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Abstract: Staphylococcal cassette chromosome mec (SCCmec) typing was established in the 2000s and
has been employed as a tool for the molecular epidemiology of methicillin-resistant Staphylococcus
aureus, as well as the evolution investigation of Staphylococcus species. Molecular cloning and the
conventional sequencing of SCCmec have been adopted to verify the presence and structure of a novel
SCCmec type, while convenient PCR-based SCCmec identification methods have been used in practical
settings for many years. In addition, whole-genome sequencing has been widely used, and various
SCCmec and similar structures have been recently identified in various species. The current status of
the SCCmec types, SCCmec subtypes, rules for nomenclature, and multiple methods for identifying
SCCmec types and subtypes were summarized in this review, according to the perspective of the
International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements.

Keywords: methicillin-resistant Staphylococcus aureus; staphylococcal cassette chromosome mec
(SCCmec); SCCmec typing; SCCmec subtyping; International Working Group on the Classification of
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1. Introduction

Methicillin, a semisynthetic penicillin that specifically targets beta-lactamase-producing
staphylococci, was introduced to the medical field in 1960. However, in the same year
(1960), methicillin-resistant Staphylococcus aureus (MRSA) was identified [1,2]. Since then,
MRSA has been the most prevalent and well-known antimicrobial-resistant bacteria for
more than 60 years. In the first report of MRSA, it was described that MRSA existed before
starting the use of methicillin but was rarely isolated in clinical settings, but after that, the
prevalence of MRSA in healthcare settings increased gradually. For example, in the UK,
the proportion of isolates of S. aureus from blood cultures that were methicillin-resistant
increased in the 1990s and reached approximately 40% around 2000, though it decreased
to less than 10% in the 2010s [3,4]. A high prevalence of antimicrobial resistance not only
to methicillin but also to other antimicrobials was thought to have correlations with the
inappropriate use of antimicrobials, so the prevalence of MRSA is still used as an indicator
of good infection control and prevention practices and appropriateness of antimicrobial
usage [5,6].

MRSA is known to produce an additional penicillin-binding protein designated as
PBP2’ (PBP2a). PBP2’ exhibits a low affinity to most semisynthetic penicillin, such as
methicillin, nafcillin, and oxacillin, as well as most cephalosporins. With its low affinity
to beta-lactams and encoding gene mecA, PBP2’ was first reported in the mid-1980s [7–9].
Later, it was revealed that mecA is surrounded by genes that control its expression, mecR1
(encoding the signal transducer protein mecR1), and mecI (encoding the repressor protein
mecI) [10,11]. When mecA was determined to be widely disseminated among multiple
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staphylococcal species, it was hypothesized that mecA could be carried on a mobile genetic
element that could be transferred among staphylococcal species (Figure 1).
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Mobile genetic elements containing mecA and their regulatory genes were designated
as staphylococcal cassette chromosome mec (SCCmec) and were first reported in strain
N315 (Sequence type 5, NY/JAPAN clone), of which the whole-genome sequence was
subsequently revealed, followed by other strains, NCTC10442 and 85/2082 [12–14]. The
SCCmec in NCTC10442, N315, and 85/2082 were designated as SCCmec I, SCCmec II, and
SCCmec III, respectively [13].

The precise excision of SCCmec and integration of plasmid containing ccrA and
ccrB was proven by experiments within a 24-h incubation period using N315 having
SCCmec II [12]. However, the excision and integration of SCCmec from/to the S. aureus
isolate is thought to happen in a complexed process in real clinical settings. It was observed
that the excision and integration of small SCCmec such as SCCmec I could happen, but the
integration of SCCmec II and V, which were larger than SCCmec I (>45 kb), could not happen
even in vitro [15]. For large SCCmec structures, additional processes may be necessary to
integrate into S. aureus, such as conjugative plasmids as a carrier or subsequent multiple
recombination events. As an example, it was reported that the two isolates from a patient
with chronic S. aureus infection of an intracardiac device changed from MSSA to MRSA
during antimicrobial treatment, and the latter isolate possessed SCCmec II [16]. Some
inversions and extra genetic fragments, which were not found in the original SCCmec II
and its surrounding regions of N315, suggested that SCCmec II in the latter isolate did not
directly integrate from N315, and additional processes might happen for integration.

