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Across the European Atlantic Arc (Scotland, Ireland, England, France, Spain, and

Portugal) the shellfish aquaculture industry is dominated by the production of mussels,

followed by oysters and clams. A range of spatially and temporally variable harmful

algal bloom species (HABs) impact the industry through their production of biotoxins

that accumulate and concentrate in shellfish flesh, which negatively impact the health

of consumers through consumption. Regulatory monitoring of harmful cells in the water

column and toxin concentrations within shellfish flesh are currently the main means of

warning of elevated toxin events in bivalves, with harvesting being suspended when

toxicity is elevated above EU regulatory limits. However, while such an approach

is generally successful in safeguarding human health, it does not provide the early

warning that is needed to support business planning and harvesting by the aquaculture

industry. To address this issue, a proliferation of web portals have been developed to

make monitoring data widely accessible. These systems are now transitioning from

“nowcasts” to operational Early Warning Systems (EWS) to better mitigate against

HAB-generated harmful effects. To achieve this, EWS are incorporating a range of

environmental data parameters and developing varied forecasting approaches. For

example, EWS are increasingly utilizing satellite data and the results of oceanographic

modeling to identify and predict the behavior of HABs. Modeling demonstrates that

some HABs can be advected significant distances before impacting aquaculture sites.

Traffic light indices are being developed to provide users with an easily interpreted
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assessment of HAB and biotoxin risk, and expert interpretation of these multiple data

streams is being used to assess risk into the future. Proof-of-concept EWS are being

developed to combine model information with in situ data, in some cases using machine

learning-based approaches. This article: (1) reviews HAB and biotoxin issues relevant to

shellfish aquaculture in the European Atlantic Arc (Scotland, Ireland, England, France,

Spain, and Portugal; (2) evaluates the current status of HAB events and EWS in

the region; and (3) evaluates the potential of further improving these EWS though

multi-disciplinary approaches combining heterogeneous sources of information.

Keywords: modeling, machine learning, toxins, phytoplankton, food production, short-term, regulation, early

warning systems

INTRODUCTION

Phytoplankton provide key ecosystem services to humans
by providing food for marine life, oxygen and sequestering
CO2 (Billett et al., 1983; Smetacek, 1999; Irigoien et al.,
2004). However, some naturally occurring phytoplankton species
can produce a range of marine biotoxins that accumulate
in shellfish tissues through filter feeding (Vale et al., 2008;
Wang, 2008). Thus, blooms of these harmful algal species
(HABs) can negatively impact fisheries and aquaculture (Smayda,
1990; Berdalet et al., 2016; Sanseverino et al., 2016; FAO,
2018). The risk of intoxication causes significant economic
losses for the aquaculture industry due to the temporary
suspension of harvesting when toxin concentrations exceed
the permissible regulatory limits as laid down in regulation
EU853/2004 (Rodríguez-Rodríguez et al., 2011; Mardones et al.,
2020; Martino et al., 2020). These temporary suspensions in
harvesting cannot be prevented, but Early Warning Systems
(EWS), such as bulletins issued to local harvesters to warn them
of upcoming HAB events, aim to forecast their occurrence and
reduce their socio-economic impact. Existing EWS have focused
on some of the mechanisms/conditions that trigger the onset
of blooms (e.g., nutrient availability) (Sverdrup, 1953), their
transport (Farrell et al., 2012; Fehling et al., 2012; Whyte et al.,
2014), and the conditions that favor the different functional
groups of phytoplankton (Glibert et al., 2014; Wyatt, 2014).
However, an EWS framework requires refinement to forecast
the occurrence of harmful/toxic species affecting these regions.
Predicting which species from a functional group will dominate,
and where and when they will bloom presents major challenges
(Huisman and Weissing, 1999).

The North-eastern Atlantic (NEA) region is heterogeneous
in terms of which blooms are problematic and their associated
triggering conditions. For example, upwelling conditions along
the Spanish and Portuguese coasts can cause the rapid onset
of HAB events that impact local shellfish harvesting sites (Díaz
et al., 2016). Stratified (Raine, 2014), mixed (Gowen et al., 2012),
and frontal water masses (Simpson et al., 1979) all exist within
the Atlantic areas providing contrasting conditions for HAB
development (Rathaille and Raine, 2011; Berdalet et al., 2017;
Paterson et al., 2017). Early instances of EWS have focusedmainly
on detecting blooms, sometimes without considering whether the

algae are actually producing toxins or how the bio-accumulation
of toxins within shellfish tissues may result in harmful impacts at
low cell densities (Hallegraeff, 2003; Davidson et al., 2011).

An improved ability to forecast HAB events would result
in a significant benefit for the aquaculture industry. The
potential to develop early warning systems has for a long time
been a goal of HAB science, with early attempts to achieve
this in European waters being discussed by Maguire et al.
(2016). The EU shellfish hygiene directives require Atlantic
Area countries to operate monitoring programs for the presence
of harmful algae and shellfish biotoxins to ensure shellfish
safety. In practice, monitoring methodology varies by country
(Anderson, 1998) and is designed to protect human health
rather than the economic viability of the aquaculture industry.
However, in all cases these programs provide a “now-cast” upon
which more sophisticated remote sensing, modeling or expert
interpretation-based risk assessment or forecast systems can be
built (Davidson et al., 2016).

Shellfish production is an important industry across the
European Atlantic Arc, providing both healthy food and
important economic support for remote family and small
businesses in rural coastal areas (Munro and Wallace, 2018;
Mardones et al., 2020). The distribution and effects of HABs
in combination with other environmental and economic threats
has reduced European shellfish production over the last two
decades (Avdelas et al., 2021). HABs are sometimes associated
with large-scale marine fish mortality events but are more
frequently associated with various types of shellfish poisoning
in humans (Sanseverino et al., 2016; Bresnan et al., 2021). The
significant economic impact of shellfish biotoxins are reviewed by
Mardones et al. (2020), with Martino et al. (2020) demonstrating
that the harmful dinoflagellate Dinophysis and its toxins alone
reduce shellfish production in Scotland by 15% per annum.
Shellfish producers are not allowed to harvest and sell their
product until it is deemed fit for human consumption. This can
result in significant economic losses for the farmers (Rodríguez-
Rodríguez et al., 2011; LeBihan et al., 2019; Theodorou et al.,
2020; Karlson et al., 2021).

In order to address the challenges and potential benefits of
HAB and biotoxin EWS we must first understand the shellfish
aquaculture industry in this region. Scotland, England, Ireland,
France, Portugal, and Spain are the main shellfish aquaculture
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FIGURE 1 | Spread of shellfish aquaculture production in Atlantic areas of Scotland, Ireland (North Ireland not included), England, France, Spain, and Portugal. The

data providers are: Marine Institute in Ireland, Ifremer (from Euroshell project, 2013) in France and England the Scottish Government, Marine Environment and

Technology Centre in Portugal, Junta de Andalucía in Andalusia, and AZTI in the Basque Country. Countries names are highlighted in capital letters, whereas regions

are not.

producers (FAO, 2019) in the NEA regions (Figure 1).
Pacific oysters (Crassostrea gigas) and blue mussels (Atlantic
Mytilus edulis and Mediterranean Mytilus galloprovincialis)
are the dominant shellfish aquaculture species in terms
of production volume, although other species have high
economic value such as native oysters (Ostrea edulis), and
scallops (Aequipecten opercularis and Pecten maximus). As the
latitude decreases other bivalve species start to gain greater
importance such as Spisula spp. and Ensis spp. in Ireland
or Ruditapes philippinarum in France. Clams and cockles
dominate in southern countries of the NEA arc (Portugal
and South Spain) with a high diversity of species (Ruditapes
spp., Chamelea gallina, Donax trunculus, Callista chione, and
Acanthocardia tuberculata).

Scottish production primarily occurs in the fjordic sea
lochs that are typical of its west coast and islands and is
dominated by mussels followed by Pacific oysters (Munro
and Wallace, 2018). The value of the industry in 2017 was
estimated at £12.4 million, with Atlantic mussels contributing
£10.1m (8,232 tons) and Pacific oysters £2.0m. Production

is regionally variable, and the northerly Shetland Islands
accounted for ∼80% of the total. In England and Wales

cultured shellfish species are primarily mussels and Pacific and
native oysters (Hambrey and Evans, 2016; Defra, 2019). Besides
these, wild species Queen scallop (Aequipecten opercularis)
and Scallop (Pecten maximus) are harvested by dredging.
Mussels and Pacific oysters dominate English production, and
mussels in Wales (Ellis et al., 2015). In 2020 the Irish

shellfish aquaculture industry was worth an estimated total of
€51 million with an output of 24,000 tons. There is diverse
variety of marine bivalve molluscan species produced from
97 production areas around the coast. mainly mussels, worth
€11 million through both rope longline (10,300 tons) and
bottom cultivation (4,400 tons) as well as Pacific and native
oysters worth €37 million, with a smaller production of clam
species (Spisula solida/Venerupis spp.). Some areas along the
east and west coasts concentrate on dredging for razor clams
(Ensis siliqua/magnus). Dredging of scallops occurs mainly
on the southwest and west coasts, however, a large number
dredged from the United Kingdom and French coastlines
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are landed in Ireland. In France, shellfish farming is mainly
represented by Pacific oysters and mussels, although scallop and
Manila clam Tapes philippinarum from the Atlantic coastline
also contribute significantly to the overall production. On
the Basque Coast (Spain), at the south-eastern part of the
Bay of Biscay mussel farming is in its infancy. In contrast,
Galicia is an area of intensive mussel (Mytilus galloprovincialis)
aquaculture, approx. 250,000T per year. More than 90% of
all mussels in Spain are produced in Galicia on 3,350 rafts
operated by 2,300 families (estimates from 2012). Galician
farmers harvest from natural beds and cultured bivalves (clams,
cockles, scallops). The socio-economic importance of these
activities in Galicia is very high. In Andalusia, shellfish
are mainly harvested from the wild, principally clams, and
cockles (Chamelea gallina, Donax trunculus, Callista chione,
and Acanthocardia tuberculata). Aquaculture production focuses
on mussels (Mytilus galloprovincialis), oysters (Crassostrea gigas
and Crassostrea angulata), and some clam species (Ruditapes
decussatus and Ruditapes philippinarum) and is undertaken in
the marshes of large rivers and estuaries. Since 2000, mussel
aquaculture has been undertaken in the open sea.

