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Abstract Several recent advances in turbulent dynamo theory are reviewed. High resolution
simulations of small-scale and large-scale dynamo action in periodic domains are compared
with each other and contrasted with similar results at low magnetic Prandtl numbers. It is ar-
gued that all the different cases show similarities at intermediate length scales. On the other
hand, in the presence of helicity of the turbulence, power develops on large scales, which is
not present in non-helical small-scale turbulent dynamos. At small length scales, differences
occur in connection with the dissipation cutoff scales associated with the respective value
of the magnetic Prandtl number. These differences are found to be independent of whether
or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous
systems are shown to suffer from resistive slow-down even at intermediate length scales.
The results from simulations are connected to mean field theory and its applications. Recent
work on magnetic helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos,
nonlocal effects and magnetic structures from strong density stratification are highlighted.
Several insights which arise from analytic considerations of small-scale dynamos are dis-
cussed.
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1 Introduction

Dynamos are now generally believed to be the main source of magnetic fields in many as-
trophysical environments. There used to be a time when dynamo critics tried to explain the
magnetic fields in galaxies and galaxy clusters through winding up a primordial magnetic
field. However, maintaining tangled magnetic fields seen in these systems against turbulent
decay requires dynamo action; otherwise the Lorentz force due to the field would rapidly
transfer magnetic energy to kinetic energy, which in turn can be dissipated by viscosity or
by driving turbulent motions. Thus it becomes hard to make a convincing case for purely
primordial magnetic fields, without any dynamo action, to explain observed cosmic mag-
netism. An exception is perhaps the space between clusters of galaxies, in particular the
voids which are empty of galaxies. The weak fields recently claimed to be detected in such
void regions from Gamma Ray astronomy (Neronov and Vovk 2010), would, if substanti-
ated, be difficult (but not impossible) to explain by purely astrophysical mechanisms, and
could point to primordial fields.

Obvious examples where only dynamos can explain the observed fields are planetary
dynamos such as the geodynamo, for which the resistive decay time would be around
1000 years. In stars the global field is of large enough scale so that the resistive time would
be comparable with their life time, but the Sun’s convection zone is turbulent, and the turbu-
lent decay time is much shorter, just enough to explain the 22 year activity cycle of the Sun’s
magnetic field. Similar arguments also apply to galaxies, which are also turbulent and have a
thickness small enough for turbulent diffusion to destroy the field within a few billion years.
Clusters of galaxies come in great varieties and their magnetic fields vary correspondingly.
The suspicion is that their magnetic fields are reinforced by mergers with other clusters that
tend to occur on time scales of about 2 Gyr.

Dynamos convert kinetic energy into magnetic energy. In the astrophysical context, one
always means by a dynamo a self-excited device, except that the conductivity is uniformly
distributed and not limited to conducting wires in an insulating container, as in laboratory
dynamos. Since the beginning of the space age, it is well understood that such a device
can work, at least in principle. The discovery of the first rigorously proven example by
Herzenberg (1958) was significant, even though the particular configuration studied by him
was not of immediate astrophysical interest. The Herzenberg configuration consists of a
uniformly conducting solid medium (e.g., copper) with two or more conducting rotors in
electrical contact with the rest. Dynamo action is possible when the rotors spin faster than
a certain critical value that depends on the angle between the rotors (Gailitis 1973; Gibson
and Roberts 1967; Moffatt 1978). For angles between 90 and 180 degrees the solutions are
non-oscillatory, while for angles between 0 and 90 degrees there are oscillatory solutions
that were discovered only more recently (Brandenburg et al. 1998).

The Herzenberg dynamo belongs to the class of “slow” dynamos, for which the dynamo
growth rate is maximum for intermediate values of the conductivity, but it returns to zero
in the limit of perfect conductivity. Another example of a slow dynamo is the Roberts flow,
which consists of a steady two-dimensional flow pattern, u = u(x, y), but all three flow
components are non-vanishing. This dynamo was first studied by Roberts (1970, 1972). It
provides an important benchmark of a large-scale dynamo, where magnetic field on scales
larger than the scale of motions are produced by a mechanism called the α effect. Here, α

refers to the name of the coefficient in the relation between mean magnetic field B and mean
electromotive force E in a turbulent flow. The basic idea goes back to Parker (1955) who
proposed a relation of the form E = αB . Later, Steenbeck et al. (1966) computed a tensorial
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relation of the form E i = αijBj for rotating stratified turbulence. It was clear that higher
derivatives of the magnetic field would also enter, so a more general expression is

E i = αij ◦ Bj + ηijk ◦ Bj,k, (1)

where the isotropic part of the tensor ηijk , ηijk = ηtǫijk , corresponds to turbulent magnetic,
diffusion where ηt is the turbulent magnetic diffusivity. The circles indicate convolution
over time and space, which is however commonly replaced by a multiplication in the limit
in which the integral kernels are well approximated by δ functions in space and time. The
work of Steenbeck et al. (1966) marked the beginning of mean-field electrodynamics, which
is still the leading theory to explain the amplification of magnetic fields on length scales that
are larger than the scale of the energy-carrying turbulent eddies. Such systems are therefore
also referred to as large-scale dynamos. Essential here is that the trace of the α tensor is non-
vanishing. This typically requires helicity of streamlines (at low conductivity) or of vortex
lines (at high conductivity).

In this review we discuss our current knowledge of dynamos covering both large-scale
and small-scale turbulent dynamos. In practice, all dynamos of astrophysical relevance tend
to be “fast” and thus have a finite growth rate also in the limit of perfect conductivity. There
are examples of predetermined flows for which fast dynamo action is indicated by numerical
simulations, for example the ABC flow (Galloway and Frisch 1986) and the Galloway and
Proctor (1992) flow, but the convergence of the α effect with increasing magnetic Reynolds
number can be quite slow or non-existent (see, e.g., Courvoisier et al. 2006). By contrast,
when relaxing the assumption of a predetermined kinematic flow pattern and adopting a
turbulent flow field, the α effect appears to be converged for magnetic Reynolds numbers
exceeding a critical value of the order of unity up to values of about 200 probed in the
simulations (Sur et al. 2008).