2. International Working Group on the Classification of Staphylococcal Cassette
Chromosome Elements (IWG-SCC)

Since the first reports of SCCmec I, II, and III in the early 2000s, various SCCmec
elements have been reported by different researchers worldwide, and in addition to being
adopted as a molecular epidemiology tool in healthcare settings, these elements have
been utilized in the research on the evolution of staphylococci. These studies have also
raised concerns about the confusion of the SCCmec nomenclature and the loss of its value.
Therefore, the IWG-SCC released a report on the “Classification of Staphylococcal Cassette
Chromosome mec (SCCmec): Guidelines for Reporting Novel SCCmec Elements” in 2009,
followed by the Guidelines for Reporting Novel mecA Gene Homologues [17,18].

Recently, the IWG-SCC is updating its website, which contains information about
IWG-SCC members, curators, requesting representative isolates of SCCmec types, current
SCCmec types and subtypes approved by IWG-SCC, and IWG-SCC recommendations
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for designating and reporting new SCCmec elements (https://www.sccmec.org, under
revision, accessed on: 14 December 2021).

3. Structure of SCCmec

The description provided in this section is based on the IWG-SCC recommendations, and
additional information after the publication of these recommendations is presented [17,18].

3.1. Requirement for Defining SCCmec

According to the IWG-SCC recommendations, SCCmec is mainly characterized by
four factors: (i) carriage of mecA in a mec gene complex, (ii) carriage of a ccr gene(s) (ccrAB
and/or ccrC) in the ccr gene complex, (iii) integration at a specific site in the staphylococcal
chromosome, designated as the integration site sequence (ISS) for SCC, which serves as
a target for ccr-mediated recombination, and (iv) the presence of flanking direct repeat
sequences containing the ISS [17]. As an example, a comparison of the structures of SCCmec
I–V is presented in Figure 2. Several homologs of mecA have been reported recently, and
instead of mecA, mecC is present in SCCmec IX. Details of the mecA homologs are described
later in this review.
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gene complex and ccr gene (complex), with integration site sequence and direct repeats at both ends.
Adapted with permission from Ref. [17]. 2009, American Society for Microbiology.

3.2. ccr Gene Complex

The ccr gene complex comprises the ccr gene(s) and surrounding open reading frames,
several of which have unknown functions. Currently, three phylogenetically distinct ccr
genes, ccrA, ccrB, and ccrC, have been identified in S. aureus with DNA sequence similarities
of less than 50%. Although the ccr sequences present in staphylococci other than S. aureus are
remarkably diverse, novel ccr genes should be defined based on DNA sequence similarities
of <50%, while novel allotypes of ccr genes should be designated if their DNA sequence
similarity identities are between 50% and 85% [17]. Figure 3 presents a summary of the
ccrA, ccrB, and ccrC genes and their allotypes. Wide implementations of whole-genome
sequencing in the field of bacteriology may identify more diverse ccr genes from multiple
species other than staphylococci; however, presently, this convention should be followed
when naming novel ccr genes.

https://www.sccmec.org
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The ccr gene complexes were numbered according to the timing of their descriptions.
To date, two distinct groups have been reported: one carrying two adjacent ccr genes (ccrA
and ccrB) and the other carrying only ccrC. For example, the ccr gene complexes identified
in S. aureus include type 1 (carrying ccrA1B1), type 2 (carrying ccrA2B2), type 3 (carrying
ccrA3B3), type 4 (carrying ccrA4B4), and type 5 (carrying ccrC).

3.3. mec Gene Complex

The mec gene complex comprises mecA, its regulatory genes, and the associated inser-
tion sequences. Currently, three classes of the mec gene complex are recognized [17]. The
class A mec gene complex (class A mec) is a prototype contained in SCCmec II. The class A
mec gene complex contains mecA, the complete mecR1 and mecI regulatory genes upstream
of mecA, and the hypervariable region (HVR) and insertion sequence IS431 downstream
of mecA. The class B mec gene complex (class B mec) comprises mecA, a truncated mecR1
resulting from the insertion of IS1272 upstream of mecA, and HVR and IS431 downstream
of mecA. The class C mec gene complex (class C mec) contains mecA and truncated mecR1
via the insertion of IS431 upstream of mecA and the HVR and IS431 downstream of mecA.