In this article, we first discuss the regional occurrence
of toxin-producing HABs and their environmental
drivers. We then consider early warning approaches
to best mitigate HAB impacts for both producers and
consumers of shellfish in the NEA countries, noting
that the EWS must adapt to regional heterogeneity
in the ecology of HABs and the structure of the
aquaculture industry.

MONITORING OF MARINE BIOTOXIN
OCCURRENCE AND CAUSATIVE
ORGANISMS

Regulations to Avoid Human Poisoning
There are several EU food safety legislative requirements
laid down for the production, harvesting and analysis for
contaminants of live bivalve molluscs from classified production
areas for human consumption. Specifically, EU regulations
(853/2004, 854/2004, and 627/2019) specify the maximum
permissible regulatory limits for the presence of marine biotoxins
(Table 1). In compliance with the regulations, EU member states
monitor for the presence and quantify the concentration of
marine biotoxins in shellfish from classified production areas.
These areas have specific sampling sites known as “representative
monitoring points” (RMPs) which are routinely sampled all year
round (weekly to monthly). The monitoring frequency may
be increased: following the onset of, and throughout a toxic
event; during identified high-risk periods; during the presence of
causative toxigenic phytoplankton species in the water column;
or during the occurrence of biotoxins in adjacent shellfish
areas. When the regulatory marine biotoxin concentrations
are exceeded in a particular shellfish species, this results in a
mandatory closure for the harvesting of the affected shellfish
species in the area.

According to Regulation (EC) No 854/2004 (Annex II,
Chapter II, B, 7) and Articles 59 and 61 in EC 627/2019,
plankton samples for regulatory monitoring purposes are to be

TABLE 1 | Summary of toxins typically analyzed in Europe with the analytical methods and the regulatory limits (maximum quantities allowed in bivalve molluscs placed

on the market).

Risk for humans Reference methods Lipophilic toxinsa Analytes Regulatory limitsb Units

Amnesic shellfish poisoning (ASP) HPLC-UV – Domoic acid (DA) 20 mg DA kg−1

Paralytic shellfish poisoning (PSP) HPLC-FLD – Saxitoxin (STX) and its analogs 800 µg STX diHCl eq. kg−1

Diarrheic shellfish poisoning (DSP) LC-MS/MS Okadaic acid (OA) group OA 160c
µg OA eq. kg−1

DTX1

DTX2

DTX3

Not-completely known Pectenotoxin (PTX) group PTX1

PTX2

Azaspiracid shellfish poisoning (AZP) Azaspiracid (AZA) group AZA1 160d
µg AZA eq. kg−1

AZA2

AZA3

Cardiotoxicity Yessotoxin (YTX) group YTX 3.75e mg YTX eq. kg−1

homo-YTX

45-hydroxy-YTX

45-hydroxyhomo-YTX

Methods: HPLC, High Performance Liquid Chromatography; UV, Ultraviolet detection; FLD, Fluorescence detection; LC-MS/MS, Liquid Chromatography-Mass

Spectrometry. Toxins: DA, Domoic Acid; STX, Saxitoxin; OA, Okadaic Acid; DTX, Dinophysistoxin; PTX, Pectenotoxin; AZA, Azaspiracid; YTX, Yessotoxin. These methods

are similar across regions, but other internationally recognised validated methods may be applied (EU 627/2019).
a Until December 2014 lipophilic toxins could be analyzed together, by means of mouse bioassay.
b European Legislation: CE 853/2004; UE 15/2011; EU 786/2013, and EU 627/2019.
c Sum of OA, dinophysistoxins (DTXs), and PTXs.
d Sum of AZAs.
e Sum of YTXs.
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representative of the water column and to provide information
on the presence of toxic species as well as population trends.
For shallow stations (depth <5 m), a water sample taken using
a bucket, oceanographic bottle or a pole sampler is considered
suitable for quantification purposes. Sampling should avoid the
disturbance of the bottom sediment. In locations where depths
are >5 m depth sampling should be integrated by means of
a hose (Lindahl, 1986), which is considered more suitable for
species that present heterogeneous vertical distribution (e.g.,
Raine, 2014). Net sampling (10–20 µm) can be used to take
an integrated sample of the water column, pulling it from the
bottom up to the surface. The methodology for hose and bottle
sampling, and net hauls is described in the European Standard
EN 15972:2011. For identification and quantification of toxin-
producing phytoplankton, there is no specific method required
by EU legislation, although an EU NRL best practice guide
is due to be published soon1. Post collection phytoplankton
are enumerated by microscopy, with inverted microscopy after
sedimentation of fixed samples (Utermöhl, 1958) being the
widely used standard. The Utermöhl procedure is described in
the European Standard En 15204, 2006. Monitoring toxigenic
phytoplankton potentially provides an indication and early
insight of the potential subsequent onset of toxification of
shellfish above regulatory levels (Davidson et al., 2016; Maguire
et al., 2016; Botelho et al., 2019). The abundance of harmful
phytoplankton generally follows a seasonal cycle with the greatest
abundance in spring and summer, and to a lesser extent in
autumn months (Coates et al., 2018).

Main Groups of Poisoning Syndromes
and Associated Toxins
Recently, Bresnan et al., 2021 used the IOC-ICES-PICESHarmful
Algal Event Database (HAEDAT) to describe the diversity of
harmful algal events along the Atlantic margin of Europe from
1987 to 2018 (Figure 2). Closures of shellfish production areas
are mainly due to the regular annual occurrence of Diarrhetic
Shellfish Toxins (DSTs) with protracted closure periods typical
over the summer months. Paralytic Shellfish Toxins (PSTs) and
Amnesic Shellfish Toxins (ASTs) occur less frequently and usually
result in shorter closure periods. The occurrence of Azaspiracid
toxins (AZA’s), in the arc area, although observed from the
Southwest along the West and through to the Northwest coast
of Ireland, is not a regular occurrence in the region. The length of
closure periods associated with AZAs is also extremely variable.
Most events recorded were due to DSTs produced by species of
the Dinophysis acuminata complex and Dinophysis acuta. Their
seasonal patterns have been thoroughly described in European
Atlantic waters (e.g., Reguera et al., 2012; Batifoulier et al., 2013;
Fernández et al., 2019; Salas and Clarke, 2019). However, there
is strong interannual variability in the timing and duration of
shellfishery closures, which can respond to physical factors such
as temperature, stratification and water circulation. Therefore,
four main poisoning syndromes (DSP, AZ, ASP, and PSP) and

1Monitoring of Toxin-producing Phytoplankton in Bivalve Mollusc Harvesting
Areas; Guide to Good Practice: Technical Application; and, EUWorking Group on
Toxin-producing PhytoplanktonMonitoring in BivalveMollusc Harvesting Areas.

group of associated toxins (DST, AZA, AST, and PST) have been
identified as most problematic to the shellfish industry in the
European Atlantic Arc countries (Figure 2). These are introduced
in the following paragraphs in order from the greatest to least
concern. Table 2 shows a more comprehensive summary of
syndromes and associated causative species; for an exhaustive
review see Bresnan et al. (2021).