We begin by discussing examples of numerical realizations of turbulent dynamos and
then turn to some astrophysical examples. Large-scale dynamos produce fields that are well
characterized by suitable averages. A theory for describing the evolution of such averaged
fields is mean-field theory that is obtained by averaging the governing equations, most no-
tably the induction equation. Large-scale dynamos can then also be referred to as mean-field
dynamos (MFD). Under certain conditions, making suitable assumptions about the spatial
variation of the α effect, solutions of the mean-field induction equation have been used to
characterize the large-scale magnetic fields seen in astrophysical bodies like the Sun and
some spiral galaxies. Mean-field theory is also applied to the momentum equation. This
leads to a number of effects including turbulent viscosity, the Λ effect (responsible for driv-
ing differential solar rotation; see Rüdiger 1980, 1989), the anisotropic kinetic alpha effect
(Frisch et al. 1987), as well as the negative effective magnetic pressure effect (Kleeorin et
al. 1989). In this paper, we also discuss important effects resulting from the mean-field mo-
mentum equation, namely the spontaneous formation of magnetic flux concentrations in a
strongly stratified layer. Such results may be relevant to explaining the formation of active
regions in the Sun.

There is now increased interest in what is known as small-scale or fluctuation dynamos.
These are dynamos that can work already under fully isotropic conditions and were antic-
ipated by Batchelor (1950) and others (Biermann and Schlüter 1951; Elsasser 1956), but
the now accepted theory was provided by Kazantsev (1967). Fluctuation (or small-scale)
dynamos are important in cosmic objects because they are generic to any random flow of
a sufficiently conducting plasma. Furthermore, the growth rate is fast and random fields
can grow in the beginning exponentially on the eddy turnover timescale of the smallest ed-
dies (Subramanian 1998), and later linearly on the turnover timescale of the larger eddies
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(Beresnyak 2012), which are both typically much shorter than the age of the system. This is
particularly true of galaxy clusters, where the typical scale and velocity of the turbulent ed-
dies are respectively around 100 kpc and 100 km s−1 giving a growth time ∼ 108 yr. Thus,
small-scale dynamos should operate and are crucial to explaining the observed magnetic
fields on the scale of tens of kiloparsecs. Indeed, it would be difficult to explain magnetic
fields on larger scales, because the conditions for large-scale dynamo action are probably
absent (Subramanian et al. 2006).

Small-scale dynamos are nowadays also invoked to describe the small-scale magnetic
field at the solar surface. However, in many contexts both small-scale and large-scale dy-
namos go together. And then it is not clear whether one can (or should) distinguish between
a small-scale field from a small-scale dynamo from that associated with the fluctuations that
are inherent to any large-scale dynamo and that can be caused by tangling and amplification
of the large-scale field.

2 Turbulent Dynamos in Various Astrophysical Settings

Small-scale dynamos are excited whenever the magnetic Reynolds number exceeds a certain
critical value. Throughout this paper, we adopt the following definition for this number:

ReM = urms/ηkf, (2)

where urms = 〈u2〉1/2 is the root mean square (rms) value of the turbulent velocity, η is the
magnetic diffusivity, and kf is the wavenumber of energy injection. A similar definition is
adopted for the fluid Reynolds number, Re = urms/νkf, where ν is the kinematic viscosity.
We also define the magnetic Prandtl number, PrM = ν/η = ReM/Re.

The values of ReM , Re, and PrM have been compiled by Brandenburg and Subramanian
(2005a) for several astrophysical bodies using Spitzer values for both magnetic diffusivity
and kinematic viscosity. Both ReM and Re are generally quite large—much larger than what
can be dealt with in numerical simulations. However, the ratio of both numbers, PrM , is
usually less than unity in denser environments such as stars and larger than unity in tenuous
gases such as galaxies. The Spitzer resistivity decreases with temperature proportional to
the 3/2 power, while the kinematic viscosity increases with temperature to the 5/2 power, so
the magnetic Prandtl number increases with temperature to the fourth power. It is however
also inversely proportional to the density, but because the temperature is generally around
104 K both in the warm interstellar medium and in the upper layers of the Sun, PrM would
be unity or larger when

ρ ≤ 1.1 × 10−13 g cm−3

(

T

104 K

)4( lnΛ

20

)−2

for PrM ≥ 1, (3)

where lnΛ is in the range between 5 and 20. Since a density of 10−13 g cm−3 is rather
atypical of any astrophysical settings, we do not expect PrM to be of the order of unity
except in numerical simulations where this value is the easiest one to deal with. This will be
discussed in more detail in Sect. 3.

3 Numerical Realizations of Turbulent Dynamos

Next, we discuss some numerical realizations of turbulent dynamos. By “turbulence” we
mean here flows that are solutions to the Navier-Stokes equations that are irregular in
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space and time, subject to energy injection at large length scales and energy dissipation
at short length scales. The ratio between forcing scale to dissipation scale is quantified by
the Reynolds number.

At small Reynolds numbers, Re ≪ 1, the flow is determined by viscosity and has qualita-
tively different properties from flows with Re ≫ 1. The break point is close to unity, so, for
example, a flow with Re = 5 would be called turbulent (or at least mildly turbulent), because
it begins to show certain asymptotic scaling properties that are also found for fully turbulent
flows. The most famous aspect of fluid turbulence is the Kolmogorov EK(k) ∼ k−5/3 en-
ergy spectrum, which is normalized such that

∫

EK dk = u2
rms/2. Density is omitted in this

definition, which requires that density fluctuations are unimportant and the flow is nearly in-
compressible. In this review we also discuss stratified flows in which density varies strongly
due to gravity. In those cases the incompressibility condition ∇ · u = 0 has to be replaced
by ∇ · ρu = 0, which is valid as long as the flows are slow compared with the sound speed
and the typical scales of variation smaller than a scale height. However, in the following we
do not make such assumptions and consider fully compressible flows.