In the 21st century, multiple mecA homologs have been identified from staphylo-
cocci other than S. aureus and Macrococcus caseolyticus. Hence, the IWG-SCC released a
commentary on the “Guidelines for Reporting Novel mecA Gene Homologues” in 2012
(Table 1) [18].

Table 1. List of mecA homologs shown in the IWG-SCC guidelines. Adapted with permission from
Ref. [18]. 2012, American Society for Microbiology.

Prototype Strain Reported mec
Gene Name

New mec Gene
Name

% Identity with the
mecA Gene in

Staphylococcus
aureus N315

Staphylococcus aureus N315 mecA mecA 100 (reference gene)
Staphylococcal sciuri K11 mecA (mecA1) mecA1 79.1
Staphylococcus vitulinus

CSBO8 mecA mecA2 91

Macrococcus caseolyticus
JCSC5402 mecAm mecB 61.6

Staphylococcus aureus LGA251 mecALGA251 mecC 68.7

The mecA genes with nucleotide sequence identities similar to the original mecA gene
by 95% are designated as mecA, thus indicating that they are members of the allotype repre-
sented by the original mecA gene found in S. aureus N315. Those with nucleotide sequence
identities to the original mecA of 70–95% are regarded as belonging to other allotypes of
mecA. Accordingly, the mecA homologs detected in Staphylococcus sciuri, with a nucleotide
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sequence identity to the original mecA gene of approximately 80%, are designated as mecA1.
The mecA homologs in Staphylococcus vitulinus, with nucleotide sequence identities similar
to the original mecA gene of approximately 90%, are designated as mecA2.

In addition, the mec gene types are divided into allotypes, where each allotype en-
compasses a group of mec genes that share 70–95% nucleotide sequence identities to mecA
of S. aureus N315 and mecB of Macrococcus caseolyticus JCSC5402, which was originally
reported as mecAm, or mecC of S. aureus LGA251, which was isolated from bulk milk,
daily cattle, and humans and originally designated as mecALGA251 [19,20]. Again, wide
implementation of whole-genome sequencing may identify more diverse mec genes from
multiple species other than staphylococci; however, presently, this convention should be
followed when naming novel mec genes.

3.4. J Regions

In addition to the mec and ccr gene complexes, the SCCmec element also contains three
J regions (previously called “junkyard regions”), which constitute nonessential compo-
nents of the chromosome cassette. However, J regions may carry additional antimicrobial
resistance determinants, and variations in the J regions within the same mec-ccr complex
are adopted to define SCCmec subtypes. As illustrated in Figure 2, the J1 region (formerly
called L-C) is located between the right chromosomal junction and the ccr complex, J2
(formerly called C-M) is between the ccr gene complex and the mec gene complex, and J3
(formerly called I-R) is between the mec complex and the left chromosomal junction.

4. Nomenclature of SCCmec and Its Subtypes

SCCmec elements are classified into types and subtypes by hierarchical systems. Cur-
rently, two methods are used to describe SCCmec types (Figure 4). These SSCCmec types
are described by the combination of the mec gene complex class and the ccr gene complex
type. SCCmec types can also be described using Roman numerals, such as SCCmec types I,
II, and III. Generally, these two descriptions are reported and written together, for example,
SCCmec type I (1B), SCCmec type II (2A), and SCCmec type III (3A).
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Figure 4. Description of SCCmec under two methods.

SCCmec subtypes can be classified by differences in the J regions. The J regions contain
characteristic genes, pseudogenes, noncoding regions, and mobile genetic elements such
as insertion sequences and plasmids or transposons, which are used to define SCCmec
subtypes. In the 2000s, some SCCmec subtypes could be reported with additional se-
quencing results of the J regions; however, this approach has a potential risk for subtype
misclassification. Therefore, it is necessary to identify and report new SCCmec subtypes
based on the entire nucleotide sequence. The following three methods have been adopted
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to describe subtypes of SCCmec: (i) expressing the J region differences as small letters,
e.g., IVa, IVb, and IVc; (ii) expressing the differences due to the presence or absence of
mobile genetic elements as capital letters, e.g., IA, IIA, and IVA; and (iii) expressing the
differences in each J1, J2, and J3 region in Arabic numbers, which are designated according
to the order of discovery, for example, II.1.1.1, II.1.1.2, and II.2.1.1. Currently, expressing J
region differences as small letters is the most widely used to describe SCCmec subtypes. J1
region differences are mainly used to differentiate subtypes; however, some subtypes are
characterized by unique contents in the J3 region.