DSP – Diarrhetic Shellfish Poisoning; DST – Diarrhetic
Shellfish Toxins:Dinophysis spp. are common in Europeanwaters
where cell densities are highest in summer and generally absent or
below the detection threshold in the winter months (November
to February). Blooms are thought to mainly develop in open
waters, possibly at frontal regions and then be advected to
coastal aquaculture sites (Delmas et al., 1993; Batifoulier et al.,
2013; Whyte et al., 2014; Raine et al., 2016). In Scotland, early
season blooms are typically related to D. acuminata, whereas
occasional late summer blooms are related to D. acuta (Swan
et al., 2018). Recently Paterson et al. (2017) demonstrated the
potential for a frontal region to limit the transport of a D. acuta
bloom, preventing it from significantly impacting aquaculture
sites in Loch Fyne. In Ireland, D. acuminata starts to appear
from late May, and usually peaks in late June–July. Similar to
Scotland D. acuta starts to appear in Irish waters from June/July
onward and tends to peak later in the summer during August
(Salas and Clarke, 2019) and can result in prolonged closure
periods for mussel harvesting. Additional events can occur in
September/October with occasional winter closures as observed
in 2012–2013 (Clarke, 2020). In France, Dinophysis spp. are
also responsible for the highest number of closure periods, the
main causative species being D. acuminata, Dinophysis sacculus,
D. acuta, and Dinophysis caudata. Dinophysis blooms occur from
April to October, but start later in the English Channel when
compared- to the south in the Bay of Biscay. In Spanish Galician
waters, D. acuminata occur every year, although there is strong
interannual variability in the duration of the closures related
to this species (Reguera et al., 2012; Moita et al., 2016). In the
autumn transition, from upwelling to downwelling conditions at
the end of summer, blooms of D. acuta appear in some years
(Díaz et al., 2016, 2019; Ruiz-Villarreal et al., 2016). A recent
review of 30 years data show that there has been no increase in
frequency or intensity of D. acuta in Galician Rias (Díaz et al.,
2016). Dinophysis ovum, D. sacculus, and Dinophysis fortii (with
a preference for mild and warm temperatures) are also common
in the south of Spain and Portugal. In Spanish Andalusian
waters, the Dinophysis acuminata complex is present most of
the year, but concentrations are seasonal with two or three
peaks occurring in spring and autumn (Fernández et al., 2019).
Dinophysis acuta reaches peak concentrations in summer and
the beginning of autumn (Fernández et al., 2019). In Portugal,
Dinophysis blooms are observed from April to October (spring
to autumn) during the upwelling season and particularly during
the autumn transition, associated with periods of thermohaline
stratification between moderate pulses of upwelling or during
downwelling events (Moita et al., 2006; Trainer et al., 2010;
Reguera et al., 2012, 2014).

PSP – Paralytic Shellfish Poisoning; PST – Paralytic Shellfish
Toxins: Several members of this genus Alexandrium contain the
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FIGURE 2 | Number of years where events associated with harmful algae have been recorded in IOC-ICES-PICES HAEDAT database. The majority of events are

management actions closing shellfish harvesting areas to protect human health.

gene-specific to produce STX and its mere presence implies a
risk (Swan and Davidson, 2012). The highly toxic PST producing
species Alexandrium catenella (formerly identified as Gonyaulax
excavata, Alexandrium fundyense, and/or Group I ribotype/N.
American Alexandrium tamarense) occurs in Scottish waters and
can result in shellfish flesh samples above regulatory threshold
limits at low cell densities. However, indistinguishable (at least
by light microscopy) non-toxic Alexandrium tamarense can co-
occur (Touzet et al., 2010). Alexandrium minutum is the primary
causative organism responsible for PSP in Irish shellfish and
in the south west of England, although non-toxin-producing

strains have been recorded in Ireland (Touzet et al., 2007;
Clarke, 2020) and Scotland (Brown et al., 2010; Lewis et al.,
2018). In 2020 in southwest Ireland, the highest ever PSP
concentrations were observed in mussels and oysters, where
unusually the PSP event lasted for several weeks. Along the
French Atlantic coast, the main toxic species is also A. minutum
with regular blooms in bays and semi-enclosed areas around
French Brittany (e.g., Penze estuary, Bay of Brest, and Rance)
resulting in closures (Santos et al., 2014; Chapelle, 2016). The
Alexandrium occurrence, bloom and regulation in each bay
is, however, driven by different biological processes such as
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TABLE 2 | Main toxification syndromes and main associated species worldwide.

Syndrome Causative organism Toxin group Clinical symptom Impact

ASP Pseudo-nitzschia abrensis Domoic acid (DA) Neurological Food safety

Pseudo-nitzschia australis

Pseudo-nitzschia brasiliana

Pseudo-nitzschia caciantha

Pseudo-nitzschia calliantha

Pseudo-nitzschia cuspidata

Pseudo-nitzschia

delicatissima

Pseudo-nitzschia

fraudulenta

Pseudo-nitzschia hasleana

Pseudo-nitzschia

multiseries

Pseudo-nitzschia

multistriata

Pseudo-nitzschia plurisecta

Pseudo-nitzschia

pseudodelicatissima

Pseudo-nitzschia pungens

Pseudo-nitzschia seriata

Pseudo-nitzschia

subpacifica

DSP Dinophysis acuminata Okadaic acid (OA),

Dinophysis and

pectenotoxins

Gastrointestinal Food safety

Dinophysis acuta

Dinophysis caudata

Dinophysis fortii

Dinophysis infundibulum

Dinophysis norvegica

Dinophysis ovum

Dinophysis sacculus

Dinophysis tripos

Phalacroma rotundatum

Prorocentrum

hoffmannianum

Prorocentrum lima

AZP Amphidoma languida Azaspiracids (AZA) Gastrointestinal Food safety

Azadinium dexteroporum

Azadinium poporum

Azadinium spinosum

PSP Alexandrium andersonii Saxitoxins (STX)

and analogs

Neurological Food safety

Alexandrium catenella

Alexandrium minutum

Alexandrium ostenfeldii

Centrodinium punctatum

Gymnodinium catenatum

NSP Karenia brevis Brevetoxins (BTX) Neurological,

respiratory

irritations

Food safety, Food

security (fish kills),

Human health

(aerosols)

Karenia papilionacea

YTX Gonyaulax spinifera Yessotoxins (YTX),

[also adriatoxin]

n.e.p. Food safety

Lingulodinium polyedra

Protoceratium reticulatum

This is a non exhaustive list that does not consider less frequent species or species of questionable impacts. N.e.p., no effect proven in humans (EFSA, 2008). The list of

all HAB species is reviewed and regularly updated at IOC-UNESCO Taxonomic Reference List of Harmful Microalgae (http://www.marinespecies.org/hab/).
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water temperature, dilution rates, river inputs, and/or pathogens
(Chambouvet et al., 2008; Chapelle et al., 2015; Sourisseau et al.,
2017). The population ofA. minutum is also heterogeneous along
the coast with sub-populations having different physiologies and
levels of toxicity (Le Gac et al., 2016). The species Alexandrium
ostenfeldii has been identified in various locations in the region
including Spain, France, United Kingdom, and Ireland (Bresnan
et al., 2021). In addition to saxitoxins this species can produce
spirolides (Davidson et al., 2015) and other toxins including
gonyautoxins (Martens et al., 2017), but with spirolides being the
dominant toxins in European and North Atlantic A. ostenfeldii
populations (Sopanen et al., 2011).

Paralytic Shellfish Toxins are also associated with
Gymnodinium catenatum (Visciano et al., 2016). This species
is prevalent in Iberian waters (Galician and Andalusian waters
in Spain, and Portugal) and poses a concern. However, it has
not been identified in the Basque Country area (Muñiz et al.,
2017). The timing of G. catenatum blooms is associated with
relaxation of upwelling events from late summer and subsequent
advection into coastal areas, (Bravo et al., 2010) which are more
common on the Mediterranean side than on the Atlantic side
of Andalusia. In the Gulf of Cadiz and the Iberian Peninsula,
the dominant organisms are Gymnodinium catenatum and
Alexandrium minutum (Vale et al., 2008), the former being
almost exclusive in the Atlantic coasts of Spain and Portugal,
from mid-summer to autumn.

ASP – Amnesic Shellfish Poisoning; AST – Amnesic Shellfish
Toxins: The genus Pseudo-nitzschia contains species or strains
capable of producing domoic acid (DA) (Landsberg, 2002;
Moestrup et al., 2009). In Scotland, similar to Dinophysis, this
genus is thought to be transported advectively by oceanographic
currents (Fehling et al., 2012; Siemering et al., 2016). Pseudo-
nitzschia is categorized within the low toxin producing Pseudo-
nitzschia delicatissima group and the (usually) toxic Pseudo-
nitzschia seriata group. Typically blooms of the P. delicatissima
group start earlier in the year (March–April), with blooms
of the P. seriata group occurring in July–August when most
toxicity is expected (Fehling et al., 2006; Rowland-Pilgrim
et al., 2019). Analysis of Pseudo-nitzschia blooms in Loch
Creran (Argyll and Bute, Scotland) has suggested that these
are related to periods of poor weather (low air pressure and
rainfall preceding the blooms). In Ireland, Pseudo-nitzschia
australis blooms, observed from March to May, from the
southwest up along the west coast, are the common cause of
harvesting closures (usually short 1–2 weeks) (Clarke, 2020).
DA producing species P. seriata and Pseudo-nitzschia multiseries
have also been detected in Irish waters. In France, blooms
of Pseudo-nitzschia species, including P. australis, are regularly
observed from the Bay of Biscay to the English Channel
(Nezan et al., 2010; Thorel et al., 2017), from March to
November. These blooms appear linked to the seasonal and
interannual frequency (Husson et al., 2016) of physical and
hydrological processes (i.e., river discharge, upwelling, vertical
mixing). In Galicia, blooms of Pseudo-nitzschia have been
reported for decades (Míguez , 1996; Velo-Suarez et al., 2008),
but with only one report of human intoxification, involving
two people, in 2004 (HAEDAT database). In the Basque

Country, the detection of toxins in April 2017 coincided with
a bloom of Pseudo-nitzschia spp., but the causative species
could not be elucidated. During the upwelling season in
Portugal, from spring to late summer, blooms of Pseudo-nitzschia
spp. are recurrent (Palma et al., 2010) although harvesting
closures are very few per year and of short term duration
(1 month maximum). P. australis (Costa and Garrido, 2004)
and P. multiseries (Godinho et al., 2018) have been reported
associated with these events.