3.1 Small-Scale and Large-Scale Dynamos

We begin by discussing first the difference between small-scale and large-scale dynamos.
A small-scale dynamo is one that generates magnetic field at scales much smaller than that
of the energy-carrying eddies, while a large-scale dynamo generates field at scales larger
than that of the energy-carrying eddies. In many practical circumstances, the difference is
of somewhat academic interest, because the small-scale dynamo is always excited when the
magnetic Reynolds number is large, which is the case in many astrophysical applications.
Furthermore, the conditions for the excitation of large-scale dynamo action are met in many
situations of interest. However, in the case of isotropic turbulence such a distinction can be
made by considering helical and non-helical turbulence. In both cases the system can be
homogeneous and it makes sense to compute spectra of magnetic and kinetic energy, EM(k)

and EK(k), respectively; see Fig. 1 for PrM = 1. The early evolution of such a dynamo is
quite similar: both dynamos have a k3/2 power spectrum at small scales. Such a scaling was
predicted by Kazantsev (1967) (see also Kulsrud and Anderson (1992)) for a single scale
non-helical flow which was δ-correlated in time, but seems to be obtained in the simulations
more generally. However, helical turbulence allows the development of an inverse cascade
(Frisch et al. 1975) on a longer resistive timescale (see below).

We see that, at least in the saturated state, large-scale dynamos produce and sustain mag-
netic fields at scales larger than the energy injection scale, while small-scale dynamos pro-
duce and sustain magnetic fields at scales smaller than the energy injection scale. The lack
of similar behavior in the linear regime could be interpreted as evidence that the underly-
ing mechanism for producing large-scale fields must be nonlinear in nature (Herault et al.
2011). Alternatively, one could interpret the resulting dynamo as a combination (or even a
superposition) of large-scale and small-scale dynamo action, where the latter has a larger
growth rate such that in the kinematic regime the field is dominated by the small-scale field,
although the large-scale dynamo does still operate in the background. As a consequence
of such a scenario, it gets the chance to dominate only when the small-scale dynamo has
already saturated. Even in this case, and if ReM is large, we will argue that one needs to
additionally dissipate small-scale magnetic helicity before the largest scale field can appear.

Both large-scale and small-scale dynamos show that the spectral magnetic energy ex-
ceeds the kinetic spectral energy in the beginning of the inertial range, i.e., for wavenum-
bers larger than that of the magnetic energy maximum. This difference is slightly weaker
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Fig. 1 Kinetic and magnetic energy spectra in a turbulence simulation without net helicity (up) and with
net helicity (bottom) for a magnetic Prandtl number of unity and a mesh size is 5123 meshpoints. Notice the
pronounced peak of EM(k) at k = k1 in the case with helicity. The energy input wavenumbers are kf = 1.5k1
in the non-helical case (upper panel, ReM = 600, PrM = 1) and kf/k1 = 4 in the helical case (lower plot,
ReM = 450, PrM = 1). Adapted from Brandenburg and Subramanian (2005a) and Brandenburg et al. (2008)

for large-scale dynamos, but this might be an artifact of the Reynolds number still not be-
ing large enough. Such a difference used to be completely absent at Reynolds numbers
previously reported; see, for example Brandenburg (2001). The slight super-equipartition
was quite evident when simulations at a resolution of 10243 meshpoints became first avail-
able (Haugen et al. 2003), although this feature can already be seen in earlier simulations
(Meneguzzi et al. 1981; Kida et al. 1991). This spectral excess of magnetic fields is expected
to diminish as one proceeds further down the inertial range. Such behavior was indeed seen
in simulations of Haugen and Brandenburg (2006) when using a combination of Smagorin-
sky viscosity for the velocity field and hyperresistivity for the magnetic field; see Fig. 2.
This implies that the two spectra cannot be parallel to each other at intermediate length
scales, and that the slope of EM(k) must be slightly steeper than that of EK(k). This dif-
ference in the two slopes at intermediate wavenumbers is now associated with the observed
differences in the spectral exponents in the solar wind; see Boldyrev et al. (2011), who find
steeper spectra for the magnetic field than the velocity field both from simulations and solar
wind observations.

In the spectra of Fig. 1 we see a remarkable difference between small-scale and large-
scale dynamos. In particular, large-scale dynamos are capable of producing a peak of mag-
netic energy at the smallest possible wavenumber, while small-scale dynamos do not. On
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Fig. 2 Magnetic and kinetic energy spectra for runs with 5123 meshpoints and hyperviscosity with hyper-
resistivity (solid line) and Smagorinsky viscosity with hyperresistivity (red, dashed line). Note the mutual
approach of kinetic and magnetic energy spectra before entering the dissipative subrange. Adapted from
Haugen and Brandenburg (2006)

Fig. 3 Dependence of dynamo growth rates of the rms magnetic field on ReM for helical and non-helical
turbulence. Adapted from Brandenburg (2009)

the other hand, we have stated earlier that small-scale and large-scale dynamos are difficult
to distinguish in the early stage. In Fig. 3 we show the critical values of ReM (= Re) for
dynamo action both for small-scale (non-helical) and large-scale (helical) dynamos. Note
that for ReM > 35 the growth rate attains a Re1/2 scaling both for small-scale and large-
scale dynamos. The same growth rates are also obtained for dynamos driven by convection;
see Fig. 15 of Käpylä et al. (2008). This Re1/2 scaling of the growth rate of the rms mag-
netic field, implies that the growth rate is not controlled by the turnover time of the energy-
carrying eddies, but of eddies at the dissipation scale (Schekochihin et al. 2002, 2004a). At
low values of ReM , only large-scale dynamo action remains possible. Its excitation condi-
tion is determined by the requirement that a certain dynamo number exceeds a critical value.
This usually translates to the condition that the degree of scale separation is large enough;
see (5) of Brandenburg (2009).

An important issue for astrophysical applications is how coherent are the fields gener-
ated by small-scale dynamos (Subramanian et al. 2006; Cho and Ryu 2009). On the basis
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of simulations done with large PrM , but small Re, Schekochihin et al. (2004b) argued that
the field saturates with a folded structure, where the field reverses at the folds such that
power concentrates on resistive scales. The simulations of Haugen et al. (2003, 2004a)
with ReM = Re ≫ 1, found the magnetic correlation lengths ∼ 1/6th the velocity cor-
relation length, but much larger than the resistive scale. This seems consistent with the
simple Subramanian (1999) model for nonlinear saturation of small-scale dynamos. What
happens at large Re and large PrM , which is representative of galactic and cluster plas-
mas, is not easy to capture in simulations. The PrM = 50, Re = 80 simulation described
in Brandenburg and Subramanian (2005a), showed evidence for strong field regions with
folds, but equally, regions with strong fields and no folds, illustrating that such struc-
tures need not be volume filling. Moreover, the ‘spontaneous stochasticity’, that applies
to highly turbulent flows (Eyink 2011), suggests that the dynamics of small-scale dy-
namos could be quite different in turbulent compared to laminar high-PrM systems. Fur-
thermore, in galaxy clusters the viscosity may be set by plasma effects (Schekochihin et
al. 2005a). It could also be highly anisotropic owing to the presence of magnetic fields
(Parrish et al. 2012). In addition, heat conduction is also very anisotropic, giving rise
to magnetothermal and heat flux-driven buoyancy instabilities (Parrish and Stone 2005;
Parrish and Quataert 2008). Further work on these aspects is desirable, using both semi-
analytical ideas and high resolution simulations.