5. Current SCCmec Types and Subtypes

The latest list of SCCmec types is presented in Table 2 and Figure 5, with the first official
reports as references. Table 2 describes the details of the current SCCmec types, including
the combinations of the ccr complex and mec complex and representative strains and their
source, country, and reported year. Figure 5 shows the comparison of the structures of
SCCmec listed in Table 2. To date, 14 SCCmec types have been officially reported and
approved by the IWG-SCC.

Table 2. Current SCCmec types (14 December 2021).

SCCmec
Type

Ccr
Complex

Type

mec
Complex

Class

Representative
Strain (GenBank
Accession No. or
NCBI Reference
Sequence No.)

Source Country Reported
Time Reference

I (1B) 1 (A1B1) B NCTC10442(AB033763) human
United

Kingdom,
etc.

2001 [13]

II (2A) 2 (A2B2) A N315 (D86934) human Japan 2000, 2001 [12,13]

III (3A) 3 (A3B3) A 85/2082 (AB037671) human
New

Zealand,
etc.

2001 [13]

IV (2B) 2 (A2B2) B CA05(AB063172) human Japan 2002 [21]

V (5C2) 5 (C1) C2 WIS(WBG8318)
(AB121219) human Australia 2004 [22]

VI (4B) 4 (A4B4) B HDE288 (AF411935) human Portugal 2006 [23]
VII (5C1) 5 (C1) C1 P5747/2002(AB373032) human Sweden 2008 [24]
VIII (4A) 4 (A4B4) A C10682 (FJ390057) human Canada 2009 [25]

IX (1C2) 1(A1B1) C2 JCSC6943 (AB505628) human
(veterinarian) Thailand 2011 [26]

X (7C1) 7(A1B6) C1 JCSC6945 (AB505630) human
(veterinarian) Canada 2011 [26]

XI (8E) 8(A1B3) E LGA251(FR821779,
WGS)

bulk milk, daily
cattle, human

England,
Ireland,

Denmark
2011 [19]

XII (9C2) 9(C2) C2 BA01611 (KR187111) cow China 2015 [27]
XIII (9A) 9(C2) A 55-99-44 (MG674089) human Denmark 2018 [28]
XIV (5A) 5 (C1) A SC792 (LC440647) human Japan 2019 [29]

SCCmec subtypes I, II, IV, and V are also presented in Table 3, together with their
references. Table 3 shows the J1 region-based subtypes described by adding small letters,
with one exception in SCCmec subtype IVn, which differs from the SCCmec subtype IVc
in the J3 region. In addition to the J1 region-based subtypes, SCCmec subtypes IIB, IVE,
and IVF were designated using a different method to express the differences due to the
presence or absence of mobile genetic elements in the entire SCCmec structure as capital
letters [30].
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Table 3. Current SCCmec I, II, IV and V subtypes (14 December 2021).

SCCmec Subtype
Representative Strain (GenBank

Accession No. or NCBI Reference
Sequence No.)

Source Country Reported Time Subtyping by Reference

SCCmec I subtype
a NCTC10442(AB033763) human United Kingdom, etc. 2001 (Reference) [13]
b PL72 (AB433542) human Poland 2006 J1 [31,32]

SCCmec II subtype

a N315 (NC_002745), Mu50 (NC_002758),
MRSA252 (BX571856), JH1(NC_009632) human Japan 2001 (Reference) [12,13]

b JCSC3063(AB127982) human Japan 2005 J1 [33]
c AR13.1/3330.2(AJ810120) human Ireland 2005 J1 [30]

d RN7170 (AB261975: only J1 region) human United States (not clearly
described) 2006 J1 [34]

e JCSC6833(AB435013) human Japan 2009 J1 [31]
SCCmec IV subtype

a CA05(AB063172) human Japan 2002 (Reference) [21]
b 8/6-3P (AB063173) human Japan 2002 J1 [21]
c 81/108 (AB096217) human Japan 2004 J1 [35]
d JCSC4469 (AB097677) human Japan 2004 J1 [35]
g M03-68 (DQ106887) bovine milk Korea 2005 J1 [36]
h HO 5096 0412(EMRSA15) (HE681097) human Portugal, Greece, Finland 2007 J1 [37]
i JCSC6668 (=CCUG41764)(AB425823) human Sweden 2009 J1 [38]
j JCSC6670 (=CCUG27050) (AB425824) human Sweden 2009 J1 [38]

k 45394F(GU122149) human (not clearly
described)