AZP – Azaspiracids Shellfish Poisoning; AZA – Azaspiracid
Toxins: In Ireland, Azadinium spinosum is the causative species
of Azaspiracids, which can occur all around the Irish coastline,
but predominantly cause closures around the northwest, west
and southwest coasts. Similar to DSP, significant and prolonged
closure periods are caused by AZA events, and on occasion
can carry over from 1 year to the next, as observed in 2005–
2006, and in 2013–2014 (Clarke, 2020). Azadinium has also
been observed in Scottish and southwest of England waters
(Paterson, 2017; Dhanji-Rapkova et al., 2019). The genus has
also been detected in France (Brittany) and Spain (Galicia)
since early 2000s (Magdalena et al., 2003) with a recent
event in south Spain (Tillmann et al., 2017). However, reports
of human illness have been sporadic in the NEA region
(Bresnan et al., 2021). Also occurring in Irish waters, producing
different AZA compounds (not currently legislated for), is the
closely related Amphidoma languida. In Portugal, the genus is
routinely monitored but no blooms or associated impacts have
occurred to date.

We now describe typical patterns of HAB shellfish closures
using as examples a northern (Ireland) and southern region
(Portugal) since other countries around them follow similar
patterns:

In Ireland, it is not unusual to have site closures due to
toxins above regulatory levels from all four main toxin groups
ASTs, AZAs, DSTs and PSTs (Table 2). Most years shellfish
production area closures are due to DST and AZA. However,
the extent, the maximum concentrations observed, and the
length of the closure varies considerably from year to year,
and occasionally intoxication of shellfish occurs late in the year
(Clarke, 2020). The number of closures due to AST and PST
is variable, with some years having no closures at all due to
concentrations below regulatory levels. When there is an AST
or PST event, it is usually short-lived with closures in place for
1–2 weeks (Table 3).

In Portugal, events occur mainly from spring to autumn
and are associated with upwelling (AST) or the subsequent
stratification after wind relaxation (DST and PST) (Table 4).
Closures can last 9 months from the beginning of the
year. AST events are less frequent where the Pseudo-nitzschia
genus is always present in Iberian waters. PST events usually
occur between September and December/February associated
with Gymnodinium catenatum blooms, at the end of the
upwelling season (Moita et al., 2003; Pitcher et al., 2010)
until January in northern Portuguese waters (Pazos et al.,
2006). Pseudo-nitzschia species were regularly observed in
water samples and during spring-summer upwelling episodes
(Palma et al., 2010).
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The Historical Evolution of EWS
This section has shown that there is a heterogeneity of toxic
events that can be harmful for human health and lead to
shellfish area closures that have a direct, negative impact on the
industry. Risk and uncertainty (Mousavi and Gigerenzer, 2014)
represents a management challenge that impacts the industry
throughout the year, not just when outbreaks occur. Therefore,
the need for reducing this uncertainty is great, but shellfish farms

are generally small businesses without the capacity to develop
their own EWS. Therefore, most EWS developments have been
initiated by the scientific community after noting the needs of the
industry and regulatory authorities, and the scientific potential.
For example, in Ireland, farming closures since the late 1980s
especially in the southwest, have been a major concern for the
continual development of the sector and drove the development
of forecasting approaches in that location. Initially, as part of

TABLE 3 | Closure table of Irish production areas in 2018 due to toxins concentrations above regulatory levels.

TABLE 4 | An overview of the spatial and temporal distribution of ban-on-harvesting periods in Portugal during 2018.
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the ASIMUTH project, several institutes in Scotland, Ireland,
France, Spain, and Portugal developed risk assessments, models
and algorithms to assess the probability of occurrence of a
HAB event and disseminated this information to stakeholders in
“bulletins” (Davidson et al., 2016; Maguire et al., 2016). This was
the precursor of the PRIMROSE project, which has improved
these bulletins and added additional operational models (https:
//www.shellfish-safety.eu/).

Operational or pre-operational systems have previously been
trialed in Scotland, France, Ireland, the Basque country, and the
wider United Kingdom as described below:

In Scotland, the introduction of weekly HAB bulletins
and assessments came after the trade association Seafood
Shetland approached SAMS following a large, advected bloom
of Dinophysis in 2013, that impacted all the active shellfish
harvesting sites on the West coast of Shetland. The bloom,
exacerbated by strong westerly winds, caused Dinophysis
numbers in the affected sites to accumulate rapidly, raising toxin
concentrations in the shellfish above actionable levels within 2–
3 days of the bloom’s arrival (Whyte et al., 2014). This time
span was shorter than the weekly frequency of the regulatory
monitoring program and hence intoxicated shellfish reached
market. As a result, seventy people reported illnesses associated
with symptoms of diarrhetic shellfish poisoning. The approach
to reporting HABs in Shetland has developed iteratively through
dialogue between local stakeholders and scientists at SAMS.
The Scottish bulletin has been well received by industry who
continue to be regularly updated on its development through
local stakeholder workshops.

By contrast, in France EWS development has mainly been
driven by scientific interest, but, unfortunately, has failed to
attract enough interest from the industry. As an example, a
French oceanographic forecasting system (PREVIMER; Charria
et al., 2014) was built 10 years ago, and although some scientific
developments related to HABs were progressed within this
system through several joint projects (EASYCO, ASIMUTH)
there was little industry interest was noted in its use.

As in Scotland, the Irish bulletin seems to have attracted
the interest of the industry. The bulletin is usually prepared on
Monday–Tuesday each week and then uploaded to the public
access website from where it is publicly accessible and available
for download. The bulletin is weighted to those areas where
impacts from HABs are greatest, primarily the aquaculture sites
of the southwest and west. However, bulletins and the forecasts
they contain are assembled and issued for the whole country.
There is an increase in the use of the bulletin during the
bloom season where detectable amounts of biotoxins are more
likely to occur. Besides the weekly bulletin, the Marine Institute
provides up-to-date information on its website, https://webapps.
marine.ie/habs related to the concentration of phytoplankton and
biotoxins for the inshore and offshore production areas.

The ShellEye project was funded for 4 years by the
United KingdomBiotechnology and Biological Sciences Research
Council (BBSRC) and Natural Environment Research Council
(NERC) to develop a water quality bulletin service specifically
for the shellfish industry, using the latest satellite and modeling
technologies. ShellEye was driven by industry demand with the
bulletin service being trialed by a number of shellfish farmers

and related stakeholders, focused on four pilot sites in England,
Wales, and Scotland: St Austell Bay, Menai Straits, Morecambe
Bay, and Loch Ryan. Feedback obtained from shellfish farmers
demonstrated the potential for the service, confirming they were
able to use the information in the day-to-day management of
their farm, and were interested to continue receiving bulletins,
e.g., “We enjoyed the bulletins hugely and find it amazing to be
able to see so clearly. We actually harvested our first batch of
oysters this week, so the emails were very useful.”

The Basque country is a special case since aquaculture activity
is very recent and has been driven by a coordinated group of
local industries, local institutions, and local scientists. Therefore,
the need for an EWS has been, from the beginning, driven
by industry, institutions and scientists together. As farming is
offshore, the EWS is required to include, not only harmful events,
but also information on extreme events (e.g., winds and waves).

SHORT-TERM FORECAST OF HAB
OCCURRENCE AND TOXIN PRESENCE
IN SHELLFISH

A development within modern alert systems is the use of a range
of approaches to provide a forecast rather than a “now cast” of
HAB and biotoxin conditions. These can be summarized into
several major types (Davidson et al., 2016; Maguire et al., 2016;
Mateus et al., 2019).

1. Type 1: Industry alert “bulletin” reports, which are
compiled from datasets including data generated from
biotoxin and/or phytoplankton monitoring programs,
and include, where available, additional environmental
variables. These parameters are often synthesized into
graphical and map images for easy interpretation by
stakeholders. The simplest bulletins are only warning
systems reporting current findings, and do not necessarily
function as early warning systems. However, through an
“expert interpretation” to assess current and short-term
future evolution of HAB and biotoxin risk, these bulletins
can function as forecast systems for aquaculture businesses.

2. Type 2: Particle tracking based systems. These systems rely
on Lagrangian dispersion modeling approaches. They aim
to identify key production points of toxic phytoplankton
and track their dispersal using oceanographic modeling.
Lagrangian particle tracking models are a useful tool to
predict the transport of HAB events once they have been
observed. Particle tracking models, coupled to circulation
models, are used in all NEA arc countries.

3. Type 3: Statistical models based on remote sensing. These
models aim to improve the inference of presence from
environmental conditions (e.g., sea surface temperature
and surface chlorophyll) from satellite images and
the statistical relationship with the presence of toxic
phytoplankton. The approach aims to forecast the
presence of toxic events under particular environmental
conditions, even if the cause-effect relationships are not
fully understood.
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4. Type 4: Statistical (e.g., Generalized Additive Models,
GAMs) and machine learning models (e.g., Bayesian
networks) based on the fusion of multiple sources of data.
These types of model analyze environmental conditions
during historic toxic events to establish relationships
between environmental factors and the development
of toxic events.

