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ABSTRACT
Newly generated insulin-secreting cells for use in cell therapy for insulin-deficient diabetes mellitus require properties similar to
those of native pancreatic b-cells. Pancreatic b-cells are highly specialized cells that produce a large amount of insulin, and secrete
insulin in a regulated manner in response to glucose and other stimuli. It is not yet explained how the b-cells acquire this complex
function during normal differentiation. So far, in vitro generation of insulin-secreting cells from embryonic stem cells, induced-plurip-
otent stem cells and adult stem/progenitor-like cells has been reported. However, most of these cells are functionally immature
and show poor glucose-responsive insulin secretion compared to that of native pancreatic b-cells (or islets). Strategies to generate
functional b-cells or a whole organ in vivo have also recently been proposed. Establishing a protocol to generate fully functional
insulin-secreting cells that closely resemble native b-cells is a critical matter in regenerative medicine for diabetes. Understanding
the physiological processes of differentiation, proliferation and regeneration of pancreatic b-cells might open the path to cell ther-
apy to cure patients with absolute insulin deficiency. (J Diabetes Invest, doi: 10.1111/jdi.12062, 2013)

KEY WORDS: Diabetes, Insulin, Regenerative medicine

INTRODUCTION
Pancreatic b-cells are highly differentiated and specialized cells
with complex biological functions. The most outstanding fea-
ture of b-cells is that they produce a large amount of insulin,
the only hormone that lowers blood glucose, and secrete it con-
tinuously in response to changes in the extracellular glucose
concentration. Insulin secretion from pancreatic b-cells also is
modified by a variety of nutrients, hormones and neuronal
signals in the maintenance of systemic glucose homeostasis1.
For treatment of diabetes with absolute insulin deficiency,

insulin is generally used. However, normal pancreatic b-cells
adjust insulin secretion continually in response to varying blood
glucose levels; exogenous insulin administration cannot main-
tain blood glucose levels within the narrow physiological range
that protects from development of various diabetic complica-
tions. Although transplantation of the pancreas or pancreatic
islets has been an efficient therapeutic option for cure of
patients with insulin-deficient diabetes, the chronic shortage of
donor organs limits widespread application of such transplanta-
tion. Thus, regenerative medicine, including generation of pan-
creatic b-cells, pancreatic islets or whole pancreas, is an

intriguing approach to the development of future therapy for
diabetes2. In the present review, we discuss functional differenti-
ation of native pancreatic b-cells as the scientific basis of regen-
erative medicine in the field of diabetes, and introduce
approaches to regeneration of b-cells (Figure 1).

ACQUISITION OF INSULIN SECRETORY FUNCTION IN
THE PANCREATIC B-CELL
Pancreatic b-cells secrete adequate amounts of insulin in
response to extracellular glucose concentration so that blood
glucose levels are controlled within a narrow physiological
range; severe hypoglycemia or hyperglycemia seldom occurs in
healthy subjects. This is because the b-cell has properties of:
(i) insulin biosynthesis; (ii) glucose sensing; (iii) metabolism-
secretion coupling; and (iv) regulated exocytosis (Figure 2).
Although our knowledge of the development of well-

regulated insulin secretion is limited, analyses of developing and
differentiating pancreatic b-cells provide clues. It is known that
fetal and neonatal pancreatic b-cells lack glucose responsive-
ness3. By using rat models, it was found that fetal pancreatic b-
cells show lower facilitation of glucose oxidation than adult b-
cells4. As forced depolarization can stimulate insulin secretion
similarly in both fetal and adult b-cells4,5, fetal b-cells seem to
show insulin biosynthesis, granule formation and expression of
soluble N-ethylmaleimide-sensitive factor attachment protein
receptor (SNARE) proteins. Thus, immaturity in glucose metab-
olism might account for the lack of glucose responsiveness in
fetal pancreatic b-cells. In fact, expression levels of key enzymes
[mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH)
and mitochondrial malate dehydrogenase] in NADH (the
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reduced form of nicotinamide adenine dinucleotide) shuttles,
which have an important role in adenosine triphosphate (ATP)
production, are significantly lower in fetal than in adult b-cells,
and forced expression of mGPDH improves glucose-induced
insulin secretion in fetal pancreatic islets6. Immaturity of glucose

metabolism in fetal pancreatic b-cells is also supported by a
study using human and porcine fetuses7, and by a recent DNA
microarray study in fetal rat b-cells8. However, the mechanism
of b-cell acquisition of glucose-responsiveness during growth is
still largely unknown.