Netherlands (not clearly
described) 2010 J1 -

l NN50 (AB633329) human Japan 2012 J1 [39]
m JCSC8843 (AB872254) human Japan 2014 J1 [40]
n No strain name found (KX385846.1) Australia 2016 J3 -

o No strain/accession number found in
GenBank human Australia 2018 JI, J3 [41]

SCCmec V subtype
a (5C2) WIS(WBG8318) (AB121219) human Australia 2004 (Reference) [22]

b (5C2&5) TSGH17(=JCSC7190) (AB512767),
PM1(AB462393), JCSC5952(AB478780) human Japan, Taiwan 2011 J1 [42]

c (5C2&5) S0385(AM990992), JCSC6944(AB505629) human (veterinarian) (international pig
conference) 2011 J1 [26]
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6. Methods to Identify SCCmec Types and Subtypes
6.1. PCR-Based Methods

PCR-based methods have been widely used to detect important components to dif-
ferentiate SCCmec types and subtypes because of their relatively easy access to reagents
and equipment. Single PCR and multiplex PCR are used to identify SCCmec types. Single
PCR for each genomic component in SCCmec is a basic, generally sensitive, and specific
method. The SCCmec type is identified by the combination of the detected components.
However, it is difficult to guess the SCCmec type before analysis, and numerous different
single PCRs are necessary for identification of the SCCmec type. Therefore, multiplex PCR
methods have been reported as useful tools to detect multiple components in SCCmec
and identify the SCCmec types and subtypes efficiently in one analysis, even though the
sensitivity and specificity to detect each component were sometimes less than single PCRs.
The multiplex PCR methods to which the IWG-SCC members contributed and were widely
used are introduced here in this review. Dr. Zhang reported a multiplex PCR assay for
characterization and concomitant subtyping of SCCmec types I, II, III, VIa, b, c, d, and V
in 2005 and its updated version in 2012 [43,44]. Dr. Kondo formulated a combination of
multiplex PCRs for rapid SCCmec type assignments, which could differentiate SCCmec
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types I, II, III, IV, V, VI, and representative J regions to define subtypes in 2007 [34]. In
2007, Dr. Milheirico communicated multiplex PCR strategies for the assignment of SCCmec
types I, II, III, IV and its major subtypes, and V [37,45].

The limitations of multiplex PCR methods should be considered when interpreting
the results. For example, the partial deletion of the ccrB2 gene present in Japanese USA300,
which was designated as ψUSA300, could cause failure in identifying the SCCmec type
in some multiplex PCR methods [46]. In 2020, Dr. Yamaguchi published a substantially
beneficial review covering the history and concept of SCCmec and detailed the methods of
SCCmec typing using multiplex PCR formulated by Dr. Kondo [34,47]. The limitations of
multiplex PCR methods, such as problems in identifying the SCCmec type if one isolate
had both SCCmec and SCC (i.e., structure of SCCmec without the mec complex) components
or the failure of PCR caused by the deletion/insertion of sequences of targeted sites were
discussed. Approaches for solutions of the problems were also mentioned, mainly about
the necessity of additional single PCRs to detect indefinite components in SCCmec with
different primer sets and PCR conditions.