5. Type 5: Mechanistic full-low trophic ecosystem
models. These systems rely on the use of the
mechanistic understanding of the relationships between
environmental conditions and the presence of toxin-
producing phytoplankton. As such, the relationships of
environmental conditions with the proliferation of toxic
phytoplankton, its dispersion and assimilation by bivalves
is explicitly addressed. However, most of these models
work at aggregated trophic levels and hence struggle to
differentiate between harmful and benign phytoplankton.
The degree of complexity of these systems varies,
dependent on the complexity of the models they rely on.

Forecasting systems are rarely comprised of just one
approach, but instead are a combination of shared information
from different multiple approaches. For example, the boundary
between type 4 and type 5 models may not be clear, since
statistical modeling always uses some of the mechanistic
knowledge available (e.g., variables to include), whereas
mechanistic models use statistical inference of equations and
parameters. The above approaches are currently incorporated in
“bulletin” reports from each region utilizing the various datasets
and data products available (Supplementary Table 1). Most
of this information in Atlantic arc countries, especially HAB
in situ data, had not been previously available publicly. However,
this information is now becoming available through public
bulletins, datasets, websites and media platforms providing
access to monitoring data and data products in combination with
forecasting models (Table 5). The current status of forecasting
systems in Atlantic Arc countries is summarized below.

In Scotland, the alert system includes a “traffic light” based
risk index and a number of other data products that summarize
current and historical HAB and shellfish biotoxin risk for
the country as a whole. In addition, a more detailed “expert
interpretation” based risk assessment is provided for the Shetland
Islands. Bulletins have been produced weekly since 2014 (type 1
system) and are available via www.HABreports.org in pdf format
providing a summary of HAB and biotoxin concentrations in
the current and previous 3 weeks. Additional information is
provided on relevant environmental conditions allowing for
expert interpretation-based risk assessment for the week ahead
to be generated. This additional information includes mean wind
direction in the current and three preceding weeks from local
meteorological stations, forecasted sea surface currents from the
Mercator Ocean model, sea surface temperature from JPL and
Chlorophyll from Copernicus. HAB predictions based on the
WeStCOMS mathematical model (type 2) are also integrated
within the HABreports web site with the aim of predicting the
likely impact on coastal aquaculture of any blooms that have
been detected offshore by remote sensing (type 2 system). The
effectiveness of the early warning of the Scottish system has been

evaluated by Davidson et al. (2021) who found predictions to
be 74% accurate.

The Scottish HABreports alert system also includes model
based HAB predictions from the WeStCOMS mathematical
model (type 2 system) with the aim of predicting the likely impact
on coastal aquaculture of any blooms that have been detected
offshore by remote sensing (type 2 system). The WeStCOMS
mathematical model is a coupled meteorological/oceanographic
model that includes meteorological forcing using the open-
source Weather Research and Forecasting (WRF) model v.
3.5.1 (Skamarock and Klemp, 2008). This is a non-hydrostatic
atmospheric model, nested within the NOAA National Centers
for Environmental Prediction (NCEP) operational forecast
model with 1◦ spatial resolution (Juang, 2000). The WRF model
domain covers Scotland and its neighboring seas with a grid
of 140 × 240 points. The finest resolution is around 2 km
in the central part. The oceanographic model is a Finite-
Volume Coastal Ocean Model (FVCOM) based hydrodynamic
model. Model bathymetry was based on gridded data from
SeaZone (2007) and refined in certain key areas using Admiralty
charts and some multi-beam surveys. Vertical eddy viscosity
and diffusivity were computed using the Mellor-Yamada 2.5
scheme (Mellor and Yamada, 1982). Horizontal diffusion was
represented using a Smagorinsky (1963) eddy parameterization
with a fixed coefficient (C = 0.2). The bottom boundary layer
was parameterized with a logarithmic wall-layer law using
a drag coefficient. The hydrodynamic model was integrated
numerically using a time-split method with an external time
step of 0.6 s. Boundary conditions: Water movement within
hydrodynamic models is predominantly driven by tidal forcing
applied at the “open” (water) boundaries. The tidal forcing
was derived from the 1/30◦ degree implementation of the
Oregon State University Tidal Prediction Software (OTIS) for
the European shelf (Egbert and Erofeeva, 2002). At each of
the domain’s open boundary nodes, the 11 primary tidal
constituents were used to derive sea surface elevation time series.
Open boundaries also included a 6-km-wide “sponge layer” to
filter high-frequency numerical wave reflection noise using a
Blumberg-Kantha implicit gravity wave radiation condition (Wu
et al., 2011). The use of this model to operationally simulate
HABs is explained more fully by Aleynik et al. (2016) and
Davidson et al. (2021).

In England, since the completion of the ShellEye project
outlined above, there is currently no operational forecasting
of HABs undertaken for this region. However, the project
demonstrated the potential for a water quality monitoring service
for the aquaculture industry, using satellite ocean color products
to provide early warning of the growth or decline of certain high-
biomass HAB species in a weekly bulletin (Miller et al., in press).
Of the marine biotoxin producing genera, only Pseudo-nitzschia
spp. can form a dense enough bloom to affect ocean color; but
not all blooms of this species release toxins meaning that careful
interpretation of results is required.

The unstructured grid hydrodynamic model FVCOM is
also run operationally for a domain covering the Southwest
United Kingdom, producing 3-day predictive forecasts. The
model is forced by an operational WRF for surface forcing
and the lateral boundary data are obtained from the CMEMS
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AMM15 model. The river input is modeled from the WRF
temperature and precipitation. The Lagrangian particle tracking
model PyLAG (Uncles et al., 2020) is run offline on saved
hourly outputs from FVCOM. This Lagrangian model uses
a Milstein numerical scheme for advection and diffusion,
with the diffusivities provided directly from the hydrodynamic
model. There are no biological behaviors, and the virtual
particles are modeled as buoyant, however, it is possible
to set up with 3D advection and some simple behaviors
(e.g., temperature dependence). Particles are seeded based on
the HAB-risk product (Kurekin et al., 2014) in a 200-m
radius around identified high risk areas. These are advected
until the end of the forecast period and the results of
the model are served as both a gridded particle density
and probability field: this takes into consideration both
the uncertainty from the identification algorithm and the
drifting particles.

ShellEye also investigated single site statistical models of the
environmental conditions that promote the release of algal toxins
(Type 3 models). It was found that sea surface temperature
(SST), solar radiation, wind speed, time-lagged rainfall and wind
direction, were useful in predicting the onset of DSP toxins
(Schmidt et al., 2018).

In Ireland, since 2013, the Marine Institute has produced a
weekly HAB bulletin which is published and publicly available
in PDF format through the in-house developed HABs database
and website platform. The objective of the bulletin is to provide
a short-term (3–5 days) predictive forecast on the likelihood
of the occurrence of a HAB event around the Irish coastline
and inshore areas. This prediction is based on current and
historical data of HABs species and marine biotoxin occurrence
from the national monitoring programs, incorporating observed

trends and patterns with data input from satellite data and
hydrodynamic models.

The bulletin provides information on the potential
development and occurrence of toxins in shellfish and/or
harmful phytoplankton species (type 1 system) in aquaculture
areas, based on in situ monitoring and data generated over the
preceding 3 weeks. In detail, the bulletin contains geographical
maps of the cell densities of the major HAB phytoplankton
species (Pseudo-nitzschia spp., Azadinium-type spp., Dinophysis
spp., and Alexandrium spp.) and their associated causative
biotoxin concentration in shellfish [Domoic Acid (AST),
Azaspiracids (AZA), Okadaic Acid and Dinophysistoxins 1,
-2 (DST), and Saxitoxin and related compounds (PST)]. The
number and region of any closures of shellfish aquaculture
production areas due to these toxin concentrations exceeding
regulatory levels in shellfish are presented as doughnut charts
with accompanying text comments as regards the observations
based on the preceding 3 weeks of data. Other HAB species
are also detailed, particularly the bloom-forming species
types, commonly observed in Irish waters, including Karenia
mikimotoi, Phaeocystis spp., and Noctiluca scintillans. Data
and results are mapped and tabulated from historical trends of
observed biotoxin concentrations per geographical region from
the beginning of the current year to date and also for the current
week and additionally the historical occurrence of toxicity per
region over the last 10 years per toxin group. Furthermore, a list
of the top five phytoplankton species per geographical region
from the preceding to the current week is also displayed.

Satellite imagery detailing chlorophyll-a concentration and
its anomaly (in comparison to the average of the past 60 days)
and sea surface temperature (SST) are also displayed. The
method used to calculate the chlorophyll-a anomaly uses the

TABLE 5 | EWS for HABs and Biotoxins in the Atlantic arc regions: features and components.

