics and

next-generation dengue vaccine development. [64, 65]Manage-

ment of severe acute viral infections occasionally involved the

use of pooled human serum immunoglobulins [66, 67]. The

use of intravenous immunoglobulins has, however, not been

carefully explored for the treatment of severe dengue, given its

antiinflammatory properties. However, the risk of antibody-

dependent enhancement could pose some concerns on the

use of pooled polyclonal preparation as it may contain sub-

neutralizing levels of antibodies and, paradoxically, enhance in-

fection instead [68–70].

SUMMARY/CONCLUSION

Dengue is the most important epidemic infectious diseases

caused by flaviviruses this century, causing immense public

health problems with significant morbidity and mortality, par-

ticularly in resource-poor countries [71].

Avaccine that is not completely protective and vector-control

measures that lack sustainable outcomes even in a highly orga-

nized/urbanized area such as Singapore demands that ap-

proaches such as antiviral discovery and development remain

in the forefront of research. Although no antiviral agent has

yet been found to be effective against acute dengue in proof-

of-concept trials, the therapeutic development pipeline still

contains several compounds and biologics that would soon be

evaluated clinically. While significant challenges still exist in

the dengue research community in bringing a dengue com-

pound through the entire development process, we are optimis-

tic that there is enough momentum and concerted effort

currently in academia, industry, and governmental and charita-

ble organizations to advance and facilitate therapeutic develop-

ment. The costs and benefits of developing an antiviral drug that

can coexist with vaccines are not known at this stage. However,

the recurrence of yellow fever outbreaks despite the availability

of safe vaccine [72–74] should serve as a reminder and a moti-

vation to capitalize on current momentum in antiviral develop-

ment against DENV and related flaviviruses, such as Zika virus

[75]. Targets such as the DENV protease and polymerase are

being captured in the act of carrying out their essential
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enzymatic activities, and these can contribute enormously to the

development of designer compounds that could be potent inhib-

itors. The goal of finding a cure for dengue in the next decade is

highly feasible, judging from the success of potent directly acting

antivirals against the Flaviviridae family member hepatitis C

virus.
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