(a) Expansion of endogenous islets (beta-cells) (b) Induction of beta-cell neogenesis

(c) Expansion of isolated beta-cells (d) Generation of beta-cells from stem cells

In vivo

In vitro

Adult (stem/progenitor) cellsIslet

ESC, iPSC, or adult (stem/progenitor) cells Beta-cells

Differentiation/transdifferentiationProliferation

Proliferation
Differentiation/
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Figure 1 | Possible approaches to regeneration of pancreatic b-cells. New pancreatic b-cells could be generated by induction of self-replication
(proliferation) of pre-existing islet b-cells or differentiation/transdifferentiation of adult stem/progenitor cells (neogenesis) in vivo. In addition, the new
b-cells could also be obtained by forced proliferation of isolated pre-existing b-cells or differentiation/transdifferentiation of embryonic stem cells
(ESCs)/induced-pluripotent stem cells (iPSCs) or adult stem/progenitor cells in vitro.

Glucose

Glucose
Glucokinase

Metabolism

ATP 

Insulin

KATP channel

Δψ

PC2

PC1/3

Proinsulin

Insulin

C-peptide

(SUR1/Kir6.2)

SNARE proteins

Glucose transporter

Glucose-6-phosphate

Voltage-dependent
Ca2+ channel

Regulated
    exocytosis

(VAMP2, Stx, SNAP25)

Ca2+

Metabolism-secretion
coupling

Glucose 
sensing

Insulin
  biosynthesis

Figure 2 | Generalized mechanism of glucose-induced insulin secretion in pancreatic b-cells. Glucose entering b-cells through glucose transporters
is metabolized, leading to an increase in the adenosine triphosphate (ATP) concentration, closure of the ATP-sensitive K+ (KATP) channels,
depolarization of the b-cell membrane and opening of the voltage-dependent Ca2+ channels, which allows Ca2+ influx. The resultant rise in
intracellular Ca2+ concentration triggers soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent exocytosis of
insulin granules. b-Cells thus must possess functions of: (i) insulin biosynthesis; (ii) glucose sensing; (iii) metabolism-secretion coupling; and (iv)
regulated exocytosis. PC1/3, prohormone convertase 1/3; PC2, prohormone convertase 2; SNAP25, synaptosomal-associated protein 25; Stx, syntaxin;
VAMP2, vesicle-associated membrane protein 2.
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It has been reported that addition of glucagon-like peptide-1
(GLP-1), an incretin hormone, induces both first and second
phase glucose-induced insulin secretion in human fetal islets-
like cell clusters (immature islets)9. Although this finding
reflects an acute effect of GLP-1 on the function of immature
b-cells, GLP-1 also has roles in differentiation of pancreatic
b-cells. A study has shown by using fetal pig islets that GLP-1
facilitates differentiation of the immature precursor of pancre-
atic b-cells to mature b-cells10. Because GLP-1 begins to secret
from L-cells on the gut tube by intake of foods after delivery, it
is possible that GLP-1 has physiological roles in functional dif-
ferentiation of pancreatic b-cells.
In contrast, it is known that terminal differentiation of

pancreatic b-cells requires expression of the transcription factor
v-maf musculoaponeurotic fibrosarcoma oncogene homolog A
(MafA), which regulates expression of genes participating in
glucose-induced insulin secretion including GLUT2, glucoki-
nase, SUR1 and Kir6.211. A recent report showed the possibility
that MafA is involved in the acquisition of glucose responsive-
ness in neonatal rat pancreatic b-cells12, an important role in
functional maturation of the b-cells. Although the relationship
between MafA and incretins is unknown, as MafA increases
the expression of the GLP-1 receptor13, their interaction or
cooperation in differentiation of pancreatic b-cells seems likely.
However, further studies are required to understand the whole
picture.