NEA arc

countries

EWS Type 1 EWS Type 2 EWS Type 3 EWS Type 4 Warning

frequency

Warning

focus

Bulletins and/or demo links

Ireland Operational Operational Operational None Weekly DST, PST, AST,

and AZA

http://webapps.marine.ie/HABs/

Scotland Operational Operational None None Weekly (spring

to autumn)

DST, PST, and

AST

https://www.habreports.org/

England Operational None Operational None Weekly (spring

to autumn)

Karenia, and

Pseudo-

nitzschia

ShellEye email bulletin subscription service:

https://www.shelleye.org S-3 EUROHAB

for Channel: https://www.s3eurohab.eu

France Operational None Developing None Weekly DST, PST, and

AST

Monitoring bulletins:

https://envlit-alerte.ifremer.fr/accueil

Demonstration: https:

//www.s3eurohab.eu/portal/?state=07513e

Spain – Basque

Country

Operational Developing None Proof-of-concept Monthly DST, PST, and

AST

Temporally offline due to system

reconfiguration (www.euskoos.eus)

Spain – Galicia Operational Operational None None Weekly DST, PST, and

AST

http://centolo.co.ieo.es/primrose/Galician_

HAB_bulletins/

Spain –

Andalusia

Operational None Proof-of-concept Proof-of-concept Weekly DST, PST, AST,

AZA, and YTX

https://www.juntadeandalucia.es/

agriculturaypesca/moluzonasprodu/

Portugal Operational Operational None None Weekly DST, PST, and

AST

http://www.ipma.pt/pt/bivalves/index.jsp

http://www.ipma.pt/pt/bivalves/fito/index-

map-dia-chart.jsp
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60-day median chlorophyll-a concentration, not including the
last 2 weeks to prevent a potential recent bloom skewing the
median field (Stumpf et al., 2003 and Tomlinson et al., 2004).
For SST, the information provided by the Irish Weather Buoy
Network (IMOS) on the 10-year weekly average temperature is
used and compared with the same week of the past 10 years,
so the anomaly is based on the long-term weekly average and
each measured sea surface temperature value has the appropriate
weekly average value.

Over many years, hydrodynamic models for three Irish sites
(Bantry Bay in the Southwest of Ireland, Killary Harbour and
Cleggan at the West coast of Ireland) have been developed
within the Marine Institute. These provide information on
water flow, particle tracking and physical oceanographic features
(type 2 system). For this, hydrodynamic forecasts from a
Regional Ocean Modeling System (ROMS) for 3 days in
Irish coastal waters is created. ROMS is an evolution of the
S-Coordinate Rutgers University Model (SCRUM), as described
by Song and Haidvogel (1994). The numerical aspects of
ROMS have been described in detail by Shchepetkin and
McWilliams (2005), where the ROMS AGRIF version developed
in France (Debreu et al., 2012) is used. The downscale models
of areas of particular interest (Bantry Bay, Killary Harbour,
and Cleggan Bay) incorporate online particle tracking with
virtual particles released at pre-defined transects at the start
of each model run (Leadbetter et al., 2018). The operational
model also produces an estimate of the ocean state as a 3–
7 days forecast of the dominant regional physical processes
that result in water exchange events between the bay and
its adjacent shelf for these three areas. Upwelling and down-
welling signals indicate potential for future toxic contamination
of shellfish in certain bays in the south-west of Ireland. The
skill of the model in simulating toxic HAB episodes up to
10 days in advance is demonstrated by Cusack et al. (2016).
Similar to the preparation of the weekly Scottish bulletin the
data summary graphics are produced using automated routines,
which are then assessed by an expert evaluator. This evaluator
provides expert opinion and analysis based on the datasets and
all the parameters described above, and provides text to the
weekly bulletin to provide a national forecast for the current
week (3–5 days forecast), describing the cautionary predictive
risk of a potential new HAB event occurring, or an existing
event continuing/dissipating per toxin group or for bloom
forming species (Dabrowski et al., 2016; Maguire et al., 2016;
Leadbetter et al., 2018).

In France, Ifremer produces publicly available (type 1) weekly
HAB bulletins based only on toxins and/or phytoplankton
monitoring for all areas of the coast. Despite previous short-term
forecast attempts (type 2 and 5), there is currently no operational
forecasting included in bulletins, however, a new alert system
remains in development as outlined below.

For the PST producing Alexandrium minutum, the retention
time in the bays, water temperature, riverine nutrient input and
resources competition were identified as the main abiotic drivers
of blooms (Guallar et al., 2017). Subsequently, mechanistic
approaches (type 5) based on these observations were evaluated
(Sourisseau et al., 2017) but forecasting capacity has decreased

over the years since the first intoxification event (2012),
suggesting some evolution of the plankton communities.

Modeling studies (type 5) of the fish-killing dinoflagellate
Karenia mikimotoi suggested that stratification (Gentien et al.,
2007; Vanhoutte-Brunier et al., 2008) may not be the only
driver of these blooms and that transport in the coastal
current, as well as seeding from offshore blooms influence the
incidence, consistent with modeling of this species in Scottish
waters (Gillibrand et al., 2016; Sourisseau et al., 2016). A HAB
forecasting exercise (simulating K. mikimotoi and also Pseudo-
nitzschia spp., and Phaeocystis spp.) based on such mechanistic
models (type 5) over a short time scale (∼ 4 days) was
conducted during the PREVIMER project (Ménesguen et al.,
2014) with mixed success prior to this operational model being
terminated in 2017.

Currently, there is no specific hydrodynamic model in
operation to forecast HABs advection in France. However,
hydrodynamic condition forecasts at different frequencies
(hourly to daily) are provided at several resolutions (from 4 km
to 500 m) up to 4 days in advance. These 3D field solutions
are used to forecast advections of exceptional events by using
tools such as the Lagrangian particle tracking model Ichthyop
(Lett et al., 2008).

Using type 4 approaches, a range of statistical relationships
between HABs and environmental variables were obtained
using different methodologies (Díaz et al., 2013; Hernandez
Farinas et al., 2015; Husson et al., 2016; Guallar et al.,
2017; Barraquand et al., 2018; Karasiewicz et al., 2018). These
studies suggest that the whole planktonic community (species
interactions and ecological niches) should be taken into account
to fully understand HABs dynamic (Karasiewicz et al., 2018). In
particular it is important to represent large functional groups
(diatoms vs. dinoflagellates) which appeared to be linked with
decadal variability of river inputs.

Work in different Spanish regions occurs autonomously and
hence each is considered separately. For the Basque Country

(North of Spain, Southeast Bay of Biscay waters), several
systems are being developed: (i) a bulletin or report based on
sampling (type 1 system); (ii) an operational hydrodynamic
model based on the Regional Ocean Modeling System (type 2),
with a mean horizontal resolution of 670 m and 32 vertical levels
(Ferrer et al., 2007, 2009, 2013); and, (iii) a machine learning
system (type 4) based on supervised classification and Bayesian
networks (Fernandes et al., 2010, 2013, 2015).

The ROMS hydrodynamic model is used to obtain a 4-day
forecast of current, temperature, and salinity fields in the south-
eastern Bay of Biscay. ROMS has been used in several studies to
model the water circulation in the study area (e.g., Ferrer et al.,
2007, 2009, 2015; Ferrer and Caballero, 2011; Caballero et al.,
2014; Laiz et al., 2014; Legorburu et al., 2015). The ROMS domain
used in the EuskOOS modeling system covers the southeast Bay
of Biscay, extending from 43.24 to 44◦N and from 3.4 to 1.3◦W,
with a mean horizontal resolution of 670 m. Vertically, the water
column is divided into 32 sigma-coordinate levels. These levels
are more concentrated within the surface waters, where most
of the variability occurs. The bathymetry was obtained from
the European Marine Observation and Data network (Vasquez
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et al., 2015), smoothed to ensure stable and accurate simulations
(Haidvogel et al., 2000). The atmospheric forcing used in ROMS
is obtained from the Weather Research and Forecasting model
(WRF) run by Euskalmet (Basque Meteorological Agency). The
boundary conditions are obtained from the 3-D hourly data
provided by the NEMO model for the Iberian-Biscay-Ireland
region. The online 3-D Lagrangian particle tracking module
existing in ROMS is activated and is generating forecasts of
the 4-day evolution of several virtual particles released at fixed
points and at 00:00 UTC in the ROMS domain at high temporal
resolution (1 min). These virtual particles are initially located at
the sea surface to forecast the drift of HABs from and to the
pilot aquaculture farm (located in the Mendexa region). For the
analysis of specific events in the past, the Sediment, Oil spill, and
Fish Tracking model (SOFT) is used with the ROMS outputs and
satellite-derived information.

A machine learning approach was used to find non-linear
correlations (Symmetrical Uncertainty Score; SUS; Hall, 1999) and
key non-correlated predictors (Correlated-based feature subset
selection; CFS; Hall and Smith, 1997; Hall, 2000) between
environmental conditions across the region and the presence of
DSTs in shellfish in aquaculture sites. The presence of these toxins
is often correlated with higher concentrations of phytoplankton
cell density (blooms), but it is also observed that toxins in
shellfish can occur at low cell densities (Table 6). The model has
been validated using 10-fold cross-validation with an accuracy
of 67% and only 3% of false positives. If we use the presence
of D. acuminata as a predictor, the accuracy increments to
83%, without increasing the false positives. The relationships
found by the model have been observed in other areas of the
world (Zhu et al., 2017). Relationships between toxins, nutrients,
and productivity are common (Bates et al., 1989; Hutchins and
Bruland, 1998; Pan et al., 1998; Sunda et al., 2005; Anderson
et al., 2008; Sun et al., 2011; Lelong et al., 2012; Tatters et al.,
2012; Schnetzer et al., 2013; Sison-Mangus et al., 2014; McCabe
et al., 2016; Drakulović et al., 2017; Grzebyk et al., 2017; Zhu
et al., 2017). Surprisingly, temperature is not a selected predictor
of toxin presence (Zhu et al., 2017; Smith et al., 2018), but
it might be because there have not been significant changes
in the temperature range in the region (Revilla et al., 2010).
Negative correlations with silicates might be due to previous
blooms of diatoms. The presence of toxins is correlated with
nutrient concentrations outside of the aquaculture site. In the
region, there is an important bathymetric gradient with a
transition from a coastal current from West to East to a weaker
oceanic current in the opposite direction. In the west, limited
eddies that transport nutrient-rich waters to the open sea are
common (Ferrer and Caballero, 2011). Therefore, these eddies
facilitate water mixing and nutrient upwelling, supporting the
proliferation of toxic phytoplankton species as well as their
transport to other coastal areas (Figure 3). This transport can
take between 1 and 4 weeks depending on oceanographic and
meteorological conditions (Ferrer and Caballero, 2011). This
type of phytoplankton species transport mechanism has been
previously documented in northern areas of the Bay of Biscay
(Batifoulier et al., 2013). Similarly, some Scottish harmful algal
bloom genera/species are thought to develop offshore and be

advected by winds and currents to the coast. An example of this
was the exceptional Dinophysis bloom in the Shetland Islands
in 2013 that resulted in an outbreak of shellfish poisoning
(Whyte et al., 2014).