6.2. Whole-Genome Sequencing-Based Methods

SCCmecFinder is a web-based tool for SCCmec typing using whole-genome sequences
and was released by Dr. Kaya et al. in 2018 (https://cge.cbs.dtu.dk/services/SCCmecFinder/,
accessed on 14 December 2021). SCCmecFinder identifies SCCmec elements in sequenced
S. aureus isolates. The read data from major platforms for whole-genome sequencing or
preassembled genome/contigs can be submitted to the website of SCCmecFinder. Users
can obtain information about the prediction of SCCmec types based on the genes in the ccr
complex, mec complex, and J regions, including the homology to the entire cassette [48].
Recently, a rapid method to detect MRSA, covering multiple SCCmec types and subtypes,
directly from clinical samples has been developed [49]. The rapid confirmation of MRSA
followed by whole-genome sequencing using the same samples and implementation of
SCCmecFinder may contribute to reveal the diversity of SCCmec in various settings. How-
ever, as mentioned later, the objective confirmation of the structure is necessary to report
new SCCmec, even though whole-genome sequencing has the potential to discover new
ones easily.

7. How to Report New SCCmec and SCCmec Subtypes in the Era of Whole-Genome
Sequencing: Role of IWG-SCC

Molecular cloning and conventional sequencing of SCCmec have been adopted for
several years to identify and verify the structures of new SCCmec. However, these methods
have rarely appeared in recent publications regarding new SCCmec elements. Alternatively,
whole-genome sequencing has been widely used. In the era of whole-genome sequencing,
in addition to S. aureus, numerous mec homologs, ccr homologs, and other components
of SCCmec can be identified from other staphylococci and numerous species other than
staphylococci. Furthermore, new SCCmec elements can be identified more frequently in
isolates from animals or the environment. To maintain the value of identification of the
SCCmec elements as a tool for molecular epidemiology, investigations on the evolution of
bacteria and the relationship with antimicrobial resistance, researchers should contact the
curator and obtain approval from the IWG-SCC before reporting/publishing new SCCmec
and/or SCCmec subtypes to avoid duplicated names/numbers and reporting structures
that are not SCCmec.

As aforementioned, a complete SCCmec sequence is necessary. The IWG-SCC strongly
recommends the use of long-read sequencing technology (e.g., nanopore systems, PacBio
systems, etc.) to verify the sequence of a new cassette chromosome, because the assembly of
the entire SCCmec sequence sometimes solely fails with the results of short-read sequencing
technology, possibly due to multiple insertion sequences.

To maintain the appropriate nomenclature of SCCmec types and subtypes, researchers
are requested to send the isolates containing candidates of new SCCmec elements to the

https://cge.cbs.dtu.dk/services/SCCmecFinder/
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Statens Serum Institut (SSI) in Denmark and/or the National Institute of Infectious Diseases
(NIID) in Japan, both of which serve as reference laboratories and reference strain banks of
SCCmec. Subsequently, SSI and NIID will conduct long-read whole-genome sequencing
and annotation to verify the suggested nomenclature by researchers. After depositing the
strains to SSI and NIID, SSI and NIID will share the strains when requested from outside to
contribute to SCCmec research worldwide. The original researchers will be acknowledged
and asked permission to share the strains from SSI and/or NIID whenever necessary.

To date, complete structures of SCCmec present in S. aureus have been designated
as new SCCmec type names, regardless of the host. However, the IWG-SCC has decided
not to annotate new SCCmec subtypes in species other than S. aureus owing to the high
complexity of the elements present in isolates other than S. aureus. An alternative nomen-
clature is “SCCmec[NAME OF THE STRAIN]”, which has already been adopted for non-aureus
staphylococci. Discussions should be continued on the appropriate way of differentiating
and naming the SCCmec structures present in both S. aureus and other species using whole-
genome sequencing data and/or in silico investigations from public genome databases.

8. Conclusions

The discovery of SCCmec was based on the findings from multiple researchers about
MRSA in the 20th century, and its importance in the fields of molecular epidemiology,
infection control and prevention, and investigation of the evolution of MRSA has been
developed along with the evolution of molecular analysis technologies. The implementation
of whole-genome sequencing will contribute to reveal the entire relatedness of the SCCmec
elements found not only in MRSA but also in other Staphylococcus species and Gram-positive
bacteria. Importance as a tool of molecular typing might be declined if whole-genome
sequencing is more widely used in clinical settings, but PCR-based methods will continue
to be used as easy and costless tools for molecular epidemiology, infection control, and
prevention. Therefore, the nomenclature rule of SCCmec should be followed, and the
IWG-SCC should continue to update the most appropriate policy to designate SCCmec
elements, especially for isolates other than S. aureus, or MRSA isolated from animals or
the environment.
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