REGENERATION OF PANCREATIC β-CELLS IN VIVO
Most studies on regeneration of pancreatic b-cells in vivo have
been carried out in rodents using pancreatic injury models.
Nicotinamide, an inhibitor of poly(adenosine diphosphate-
ribose) synthethase/polymerase, prevents the development of
diabetes in experimental animals after administration of the
b-cell toxins, streptozotocin and alloxan14. In vitro studies
have shown that the agent has beneficial effects on prolifera-
tion and differentiation of pancreatic endocrine cells15,16, but
the mechanism is not known. Exendin-4, an analog of GLP-1,
has been reported to enhance both proliferation and neogene-
sis of pancreatic b-cells in rats with 90% pancreatectomy17.
Betacellulin, a growth factor belonging to the epidermal
growth factor (EGF) family, has been shown to promote neo-
genesis of b-cells and ameliorate glucose intolerance in mice
with selective alloxan perfusion18, and is also reported to
enhance proliferation of b-cells in 90% pancreatectomized
rats19. The Reg gene, which is induced in regenerating pancre-
atic islets, has been identified20.
There are several lines of studies suggesting the cell origin of

regenerated pancreatic b-cells. In transgenic mice expressing
interferon-gamma specifically in pancreatic b-cells, a dramatic
proliferation of pancreatic ductal cells, and the appearance of
primitive endocrine cells and their subsequent differentiation
into endocrine cells has been reported21. During regeneration,
transitional intermediate cells expressing both carbonic anhydr-
ase II and amylase22, and bearing both endocrine and exocrine

granules23 appear. The authors speculate from these findings
that pancreatic duct cells represent facultative progenitors in
adult pancreas. However, their results also suggest that pancre-
atic acinar cells give rise to intermediate cells that have charac-
teristics of pancreatic duct cells, and then differentiate into
endocrine cells. It has been reported that overexpression of
transforming growth factor-a induces expansion of pancreatic
and duodenal homeobox 1 (Pdx1)-expressing ductal epithelium
in the pancreas, and that focal areas of islet neogenesis can be
observed24. As pancreatic acinar cells isolated from transform-
ing growth factor-a transgenic mice convert into ductal
cells25,26, the expanded pancreatic ductal cells expressing Pdx1
in these mice might well be derived from pancreatic acinar
cells. In addition, some pancreatic injury models have been
shown to exhibit pancreas regeneration. After ligation of the
pancreatic duct in rats, replacement of exocrine acini by duct-
like structures is observed27. This acinoductal metaplasia has
been thought to be at least in part the result of transdifferentia-
tion of amylase-positive pancreatic acinar cells into amylase-
negative and cytokeratin-positive duct-like cells28. By treating
the rats with dexamethasone to inhibit loss of amylase expres-
sion, transitional cells co-expressing amylase and cytokeratin 20
were detected28, supporting the notion of acinar-to-ductal trans-
differentiation. Furthermore, insulin-positive cells that also
express amylase have been found, indicating acinar-to-
endocrine transdifferentiation.
Although histological analysis has shown that neogenesis or