3.2 Low Magnetic Prandtl Number

In many astrophysical settings, like solar, stellar, or accretion disk plasmas, the magnetic
Prandtl number is rather low (∼10−4 or less). This becomes numerically hard to handle,
especially if the magnetic Reynolds number should still be large enough to support dy-
namo action. In Fig. 4 we compare non-helical and helical runs with magnetic Prandtl
numbers of 0.02 and 0.01, respectively. In the former case the magnetic Reynolds num-
ber ReM is 230, which is weakly supercritical; the critical value of ReM for small values
of PrM is Rm,crit ≈ 150 (Brandenburg 2011a), compared with Rm,crit ≈ 35 for PrM = 1
(Haugen et al. 2004a). These values agree with those of earlier work (Schekochihin
et al. 2005b, 2007; Iskakov et al. 2007). An increase of the critical value of ReM fol-
lows also from considerations of the Kazantsev model (Rogachevskii and Kleeorin 1997;
Boldyrev and Cattaneo 2004; Schober et al. 2012). So, for ReM = 230 and PrM = 0.02,
we have Re = ReM/PrM = 11,500. Normally, this would require a numerical resolution of
about 10,0003 meshpoints, but it turns out that at low values of PrM , most of the energy
is dissipated resistively, leaving thus very little kinetic energy to be cascaded, terminating
therefore the kinetic energy cascade earlier than at PrM = 1.

At intermediate length scales, kinetic and magnetic energy spectra are close to each other.
The magnetic energy spectrum no longer exceeds the kinetic energy spectrum, as was found
for PrM = 1; see Fig. 1. Again, this might be a consequence of still insufficiently large
Reynolds numbers and limited resolution. In fact, it is plausible that, in the limit of large
fluid and magnetic Reynolds numbers, kinetic and magnetic energy spectra coincide, even
if PrM is small. And only at much smaller scales, the magnetic energy spectrum turns into
a dissipative subrange, and goes below the kinetic energy spectrum, due to stronger Ohmic
dissipation. The slopes of the k−11/3 spectrum of Golitsyn (1960) and Moffatt (1961) and the
scale-invariant k−1 spectrum (Ruzmaikin and Shukurov 1982; Kleeorin and Rogachevskii
1994; Kleeorin et al. 1996) are shown for comparison. However, the kinetic energy spectrum
tends to be steeper than k−5/3 and is closer to k−1.9 and k−7/3 in the non-helical and helical
cases.
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Fig. 4 Kinetic and magnetic energy spectra for non-helical (top) and helical (bottom) turbulence at low
magnetic Prandtl numbers of PrM = 0.02 and 0.01, respectively. Here, ReM = 230 with Re = 11,500 in
the non-helical case, adapted from Brandenburg (2011a), and ReM = 23 with Re = 2300 in the helical case
adapted from Brandenburg (2009). In both cases the resolution is 5123 mesh points

3.3 Inverse Transfer and α Effect

The dynamics of a large-scale dynamo is most dramatic when the scale separation ra-
tio is large, i.e., kf/k1 ≫ 1. In Fig. 1 it was only 4, but now we consider a case where
kf/k1 = 15. In Fig. 5 we show visualizations of one component of the field for different
times. Evidently, a large-scale field develops that varies in the y direction. This particu-
lar large-scale field is best described by xz averages. In Fig. 6 we show the evolution of

the mean energy density of this large-scale magnetic field, 〈B2〉, and compare it with that

of the small-scale field, 〈b2〉 = 〈B2〉 − 〈B2〉. Note that the small-scale field reaches its fi-
nal saturation value during the time span considered, while the large-scale field has not
yet saturated and is expected to do so on the diffusive time scale of the box such that
tηk2

1 = O(1). It is also interesting to note that the large-scale field starts becoming no-
ticeable only when tηk2

1 ∼ 0.02, or when (t/td) ∼ 4.5, where td = (ηk2
f )

−1 is the resistive
timescale at the forcing scale. In other words one needs several resistive (diffusive) times
at the forcing scale, before the large-scale field can grow. We will interpret this result be-
low in terms of the resistive dissipation of small-scale magnetic helicity which alleviates α

quenching.
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Fig. 5 Visualizations of Bx/Beq on the periphery of the domain at six times during the late saturation stage of
the dynamo when a large-scale field is gradually building up. The small-scale field has reached its final value
after t/τ ≈ 100 turnover times. Here, Beq = √

μ0ρ0 urms is the equipartition field strength where kinetic and
magnetic energy densities are comparable, and ρ0 is the mean density. Note that the maximum field strength
is about twice Beq

The evolution of the magnetic energy spectrum for this case is shown in Fig. 7, where
we see several stages during the early phase of the dynamo, and in a separate panel the
later saturation behavior. Clearly, a large-scale field is already present for t/τ > 100, but
the field is then still fairly isotropic and therefore not very pronounced in visualizations
shown in Fig. 5. Spectra of magnetic energy and rescaled magnetic helicity are shown in
Fig. 8 for the saturated state. Here, magnetic helicity spectra HM(k) are normalized such
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Fig. 6 Saturation of the small-scale magnetic energy density and continued increase of the large-scale mag-
netic energy density. Here, kf/k1 = 15 and ReM ≈ 60

that
∫

HM dk = 〈A · B〉, where B = ∇ × A is the magnetic field expressed in terms of its
vector potential. Note that at early times, the magnetic field shows the Kazantsev k3/2 slope
(t/τ = 10) in the range 7 ≤ k/k1 ≤ 25. However, already at times t/τ = 20 and 30 one sees
a small hump at kf/2, which is significant in view of an interpretation of these results in
terms of a so-called α2 dynamo, which will be discussed in Sect. 3.4.