Along the Spanish coast, the general tendency at the sea
surface is a flow from west/northwest to east/southeast, this
occurs at least 90% of the time (based on small buoys trajectories
analysis). CTD data indicates that this flow is evident at 10–
15 m where peaks of chlorophyll appear. Thus, most HABs
are expected to come from the western Spanish coast (or
offshore areas with eddies such as the Cape Ortegal longitude,
8◦W, as predicted in the Bayesian network model) than from
the French coast.

In Galicia, an oceanographic system (type 2) has been
developed to forecast Dinophysis spp. presence (Ruiz-Villarreal
et al., 2016). A HAB bulletin was designed to provide information
on the current and potential future state of HABs and biotoxins
in Galicia within a 3-day forecast. This early warning system
supports decisions of the Galician regulatory monitoring system
operated by INTECMAR as well as providing forecasts to
the Galician aquaculture industry. The system integrates HAB
information from monitoring programs with hydrodynamical
models and both physical and biochemical data from in situ
networks along with satellite imagery. It has been shown to
be capable of making predictions of bloom transport, but
not the initiation of a toxic event, especially for low biomass
HAB species. Additionally, it has been shown that early
warning of the risk of autumn toxic dinoflagellate blooms
in the Galician Rías is feasible by combining Lagrangian
particle tracking simulations with HAB data from Portuguese
monitoring (Ruiz-Villarreal et al., 2016). The Lagrangian particle
tracking model Ichthyop (Lett et al., 2008) is used for Galicia.
Ichthyop runs offline forced by the hourly results of the
Meteogalicia ROMS nowcast and forecast simulations2. In
common with approaches elsewhere in the Atlantic Arc, the
HAB cells are considered as passive particles that move with
the flow and do not have “behavior” (Velo-Suárez et al.,
2010; Dippner et al., 2011; Aoki et al., 2012; Ruiz-Villarreal
et al., 2016). Approximately 1000 virtual particles are randomly
released each day in the first 20 m of the water column at
six locations/configurations: Inside the Galician Rías (Vigo,
Pontevedra, Arousa, and Muros). Along the Portuguese shelf,
10,000 particles are released inside two polygons: (1) between
40.8024◦ N and 41.27◦ N and inshore the 200-m isobath;
and (2) between 41.27◦ N and 41.87◦ N and inshore of the
200-m isobath. This allows forecasting of the transport from
the northern Portuguese shelf to the Galician rías, where the
harvesting areas are located.

In Andalusia, type 1 bulletins based on in situmonitoring are
used. Upwelling is thought to be important to HAB development
in this region (García et al., 2002; Navarro and Ruiz, 2006;
Prieto et al., 2006, 2009; Navarro et al., 2012). In 2006, a neural
network model was developed to forecast Dinophysis acuminata
(Velo-Suárez and Gutiérrez-Estrada, 2007), but is not regularly

2http://mandeo.meteogalicia.es/thredds/catalogos/ROMS/catalog.html
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TABLE 6 | Selection of potential predictors using cross-validation showing the percentage of times that each predictor has been selected (Freq. Selec.).

D. acuminata Okadaic acid (diarrheic toxin) Yessotoxins (cardiotoxicity)

SUS Freq. Selec. (%) Predictor SUS Freq. Selec. (%) Predictor SUS Freq. Selec. (%) Predictor

0.72 40 Fe 0.61 100 Fe 0.73 90 Fe

0.68 70 PP 0.51 100 PP 0.53 90 PP

0.68 80 PhyC 0.61 100 PhyC 0.50 10 PhyC

0.71 50 Si 0.61 50 Si 0.67 90 Si

0.68 50 CHL 0.51 90 CHL 0.64 90 PO4

20 O2 0.57 50 NO3

10 D. Acuminata

SUS corresponds with the non-parametric Symmetrical Uncertainty Score which values range between 0 and 1. AO, okadaic acid; YTX, yessotoxin; Fe, iron; PP, primary

production; PhyC, phytoplankton concentration as carbon in water; Si, silicate; CHL, Chlorophyll; O2, oxygen; PO4, phosphate; NO3, nitrate.

FIGURE 3 | Map of main physical characteristics in the Bay of Biscay [adapted from Ferrer and Caballero (2011)].

used in bulletins. Recently a proof-of-concept based on satellite
information has been developed (Caballero et al., 2020).

In Portugal, a prototype oceanographic system (type 2) is
being updated to forecast HAB and shellfish closures areas.
The system has been developed by IPMA and IST within
the ASIMUTH project (Pinto et al., 2016; Silva et al., 2016).

Originally, it operated for a test period of 1 year, producing
weekly bulletins with an illustration of open and closed
production areas, along with a forecast for potentially impacted
areas, based on the ocean circulation and toxin concentrations.
The updated version of the bulletin follows the same approach,
with the forecast relying on a combination of field data
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and model results. The system relies on the hydrodynamic
forecast, simulating tri-dimensional velocity fields and thermal
distribution, coupled to a model of Lagrangian elements to
simulate the passive transport of particles, without incorporating
any biological processes. Results from the national weekly
shellfish and toxin sampling program are the starting point
of the forecast. The Lagrangian model is then triggered to
simulate the transport of particles from those areas impacted
by HABs to determine the pathways of dispersion/retention
along the coast and assess the impact on neighboring areas.
Model predictions with a 4-day forecast capacity rely on the
PCOMS model (Mateus et al., 2012). The model setup consists
of 50 vertical layers, with 43 cartesian-coordinate layers at the
bottom, and seven sigma coordinate layers in the top 10 m.
The model simulates the 3D thermohaline structure and velocity
fields for the West Iberian coast and is systematically validated
with tidal gauge data and sea surface temperature from remote
sensing. The particle tracking model runs offline, relying on the
previously computed hydrodynamic solutions. Particles move in
two dimensions (x and y), according to local current fields pre-
calculated by the hydrodynamic model. Production areas are
defined as polygons along the Portuguese coast, corresponding
to major bivalve production areas by the regulatory authority in
Portugal (IPMA), also responsible for the national monitoring
program. All polygons are populated with particles and their
movement along the coast to adjacent polygons is monitored.
The risks to each production area are then assessed based on
the possibility of receiving particles from known contaminated
areas. Two new pilot areas are being tested for local prediction,
namely the Ria Formosa (in the south) and Ria de Aveiro (on the
northwest coast). The Portuguese bulletin is planned to be made
available in a web page format, updated twice a week (Wednesday
and Friday). In addition to the modeled surface currents, wind
and particle transport, it will also include monitoring results for
HABs (and microbiology), oceanographic information, remote
sensing data for SST and Chlorophyll-a. A warning trigger for
neighboring monitoring laboratories (Galicia and Andalusia) is
also planned to be included in the system.

DISCUSSION

Effectiveness of Current Early Warning
Systems
This study describes the range of toxin-producing
phytoplankton, their associated toxins, the impact they can
have on shellfish aquaculture in the Atlantic arc countries
and the various EWS that are being developed to safeguard
the industry and human health. It demonstrates that in most
countries in the region, EWS are still in the early stages of
development and testing. Some systems only have the capacity
to provide end users with a warning based on current official
control monitoring programs, while others, such as Ireland
and the Shetland Islands in Scotland, are providing both risk
assessments and forecasts. However, several proof-of-concept
systems are under development and show promise as illustrated
by the examples in section “Short-Term Forecast of HAB

Occurrence and Toxin Presence in Shellfish” and those in the
literature (Vilas et al., 2014; Torres Palenzuela et al., 2019;
Caballero et al., 2020). Much of the current development of
EWS is centered around in situ regulatory monitoring data of
harmful species and their toxins at aquaculture sites. These data
are designed to be used for operational decisions on whether a
harvesting area should be closed to protect human health and
are therefore not designed to provide the early warning needed
to manage aquaculture business risk. Environmental data comes
from different sources, ranging from programs that monitor the
state of the ocean to numerical models of ocean physics and
biology. Combining approaches, often involving huge volumes
of data with very different spatial and temporal resolution
into information systems to support end-users therefore poses
significant technological challenges.

When it comes to ascertaining the best fit model approach
the choice of model is driven by the species of concern and
the topography of each region. For example, in Scotland, the
type 2 particle tracking model using is based on an unstructured
grid FVCOM system. This was chosen because of the complex
fjordic nature of the Scottish coastline and hence the need to
be able to track the advective movement of HAB events at high
spatial resolution.