regeneration of pancreatic b-cells occurs in certain conditions,
the cellular origin of the new b-cells has not been shown.
Recent studies using genetic cell lineage tracing or other cell
labeling methods suggest that adult pancreatic b-cells are not
derived from non-b-cells29–31. Using genetic cell lineage tracing,
Dor et al.29 showed that adult pancreatic b-cells in mice are
maintained predominantly by self-replication of pre-existing
b-cells. They labeled pancreatic b-cells selectively with human
alkaline phosphatase by Cre-loxP-based conditional recombina-
tion in adult pancreas, and chased the fate of pre-existing
b-cells. In this system, when new b-cells in an adult pancreas
are generated from non-b-cells, such as stem/progenitor cells,
the frequency of the labeled b-cells should decrease after a
chase period. The results showed that the labeling frequency of
the b-cells remained unchanged, indicating that the new b-cells
were generated primarily from pre-existing b-cells. They con-
cluded that terminally differentiated b-cells retain proliferative
capacity, and cast doubt on a significant role for adult stem
cells in b-cell replenishment29. Georgia and Bhushan30 reported
that during neonatal development, cyclin D2 expression in the
endocrine pancreas coincided with the replication of endocrine
cells and a massive increase in islet mass. Cyclin D2 is not
required for exocrine and ductal cell proliferation, but is
required for replication of endocrine cells. In cyclin D2-/- mice,
pancreatic islets are much smaller and b-cell mass is reduced to
25% in comparison with wild-type mice. Thus, cyclin D2 plays
a key role in b-cell replication, which might be the primary
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mechanism for maintaining postnatal b-cell mass30. Further-
more, Teta et al.31 showed by using a DNA analog-based
lineage-tracing technique that unlike gastrointestinal and skin
epithelia, specialized progenitors do not contribute to adult
b-cell mass, not even during acute b-cell regeneration. Instead,
adult b-cells exhibit equal proliferation potential, and expand
from within a vast and uniform pool of mature b-cells32. Thus,
it is likely that pancreatic b-cell mass is maintained primarily
by self-replication of pre-existing b-cells in adult mice, although
the existence of pancreatic tissue-specific stem/progenitor cells
cannot be excluded.
The turnover rate of pancreatic b-cells in adult is generally

low, expansion of the b-cells being detected only in several
conditions including neonate, pregnancy and obesity. The
mass of pancreatic b-cells increases in the neonatal period as
the body and organs grow. However, the increases in b-cell
number and the weight of the whole pancreas are not a coin-
cidence33,34, suggesting different mechanisms in the regulation
of the mass of pancreatic endocrine and exocrine cells. We
have recently shown that non-b-cells contribute to an increase
in mass expansion of pancreatic b-cells from neonate through
to youth34. Although the signals leading to proliferation of
pancreatic b-cells are not yet well characterized, a recent study
has shown that EGF-receptor signaling is required for
expansion of b-cells in mice under high-fat diet conditions
and pregnancy35. In addition, during pregnancy, an increase
in insulin resistance in pregnant mothers maintains the
nutrient flow to the growing fetus. Prolactin and placental lac-
togen counterbalance this resistance, and prevent maternal
hyperglycemia by driving expansion of the maternal popula-
tion of insulin-producing b-cells. It should be noted that
hepatic activation of extracellular regulated kinase signaling
induces proliferation of pancreatic b-cells through a neuronal-
mediated relay of metabolic signals36. Such interorgan interac-
tion might serve as an intriguing target for regenerative medi-
cine for diabetes.
In addition, there are several reports showing identification

of functional pancreatic adult stem/progenitor cells in vivo. It
has been shown that progenitors for b-cells are activated in
injured adult mouse pancreas, and are located in the ductal
lining. Differentiation of the adult progenitors is Ngn3 depen-
dent, and gives rise to all islet cell types both in situ and
cultured in embryonic pancreas explants37. That study strongly
suggests that adult b-cells can be generated not only from
pre-existing b-cells, but also from non-b-cells. However,
because such progenitors can be detected only when the cells
begin to express Ngn3, their precise origin and properties are
not ascertained. Although Inada et al.38 reported that by using
lineage tracing utilizing human carbonic anhydrase II (CAII)
promoter a subset of adult b-cells are generated from pancre-
atic duct cells, Solar et al.39 showed that the duct cells (HNF
1b as the marker) lose potential for differentiation into b-cells
after birth. Thus, the origin of newly formed b-cells in the adult
pancreas remains to be identified.