The temporal increase of the typical scale of the large-scale field can be determined by
monitoring the quantity

ℓm(t) ≡ k−1
m (t) =

∫

k−1EM(k)dk
/

∫

EM(k)dk. (4)

In Fig. 9 we plot k−1
m (t) for different values ReM . Here, we normalize with respect to the

minimal wavenumber k1 = 2π/L in the domain of size L, so we plot k1/km. There is a
limited scaling range that allows us to determine the increase of ℓm(t) for different values of
ReM . We measure the speed at which the bump travels toward larger scales by the quantity
αtrav = dℓm/dt . In the right-hand panel of Fig. 9 we plot the resulting values of αtrav as
a function of ReM . The results are compatible with a resistively limited increase whose
speed diminishes like Re−1/2

M . This behavior was first seen in simulations of Brandenburg
et al. (2002) and then more convincingly at larger resolution in simulations of Brandenburg
(2011b). Such a behavior further reinforces our earlier remark that the large-scale field can
only grow on the slow resistive timescale in periodic boxes.

3.4 Connection with Mean-Field Theory

There exists a close analogy between the inverse transfer described above and mean-field
dynamo theory in that both are able to predict the occurrence of large-scale fields with
similar properties and excitation conditions. In mean-field theory one splits the velocity
field U and magnetic field B into the sum of mean, large-scale components (U and B) and
turbulent, stochastic components (u and b); that is U = U + u and B = B + b. One then
solves the averaged induction equation,

∂B

∂t
= ∇ × (U × B + E − ημ0J ), (5)
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Fig. 7 Magnetic energy spectra EM(k), at earlier (top) and later (bottom) times. The scale separation ratio is
kf/k1 = 15. The range of time t is given in units of the turnover time, τ = 1/urmskf . At small wavenumbers,
the EM(k) spectrum is proportional to k4, while to the right of kf/k1 = 15 there is a short range with a k−5/3

spectrum

where E = u × b is the mean electromotive force that we discussed already in connection
with (1). Under the assumption of isotropy and sufficient scale separation in space and time,
we have just E = αB −ηtμ0J , where α and ηt are a pseudo-scalar and a scalar respectively.
For the case when there is no mean flow, a stability analysis gives the dispersion relation for
the growth rate λ as

λ = αk − (ηt + η)k2, (6)

and the eigenfunctions are force-free solutions with ηtμ0J = αB , which are plane po-
larized waves, just like in Fig. 5, where the large-scale field can be approximated by
B ∝ (sinky,0, cosky), ignoring here an arbitrary phase shift in the y direction. The dy-
namo is excited when Cα ≡ α/(ηt + η)k > 1, where Cα is the relevant dynamo number in
this context. The fastest growing mode occurs at wavenumber k = kmax = α/[2(ηt + η)].
Furthermore, using estimates for the high-conductivity limit,

α = αK = −1

3
τ 〈ω · u〉 and ηt =

1

3
τ
〈

u2
〉

, (7)
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Fig. 8 Spectra of magnetic energy, EM(k), and rescaled magnetic helicity, ±kHM(k)/2μ0

Fig. 9 Left panel: time dependence of the peak wavenumber for scale separation ratios of 15 (dashed) and
30 (solid lines) at ReM of 12, 27, and around 57 (increasing line thickness). Right panel: ReM dependence
of the cascade speed for scale separation ratios of 15 (open symbols) and 30 filled symbols. The straight lines

give the Re−1/2
M

(dotted) and Re−1
M

(dashed) dependences. Adapted from Brandenburg (2011b)

we find that Cα = ǫfkf/k1 (Brandenburg et al. 2002), where ǫf ≤ 1 is the fractional helicity,
and η ≪ ηt has been assumed. We can now return to our discussion in connection with
Fig. 7, where we notice that at early times the field growth occurs at wavenumber kf/2. This
is indeed the value expected from our simple estimate, since for fully helical turbulence, we
expect 〈ω · u〉 = kf〈u2〉, and thus kmax = α/2ηt = kf/2.

It is of interest at this point to comment on the validity of mean-field dynamo con-
cepts. In condensed matter physics for example mean-field theory is generally valid when
applied to systems where fluctuations are assumed small. In high ReM turbulent sys-
tems on the other hand, the fluctuations grow more rapidly than the mean-field, due to
small scale dynamo action. Thus, even in the kinematic stage when Lorentz forces are
small, one needs a closure theory to calculate the mean-field turbulent coefficients like
α and ηt. Traditionally these coefficients have been derived by still making a quasilin-
ear approximation (strictly valid for small fluctuating fields), which is also known as the
first order smoothing approximation (FOSA) (Moffatt 1978; Krause and Rädler 1980;
Brandenburg and Subramanian 2005a). This is sometimes also referred to as the sec-
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ond order correlation approximation. Some improvements to this can be made by adopt-
ing closure approximations like the minimal tau approximation whereby triple correla-
tions involving fluctuating fields are taken to provide a damping term proportional to the
quadratic correlations (Blackman and Field 2002; Rädler et al. 2003; Brandenburg and
Subramanian 2005a). There are also a few cases, like δ correlated flows (Kazantsev 1967;
Zeldovich et al. 1983) or renovating flows (Dittrich et al. 1984; Gilbert and Bayly 1992)
which provide analytically solvable models, where the form of α and ηt given by (7) is
recovered.

In this context, direct simulations as discussed above, which can be interpreted in terms
of mean-field concepts, lend some validity to the theory. This applies also to the interpreta-
tion of results in the nonlinear regime to be discussed below. Moreover, when the α and ηt

have been measured directly in simulations of isotropic turbulence, one gets results remark-
ably close to the estimates of FOSA given in (7) (Sur et al. 2008). This suggests that the
strong magnetic field fluctuations produced by small-scale dynamo action do not contribute
a systematic large-scale component to the mean emf E = u × b, correlated with the mean
field. They do make the mean-field coefficients noisy. However, the fact that we can still
use the mean-field concept in understanding the results of direct simulations implies that
this noise does not have a crucial effect, perhaps after the small-scale dynamo has nearly
saturated. The saturation of the dynamo will be discussed further in Sect. 3.6.