Particle tracking models (ROMS, FVCOM, and MOHID) are
among the simplest models, since they consider only physical
components and hence are suitable for many toxic HABs that
are known to be driven by advection processes. However,
these models cannot be applied to all toxigenic species and
information is required to know where and when the HAB
event starts to initiate the model. At present, this is achieved
by a combination of remote sensing and coastal monitoring, but
neither are ideal for optimal early warning. Coastal monitoring
can provide limited early warning, where satellite methods
appear to be able to distinguish and differentiate between
only a few (high biomass) species, and cloud cover can limit
their operability. Combining with the additional approach of
machine learning, this can integrate all this model information
together with other sources of data (e.g., in situ observations
or other models from Copernicus services) and result in a
probabilistic forecast with the information and data available.
The example of the Basque probabilistic model presented
above, highlights that with enough data integration over 80%
accuracy can be reached with almost no false positives. However,
extension of this proof-of-concept will require a level of data
gathering in near real time, which is not yet realistic, given the
difficulties to identify the target species (D. acuminata) species
in situ.

Lagrangian models play a central role in many current
HAB early warning systems, as they provide information on
the oceanographic transport of potentially toxic blooms, once
identified by in situ observation. While the most probable origin
of the blooms can potentially be determined by inverse drift
computation (Abascal et al., 2012), in a similar fashion to that
used in other oceanographic disciplines (Breivik et al., 2012;
Drévillon et al., 2013; Suneel et al., 2016; Chen, 2019) this is
not currently operational. Hence, initiation of Lagrangian model
predictions of advective bloom transport requires information on
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the location and size of a potentially harmful bloom before it has
reached the shellfishery.

One cost-effective method of obtaining this information
is through satellite ocean color imagery, which can provide
coverage of large marine areas at a resolution of a few hundred
meters. Unfortunately, cloud cover obscures data collection and
hence is their primary limitation. Satellite monitoring offers
the potential to identify an advective bloom before it reaches
the coast. This approach focuses mainly on the detection of
chlorophyll and hence is suitable for detecting large blooms
of phytoplankton at the water surface (Spyrakos et al., 2011).
Satellite-based approaches increasingly use machine learning
methods for discriminating certain dense HABs from harmless
blooms (Velo-Suárez and Gutiérrez-Estrada, 2007; Gokaraju
et al., 2011; Xu et al., 2014; Guallar et al., 2016). However, large
blooms of phytoplankton do not necessarily lead to toxic events,
and others, such as the dinoflagellateDinophysis spp., responsible
for DSP, can cause harm at concentrations of only a few hundred
or thousand cells per liter, far too low to be observable from space
(Broullón et al., 2020). This is common to many shellfish toxin
producing species of Alexandrium, Dinophysis and Azadinium
genus which do not produce the main biomass component of a
bloom that a satellite image can detect. Satellites can also provide
useful information on sea surface temperature (SST) highlighting
the onset and extension of an upwelling event, a process often
linked to the triggering of a toxic bloom.

Model initiation would therefore benefit from remote sensing
approaches capable of better discriminating harmful from benign
species, and a more holistic approach to combine data from
multiple sources, for example using machine learning. This study
shows the potential of combining satellite, modeled, laboratory,
and in situ data (e.g., Basque Country example). It also shows
that an effective early warning system needs to consider a
complex array of parameters including the presence or absence
of toxins, the presence or absence of specific phytoplankton
species, oceanographic dispersal models, satellite data models
and biogeochemical and meteorological data or model forecasts.
The use of such models could be extended to estimate the
origin of blooms, not just to establish potential pathways of
dispersion or retention.

New data gathering methodologies that are currently under
development to enhance our ability to identify blooms offshore,
including enhanced remote sensing approaches, autonomous
observation platforms and data assimilation techniques will be
key to enhancing the model skill.

Of course, the further ahead we look the less reliable these
forecasts become. Currently the Irish and Scottish forecasts
predict the occurrence of HABs up to a week ahead. Given that
official control monitoring takes place weekly, this is usually
sufficient to prevent intoxicated shellfish being harvested. Trend
analysis of previous years can also provide some information on
the seasonal occurrence of toxin-producing phytoplankton, but
this is generally limited by significant inter-annual variation. As
a comparison, advances in meteorological forecasting have been
slow, increasing in duration by a day each decade (Alley et al.,
2019), and now give a reasonably accurate forecast up to 2 weeks
in advance. The marine ecosystem that controls the growth

of toxic phytoplankton is every bit as complex. This creates a
quandary: the aquaculture industry wants long term forecasts,
though this will lead to more false positives, and forecasting a
toxic event that does not happen will reduce industry confidence
in the process. At the moment, model systems are still a long way
from being able to produce long-term predictions for the industry
and rely instead on expert opinion to draw together the various
data streams needed to produce a meaningful forecast.

How Can the Aquaculture Industry Use
HAB Early Warning Systems?
Early warning systems offers several potential benefits to the
industry. In the case of a possible closure, they allow shellfish
farmers to source product from alternative, healthy sites, an
important factor in maintaining important market supply chains.
It also gives industry the opportunity to implement mitigation
strategies such as erecting physical barriers and increasing the
frequency of end product testing (EPT), to verify the presence of
toxins in their shellfish. Giving farmers the ability to make better
management decisions over harvesting and planned husbandry
work minimizes costly product recall and reduces human health
incidents, both of which have long-lasting detrimental effects on
consumer confidence.

Future Considerations for Early Warning
Systems
Looking ahead, the integration of multiple observational
platforms at the right scale combined with real-time processing
capacity is required to unlock the potential of forecasting systems.
The term big data was coined to capture this emerging trend (Hu
et al., 2014). In addition to its sheer volume, big data exhibits
other unique characteristics when compared with traditional
data. The need for real-time storage, processing and visualization
is crucial for an effective system beyond previous proofs-of-
concept. This development calls for new system architectures
for data acquisition, transmission, storage, and large-scale data
processing mechanisms from computer science (LeCun et al.,
2015). Big data techniques enhanced by machine learning
methods can increase the value of such data and its applicability
to societal, industrial and management challenges. Such methods
have proven their potential in fisheries forecasting (Fernandes
et al., 2010) and automatic classification of zooplankton samples
(Fernandes et al., 2009). The Probabilistic Graphical Models
(PGMs) paradigm (Pearl, 1988; Castillo et al., 1997), based on
probability theory and graph theory (Buntine, 1991), is such
a tool. Machine learning and statistical methods have a wide
literature of model validation and performance estimation that is
needed for end-user trust and interpretation of model forecasts
(Fernandes et al., 2010; Witten et al., 2017). To take these
forecasts further a multi-disciplinary approach joining domain
experts and artificial intelligence experts is key (Grosjean et al.,
2004; Fernandes et al., 2012, 2013; Trifonova et al., 2015; Uusitalo
et al., 2016; Hernández-González et al., 2019; Taconet et al., 2019;
Cruz et al., 2021).

Data consolidation is a major challenge in developing a
machine learning based system. As noted above, data sources
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may include in situ regulatory monitoring, sensors, meteorology,
models and satellite: often provided in different formats,
undocumented or with missing information. EWS developments
will accelerate and reach their full potential only with FAIR
data: findability, accessibility, interoperability, and reusability
(Wilkinson et al., 2016; Bax et al., 2019; Stall et al., 2019).
These curated datasets incorporate training information and
so provide an opportunity to improve the efficiency and
strength of statistical models. This method is already employed
for essential biodiversity variables (EBVs), to study global
biodiversity (Kissling et al., 2018), and to collect essential ocean
variables (EOVs, Miloslavich et al., 2018) needed to monitor
the ocean. Each owner and provider of data related to HABs
should also consider contributing their data to these frameworks,
as international networks such as HAEDAT currently focus on
harmful events (Figure 2), rather than the distribution of toxin-
producing algal species.

Climate change will also bring increased toxin threats from
species such as Gymnodinium catenatum and Azadinium spp.
(Higman et al., 2013; Turner et al., 2015), and from other toxin-
producing organisms currently present elsewhere in Europe
and in similar environments worldwide (Davidson et al., 2015).
Evidence on climate change impacts on HABs have been
described by Edwards et al. (2006) who noted shifts in the
distribution of HABs in the North-East Atlantic since the 1960s.
Links between increasing sea surface temperatures and wind
intensity have led to an increase in the potentially toxic diatom
Pseudo-nitzschia in the NEA since the mid-1990s (Hinder et al.,
2012). Climate change effect on the timing and severity of
toxic events is still uncertain (Wells et al., 2019) with model
predictions and in situ data not always coinciding (Dees et al.,
2017; Gobler et al., 2017).

As we have seen, the shellfish aquaculture industry differs
between and even within countries in the NEA: hydrographymay
be very different; toxic species may change as may the toxicity
of a particular species; and there is a great deal of inter-annual
and seasonal variation. This creates a challenge when developing
models which must be adapted and fitted to these divergent
conditions. Over the past decade EWS have been implemented
with varying degrees of success in different countries. Some,
such as those in Ireland and Scotland are fully functional while
others are still in the developmental proof of concept and trial
stage. This heterogeneity means the overall value of these EWS
systems to industry, while, regionally important, is currently low
but rapidly increasing as cross region cooperation and method
sharing increases.
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