IN VITRO EXPANSION OF β-CELLS
In vitro expansion of pancreatic b-cells represents an attractive
strategy for obtaining a large amount of b-cells for transplanta-
tion. Indeed, human b-cells possess proliferation capacity when
cultured on extracellular matrices with growth factors and
hormones40–42. However, the capacity is very limited while pre-
serving the b-cell phenotype43, expansion of b-cells often occurs
along with loss of the b-cell phenotype (i.e., expression and secre-
tion of insulin)44. Such phenotypic changes of b-cells sometimes
appear to resemble epithelial-to-mesenchymal transition (EMT).
EMT was originally defined in the context of developmental
stages: a biological process that allows a polarized epithelial cell to
undergo multiple biochemical changes that enable it to assume a
mesenchymal cell phenotype45. The first report that referred phe-
notypic changes of pancreatic b-cells to the EMT was carried out
by Gershengorn et al.46, and a similar phenomenon was observed
by others47. However, other studies using lineage tracing showed
that murine b-cells do not undergo EMT48–50. They found that
most proliferative mesenchymal cells migrating out from pancre-
atic islets in vitro were not derived from b-cells, and suggested
that these cells do not represent a useful source for the generation
of physiologically competent b-cells for treatment of diabetes48,49.
At that time, the journal, Diabetes, stated that ‘EMT participation
in mechanism of b-cell expansion has been preempted’51. Never-
theless, we and others have shown direct evidence of EMT-like
phenotypic changes in mouse and human pancreatic b-cells52,53.
We have established a culture system using fetal pancreatic cells
as feeder cells that induce dedifferentiation of adult b-cells, and
we have developed a method whereby pre-existing pancreatic
b-cells can be traced throughout the culture process, even when
the cells lose insulin expression53. We showed that pancreatic
b-cells of adult mice undergo dedifferentiation into mesen-
chyme-like fibroblastoid cells (i.e., EMT), and that the process is
associated associated with the progression of the cell cycle. The
dedifferentiated cells can redifferentiate into insulin-positive
cells53. Human pancreatic b-cells were also reported to have the
potential to proliferate on EMT and redifferentiate into islet
progenitor-like cells54. These studies suggest the feasibility of the
generation of a large amount of insulin-secreting cells by in vitro
expansion of pancreatic b-cells.

EXPERIMENTAL GENERATION OF FUNCTIONAL
β-CELLS IN VITRO
Table 1 shows a list of experimental generations of insulin-
producing cells in vitro. The first report of the in vitro genera-
tion of b-like cells from mouse ES cells was by Lumelsky
et al.55 in 2001. Their differentiation protocol was based on that
for neuronal cells. The generation of insulin-positive cells from
human ES cells has also been reported56. However, as these
insulin-positive cells showed low insulin production capacity
and poor insulin secretory response, the cells could not be
identified as b-cells. In fact, later studies showed that ES cell-
derived insulin-positive cells can be generated as a result of
uptake of exogenous insulin57,58. In 2006, a new protocol was
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developed to generate insulin-secreting cells, in which
differentiation processes mimic pancreatic organogenesis by
directing cells through stages resembling definitive endoderm,
gut-tube endoderm, pancreatic endoderm and endocrine pre-
cursor59. However, the insulin-secreting cells made by this
method showed poor glucose responsiveness and appeared
immature. A later study made by the same group showed that
glucose-responsive insulin-secreting cells can be generated by
transplantation of the cells at the stage of pancreatic endo-
derm60. Insulin-secreting cells have also been generated from
induced-pluripotent stem (iPS) cells61–63, but precise analysis of
the insulin secretion has not been carried out.
Several studies have attempted to identify stem/progenitor