3.5 Shear Dynamos

Remarkably, not all large-scale dynamos require an α effect. In fact, large-scale dynamo ac-
tion has been seen in simulations with just shear and no helicity; see Brandenburg (2005a)
for simulations using a shear profile motivated by that of the Sun. An obvious candidate
at the time was the so-called shear–current effect (Rogachevskii and Kleeorin 2003, 2004),
which requires ηijU i,j > 0, where ηij is the part of the magnetic diffusivity tensor that
multiplies J such that E i = · · · − μ0ηijJ j , and U i,j is the velocity shear. Already early
calculations using the test-field method showed that the relevant component of ηij has
the wrong sign (Brandenburg 2005b). This confirmed the results of quasilinear calcula-
tions (Rädler and Stepanov 2006; Rüdiger and Kitchatinov 2006; Sridhar and Singh 2010;
Singh and Sridhar 2011). Moreover in the large ReM limit using FOSA, but for arbitrar-
ily strong shear, the corresponding cross coupling implied by the shear current effect was
shown to be absent (Sridhar and Subramanian 2009a, 2009b). The issue of how the mean-
field grows in nonhelical turbulence in the presence of shear remained open in view of other
possible contenders.

One possibility is the incoherent α–shear dynamo that lives from the combination of
shear and fluctuations of the α effect and was originally invoked by Vishniac and Bran-
denburg (1997) to explain the magnetic field of unstratified shearing box simulations of
accretion disc turbulence (Hawley et al. 1995). This mechanism has received consider-
able attention in the following years (Sokolov 1997; Silant’ev 2000; Fedotov et al. 2006;
Proctor 2007; Kleeorin and Rogachevskii 2008; Sur and Subramanian 2009). Meanwhile,
evidence for the existence of shear dynamos in simple shearing box simulations was mount-
ing (Yousef et al. 2008a, 2008b; Brandenburg et al. 2008; Herault et al. 2011). Although the
underlying mechanism may have appeared to be a new one, there is now quantitative evi-
dence that this can be explained by an incoherent α-shear dynamo (Brandenburg et al. 2008;
Heinemann et al. 2011; Mitra and Brandenburg 2012). This is remarkable given the un-
conventional nature of the approach whereby one uses mean-field theory over two spatial
directions and considers the fluctuations that remain in time and the third coordinate direc-
tion as physically meaningful.
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3.6 α-Quenching

A fully satisfactory theory for the magnetic feedback on the α effect does not exist.
What we do know is that for strong mean fields B , this α becomes a tensor of the form
αij = α1(B)δij − α2(B)B̂iB̂j , where B̂ = B/B are unit vectors, and B = |B| is the mod-
ulus. However, if this tensor is applied to the B field, we have αijBj = (α1 − α2)B i ,
which suggests that α is just like a scalar. We also know that at least part of the quench-
ing acts in such a way that the total field (small-scale and large-scale) obeys the magnetic
helicity evolution equation. This was derived some time ago in a certain approximation
by Pouquet et al. (1976) and was then applied to derive an equation for the quenching
of α (Kleeorin and Ruzmaikin 1982; Gruzinov and Diamond 1994; Kleeorin et al. 2000;
Field and Blackman 2002; Blackman and Brandenburg 2002; Subramanian 2002; Branden-
burg and Subramanian 2005a).

The crucial starting point is the realization of Pouquet et al. (1976) that under the influ-
ence of Lorentz forces, the α effect has an additional component, αM = 1

3τj · b/ρ0, where

j · b is the current helicity associated with the small-scale field and α = αK + αM is the
sum of kinetic and magnetic α effects. Interestingly, Pouquet et al. (1976) also showed that
ηt does not get renormalized under the same approximation. Under locally isotropic condi-
tions, in the Coulomb gauge, j · b can be approximated by k2

f a · b/μ0, where a · b ≡ hf is
the magnetic helicity of the small-scale fields. In order to write an evolution equation for the
magnetic helicity density one can fix a gauge for the vector potential. One could also work
in terms of the evolution equation for the current helicity (Subramanian and Brandenburg
2004). Perhaps more elegant is to write this evolution in terms of a gauge invariant magnetic
helicity density, defined as the density of correlated links of b, and which is most closely
related to hf in the Coulomb gauge (Subramanian and Brandenburg 2006). The evolution
equation for hf is

∂hf

∂t
= −2E · B − 2ηk2

f hf − ∇ · F f, (8)

where F f is the magnetic helicity flux of the small-scale field. This equation shows that the

α effect produces magnetic helicity at a rate −2E ·B = −2αredB
2
, where αred = α − ηtkm is

the reduced α effect and km = μ0J ·B/B
2

is the effective wavenumber of the mean field. In
a supercritical dynamo, the sign of αred agrees with that of α (the ηt term is subdominant).
Then, starting with a specific sign for the kinetic αK and zero magnetic αM, this produces αM

of opposite sign, which quenches the total α and the dynamo progressively with increasing
field strength. In the absence of a magnetic helicity flux, this process happens on a resistive
time scale, which is what is seen in Fig. 6, where final saturation is not even remotely in
sight. We recall that a rapid evolution of the energy of the mean field up to k1/kf times the
equipartition value is expected on theoretical grounds (Blackman and Brandenburg 2002).
In practice, this is hard to verify because at early times the mean field has not yet reached
the scale of the system and modes of different orientation are still competing. Nevertheless,
by splitting the magnetic field into its positively and negatively polarized contributions,
E±

M(k) = 1
2 [EM(k) ± kHM(k)], it is possible to separate large-scale and small-scale fields

(Brandenburg et al. 2002; Brandenburg and Subramanian 2005a; Brandenburg 2011b). In
Fig. 10 we clearly see a faster build-up of the large-scale field through E−

M(k) compared with
the small-scale field through E+

M(k). As we have argued before, this build-up of large-scale
fields is still resistively slow, but it is important to realize that the demonstrated existence of
large-scale fields in the kinematic stage provides support for the usefulness of the mean-field
approach.
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Fig. 10 Magnetic energy spectra E±
M(k) of positively (red) and negatively (blue) polarized parts at ear-

lier times. Note the preferred build-up of the large-scale field at E−
M(kf/2) relative to the slower growth of