cells in the adult pancreas. Zulewski et al.16 showed that cells
expressing the neural stem cell marker nestin occur in human
and rat pancreatic islets, and that these cells can be isolated and
cultured for a long time. It has been shown that cultured nestin-
positive cells can be differentiated into insulin-producing
cells16,64, and that such cells from human fetal pancreas when
transplanted can be expanded and differentiated into islet-like
cell clusters, which can reverse hyperglycemia in diabetic mice65.
Clonal identification of multipotent precursors from adult
mouse pancreas has also been reported66. These candidate pro-
genitor cells proliferate in the serum-free conditions used for
neural stem cell (NSC) culture and form spherical cell clusters
like NSCs by floating culture. Interestingly, the cells in the spher-
ical clusters show characteristics of both pancreatic and neural
precursors. Furthermore, the potential progenitors give rise to
multiple types of neural cells, including neurons and glial cells,
and also differentiate into insulin-producing (b) cells, glucagon-
producing (a) cells, and somatostatin-producing (d) cells. The
insulin-producing cells derived from these progenitors are
glucose-competent in terms of Ca2+ responsiveness and insulin
secretion. Suzuki et al.67 reported isolation of pancreatic progen-
itor cells from adult mouse by using fluorescence-activated cell
sorting. The isolated cells express c-Met, the receptors for hepa-
tocyte growth factor, but do not express hematopoietic and vas-
cular endothelial antigens, such as CD45, TER119, c-Kit and
Flk-1. Thus, hepatocyte growth factor/c-Met signaling might
play an important role in the maintenance of these progenitor-
like cells. The cells formed clonal colonies in vitro, and
differentiated into multiple pancreatic lineages from single cells.
However, no functional analysis has been carried out for the
differentiated pancreatic cells induced from these candidate
progenitors. Taken together, these findings suggest that although
stem/progenitor-like cells might be obtained from the adult pan-
creas, it is not yet clear that such isolated stem/progenitor-like
cells have the full potential to differentiate into native pancreatic
b-cells and function as stem/progenitors in the pancreas in vivo.
Peck et al.68,69 isolated and cultured pancreatic ductal cells

from prediabetic non-obese diabetic mice, and induced islet-like
cell clusters containing insulin-producing cells. Although the
insulin secretory capacity of the induced cells was extremely
low, transplantation of the cells to diabetic mice could lead to

normalization of blood glucose levels. It is possible that these
insulin-producing cells further differentiate in vivo, but no rele-
vant functional analyses after transplantation have been carried
out. Bonner-Weir et al.70 generated insulin-producing cells
from human pancreatic ductal cells. The ductal cells were
expanded as a monolayer, and the cells were then overlaid with
a thin layer of Matrigel. The cells formed 3-D structures of
ductal cysts from which islet-like clusters budded. These cells
secreted insulin, although the amount was low. Generation of
insulin-producing cells by this method was reproduced by Gao
et al.71. However, they reported the possibility in a later study
that contaminated b-cells in the starting material underwent
dedifferentiation and redifferentiation during the culture72. In
contrast, Bouwens et al.73 have claimed the importance of
transdifferentiation of pancreatic exocrine cells in regeneration
of pancreatic cells. They reported that pancreatic exocrine cells
can be converted into insulin-producing cells by culturing with
EGF and leukemia inhibitory factor74,75. Song et al.76 reported
a similar study. They isolated pancreatic acinar cells from adult
rats, and cultured the cells in suspension without adding any
growth factor or cytokines. Insulin-positive cells were detected
at the periphery of the spherical cell clusters derived from the
acinar cells76. Although these studies suggest transdifferentiation
of pancreatic acinar cells into insulin-producing cells, neither
direct evidence of the origin of these cells nor their precise
insulin secretory properties were identified. At the same time,
we also reported transdifferentiation of pancreatic acinar cells,
and utilized the method of cell lineage tracing based on the
Cre-loxP system to determine the origin of the newly-made
insulin-secreting cells77. We have shown that disruption of
cadherin-mediated cell–cell adhesion in pancreatic acinar cells
induces dedifferentiation, and the subsequent activation of the
phosphoinositide 3-kinase/Akt pathway recovers the cell–cell
adhesion, which induces redifferentiation into endocrine or
ductal cells (Figure 3)78,79. This explains the rarity of in vivo
transdifferentiation of acinar cells into endocrine cells, as even
in severe cases of pancreatitis or cancer, cell–cell contacts are
not completely destroyed. The acinar cell-derived insulin-secret-
ing cells secreted insulin in response to a variety of stimuli,
including glucose and GLP-1. However, insulin production of
the cells was lower than that of native islets. As the newly-
made cells expressed genes, such as HNF6 and PGP9.5, which
are not expressed in native b-cells, but did not express MafA,
which regulates the expression of genes that participate in glu-
cose-induced insulin secretion77,78,80,81, the cells were thought to
be in an immature state. Insulin-secreting cells can also be
generated from human pancreatic exocrine cells82.