E+
M(kf). Slopes proportional to k2 for E+

M and k4 for E−
M are shown

The final saturation value, in periodic box simulations, can be estimated simply by noting
that in the absence of magnetic helicity fluxes, the total current helicity must vanish in the
steady saturated case, i.e., J · B + j · b = 0. This is because the total current helicity drives
the change of magnetic helicity, which in steady state must be zero. Such a state can be
obtained in a nontrivial manner with helical forcing when current helicity has opposite signs
at large and small length scales. For example, if the kinetic helicity at small scales is positive
(that is αK is negative), then the generated αM is positive. In that case the current helicity

of small-scale fields is also positive with μ0j · b = kfb
2 and hence μ0J · B = −k1B

2
is

negative. (This implies that km = −k1.) Assuming furthermore equipartition between kinetic

and magnetic energies at small scales, i.e., b2 ≈ μ0ρu2 ≡ B2
eq, we obtain (Brandenburg

2001)

B
2
/B2

eq ≈ kf/k1 (9)

in the final state. We recall that in the run shown in Fig. 6, the scale separation ratio is
kf/k1 = 15, so it is understandable that there is not yet any sign of saturation of the large-
scale field; see Brandenburg (2001) for early results on the resistively slow saturation.

We do not expect resistively slow saturation behavior to occur in stars or galaxies, be-
cause the ∇ · F f term can usually not be neglected (Blackman and Field 2000a, 2000b;
Kleeorin et al. 2000; Brandenburg and Subramanian 2005b; Shukurov et al. 2006). These
results were obtained by solving the mean-field equations. Subsequent simulations have
shown that turbulent diffusive fluxes exist that would constitute a sufficient contribution to
∇ · F f (Mitra et al. 2010; Hubbard and Brandenburg 2010), especially when ReM is larger
than a critical value around 104. This flux term can then dominate over the 2ηj · b term
(Candelaresi et al. 2011). Under certain considerations it is possible that a flux of the form
E ×A from the mean electromotive force contributes to the flux, but by solving an evolution
equation for the magnetic helicity density of the total (small- and large-scale) field, consid-
eration of this term can be avoided (Hubbard and Brandenburg 2012). This approach is also
suited to deal with fluxes associated with gauges that can introduce artificial fluxes in shear-
ing environments; see Hubbard and Brandenburg (2011). They find no evidence for a flux
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resulting from shear that were previously argued to be important (Vishniac and Cho 2001).
Using simulations with anisotropic non-helical forcing in the presence of shear, Shapovalov
and Vishniac (2011) argue that large-scale dynamos might even live entirely due to helicity
fluxes, although the exact origin of this flux remains to be clarified. Another natural con-
tribution to the flux term is just advection of both small-scale and large-scale fields, along
with the associated magnetic helicity (Shukurov et al. 2006; Subramanian and Brandenburg
2006). This will naturally arise from coronal mass ejections in the solar context, or super-
novae driven outflows in galaxies (Blackman and Brandenburg 2003; Shukurov et al. 2006;
Sur et al. 2007; Warnecke et al. 2011).

Large-scale dynamos therefore seem to need helicity fluxes to work efficiently. This con-
clusion can be understood more physically as follows. As the large-scale mean field grows,
the turbulent emf E is transferring helicity between the small- and large-scale fields. The
large-scale helicity is in the links of the mean poloidal and toroidal fields of the astrophys-
ical system like the Sun or the Galaxy, while the small-scale helicity is in what can be
described as ‘twist helicity’ (or simply twist) of the small-scale field, produced by helical
motions. Lorentz forces associated with the ‘twisted’ small-scale field would like to untwist
the field. This would lead to an effective magnetic αM effect which opposes the kinetic αK

produced by the helical turbulence. The cancellation of the total α effect can lead to catas-
trophic quenching of the dynamo. This quenching can be avoided if there is some way of
dissipating the twist (which is slow in high-ReM system) or transferring the twists in the
small-scale field out of the region of dynamo action, or canceling it between two hemi-
spheres. That is, if there are helicity fluxes out of the system or between different parts of
the system, the large-scale field can grow to observable strengths.

3.7 Application of Mean-Field Theory to Galaxies

The mean-field theory described above has been applied extensively to understand magnetic
fields of disk galaxies. The mean-field dynamo equations allow substantial simplification
provided a suitable parameterization of turbulent transport coefficients is chosen. Of course,
this parameterization presumes a suitable closure for nonlinear effects to arrive at a closed
set of nonlinear mean-field dynamo equations. Such an approach does not necessarily imply
a deep understanding of the physical processes involved in the magnetic field evolution.
However, it appears to be sufficient for pragmatic modeling of magnetic field configura-
tions in particular galaxies to be compared with the observational data of polarized radio
emission.

A first example of such parameterization and further drastic simplification of mean-field
dynamo equations was presented by Parker (1955). Early simplified models for the galactic
dynamo, which allow analytic or quasi-analytic investigations, can be found in Ruzmaikin
et al. (1988), and more recent reviews by Beck et al. (1996), Shukurov (2004), and Kulsrud
and Zweibel (2008). Next, one can suggest, as the most pragmatic contender, the so-called
no-z model (Subramanian and Mestel 1993; Moss 1995) as a simple mean-field model for
galactic dynamo. The idea of this model is to present azimuthal and radial components of
the mean galactic magnetic field by their quantities at the galactic equator and average the
mean-field equations with respect to the coordinate z perpendicular to the galactic plane. The
third component of the magnetic field can be reconstructed from the condition divB = 0.
This approach is an obvious oversimplification, but it appears still adequate for modeling
magnetic field evolution including the helicity fluxes discussed above (Sur et al. 2007;
Chamandy et al. 2012). It also allows one to model magnetic configurations for design stud-
ies of new generations of radio telescopes such as the Square Kilometer Array; cf. Moss et
al. (2012).
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3.8 Application to Mean-Field Dynamos of Stars and the Sun

In comparison with galactic dynamos, the status of the theory of solar and stellar dynamos
is less satisfactory. Early models by Steenbeck and Krause (1969) provided numerical so-
lutions to the full two-dimensional axisymmetric mean-field equations under the assump-
tion of an assumed profile of the internal angular velocity Ω(r, θ), whose radial gradient,
∂Ω/∂r , was negative, and variations in colatitude θ were ignored in most of their models.
This yielded cyclic magnetic fields with equatorward migration under the assumption that
the α effect is predominantly positive in the northern hemisphere. Subsequently, helioseis-
mology delivered detailed contours of Ω(r, θ), which excluded the previously assumed Ω

profiles and suggested that ∂Ω/∂r > 0 at low latitudes where strong magnetic flux belts are
observed to propagate equatorward during the course of the 11 year sunspot cycle.