INTERCONVERSION OF PANCREATIC ENDOCRINE
CELLS
Thorel et al.83 reported that a-cells transdifferentiate into b-cells
under conditions of severe loss of b-cells. They generated mice
carrying a transgene containing the diphtheria toxin receptor
under the control of the insulin promoter (RIP-DTR). In male
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RIP-DTR mice, more than 99% of the b-cells in the adult pan-
creas can be destroyed by injection of diphtheria toxin. When
such mice were kept alive for up to 10 months with insulin
treatment during the initial 5 months, the b-cell mass increased
to 10% of normal animals on average, and glycemic control
improved in some of the mice. By using a conditional cell line-
age tracing method, the origin of the regenerated b-cells was
shown not to be surviving pre-existing b-cells, but rather gluca-
gon-expressing a-cells. Although their findings suggest the
usefulness of a-cells as a source of new b-cells, the conversion
of a-cells to b-cells decreases the a-cell population, which
might cause the loss of glucagon action in the maintenance of
glucose homeostasis. However, they later reported that
near-total ablation of a-cells did not affect the insulin counter-
regulatory response and glucose homeostasis in mice84.
Talchai et al.85 recently showed that pancreatic b-cell dedif-

ferentiation rather than cell death is responsible for diabetic
b-cell failure in several different diabetic mouse models. In their
experiments, adult mouse b-cells underwent dedifferentiation
and reverted to progenitor-like cells expressing Ngn3, Oct4, Na-
nog and L-Myc under conditions of physiological stress, such
as b-cell-specific disruption of FoxO1. The dedifferentiated
b-cells can convert to other endocrine cell types, including
glucagon-expressing a-cells. It has also been shown that ectopic
expression of certain transcription factors can change the fate
between a- and b-cells86. These studies suggest an attractive
future therapeutic strategy for diabetes in which pancreatic
b-cells can be generated from a-cells by inducing their transdif-
ferentiation in vivo.

PERSPECTIVES
There are many different approaches towards the development
of cell replacement therapy for insulin-deficient diabetes mell-
itus. However, in vivo regeneration of b-cells in humans is not
realistic at present from both efficacy and safety points of view,
and most newly generated insulin-secreting cells in vitro are
not fully differentiated b-cells, as assessed by both insulin secre-
tory properties and gene expression profile. Another unique

and intriguing strategy of regenerative medicine for diabetes
has recently been proposed by Kobayashi et al.87, who made
use of the technique of “blastocyst complementation”, which
enables in vivo generation of organs derived from pluripotent
stem cells (PSCs: ES cells or iPS cells), and generated a rat pan-
creas in a mouse by injecting wild-type rat PSCs into a Pdx1-/-

(pancreatogenesis-disabled) mouse blastocyst. Thus, a human
pancreas might be generated from human PSCs in a pig for
use in organ transplantation, although many issues of concern
must be addressed to bring this principle into clinical use.
Human pancreatic a-cells have recently been shown to

express GLP-1 and prohormone convertase 1/3 (PC1/3), as well
as glucagon and PC288. In addition, a recent study showed
ectopic expression of glucose-dependent insulinotropic polypep-
tide (GIP) in pancreatic b-cells in mice with the complete
absence of proglucagon-derived peptide89. Thus, it is worth
re-evaluating the roles and functions of pancreatic endocrine
cells. We must expand our knowledge of the physiological
processes of differentiation, proliferation and regeneration of
pancreatic b-cells as an essential step on the path to cell
therapy to cure patients with absolute insulin deficiency.
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