Various solutions have been offered to this dilemma (Parker 1987). The most prominent
one is the flux transport dynamo (Choudhuri et al. 1995; Dikpati and Charbonneau 1999),
whereby meridional circulation causes the dynamo wave to turn around in the opposite di-
rection. This model operates under the assumption that the turbulent magnetic diffusivity
operating on the toroidal field is much lower than the value suggested by mixing length
theory, and the α effect is assumed to work only at the surface. The other proposal is that
the dynamo wave obeys equatorward migration owing to a narrow near-surface shear layer
(Brandenburg 2005a), where ∂Ω/∂r is indeed strongly negative; see Fig. 4 of Benevolen-
skaya et al. (1999). This proposal still lacks detailed modeling. In view of the shortcomings
in the treatment of mean-field dynamo theory (e.g., our ignorance concerning nonlinearity
discussed in Sect. 3.6 or the neglect of finite scale separation discussed below in Sect. 3.10),
the ground for speculation remains fertile. Magnetic helicity fluxes in interface and flux
transport dynamos have already been looked at Chatterjee et al. (2011), but finite scale
separation effects are neglected. Indeed, the Sun is strongly stratified with its scale height
changing rapidly with depth, making it hard to imagine that simple-minded approaches that
ignore this can be meaningful at all. A cornerstone for the proposal that solar activity is a
shallow phenomenon may lie in the success of explaining the formation of active regions
and perhaps even sunspots as a result of spontaneous formation of flux concentrations by
convective flux collapse (Kitchatinov and Mazur 2000) or the negative effective magnetic
pressure instability; see Sect. 3.11 below.

3.9 Magnetic Helicity from the Solar Dynamo Exterior

There is now explicit evidence for the presence of magnetic helicity in the exterior of dy-
namos. In particular, it has been possible to detect magnetic helicity of opposite signs at
small and large length scales. This has been possible through measurements of magnetic
helicity spectra in the solar wind away from the equatorial plane (Brandenburg et al. 2011).
This data pointed for the first time to a reversal of magnetic helicity density between interior
and exterior of the dynamo. Such reversals have now been confirmed in numerical simula-
tions of dynamos coupled to an exterior. There are first of all the simulations of Warnecke et
al. (2011) showing coronal mass ejections from a turbulent dynamo in a wedge of a spher-
ical shell, where the reversal occurred some distance away from the dynamo. Next, there
are related simulations in Cartesian geometry where a reversal can be found immediately
above the surface; see Fig. 12 of Warnecke and Brandenburg (2010). Finally, there are ear-
lier mean-field simulations showing such a reversal as well; see the lower panel of Fig. 7 of
Brandenburg et al. (2009).

The occurrence of such a reversal is now well understood in terms of the magnetic he-
licity equation for the small-scale field shown in (8). In the dynamo interior, the α effect
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dominates over turbulent magnetic diffusion and produces magnetic helicity of a sign op-
posite to that of α. In the northern hemisphere, α is positive, so this produces negative
hf. Turbulent magnetic diffusivity opposes this effect, but it is still subdominant and can
therefore not change the sign of hf. This is different in the solar wind where α becomes
subdominant compared with turbulent diffusion, which is the reason the sign of hf is now
different (Brandenburg et al. 2011).

3.10 Scale Separation in Space and Time

In connection with (1) we noted that the relation between E and B does, in general, involve
a convolution in space and time. This becomes important when the variations of B occur
on time and length scales comparable with those of the turbulence, whose turnover time is
ℓ/urms and its typical scale is ℓ = k−1

f . The properties of the integral kernel are often deter-
mined in Fourier space, in which case useful approximation of it is α̂ij (k,ω) = α

(0)
ij K̂(k,ω)

and η̂ijk(k,ω) = η
(0)
ijkK̂(k,ω), where

K̂(k,ω) = 1

1 − iωτ + k2ℓ2
. (10)

Such an integral kernel has recently been obtained with the test-field method applied to pas-
sive scalar diffusion (Rheinhardt and Brandenburg 2012), and in limiting cases (either with
ω = 0 or with k = 0) for α and ηt; see Brandenburg et al. (2008) and Hubbard and Branden-
burg (2009) for details and applications to spatial and temporal nonlocalities, respectively.
The test-field method allows one to determine the turbulent transport coefficients by solving
an extra set of equations that describe the evolution of the fluctuating magnetic field for each
test field, which is a predetermined mean field. Under some conditions it is also necessary
to solve corresponding evolution equations for velocity perturbations (Rheinhardt and Bran-
denburg 2010). The combined presence of spatio-temporal nonlocality was first considered
by Rheinhardt and Brandenburg (2012), who proposed (10) and used it to reformulate (1) as
a simple differential equation of the form

(

1 + τ
∂

∂t
− ℓ2 ∂2

∂z2

)

E i = α
(0)
ij Bj + η

(0)
ijkBj,k. (11)

Such an equation is quite easy to implement and represents an improvement in terms of
physical realism. This representation avoids not only the problem of causality associated
with the infinite speed of signal propagation in the absence of the time derivative (Branden-
burg et al. 2004), but it also prevents the development of artificially small scales in the mean
field.

The application of this new technique is still in its infancy, and it needs to be seen to
what extent spatio-temporal nonlocality can substantially alter the nature of the solutions.
As an example we note that a finite τ has been found to lower the critical dynamo number
for oscillatory solutions by a factor of about 2 (Rheinhardt and Brandenburg 2012). In the
context of disk galaxies, such non-locality in time can also lead to phase shifts between the
spiral forcing of the dynamo by matter arms, and the resulting magnetic spirals, as seen in
the galaxy NGC6946 (Chamandy et al. 2012).

3.11 Magnetic Structures Resulting from Strong Density Stratification

Finally, let us discuss a mean-field effect that occurs under the condition of strong density
stratification. It has been theoretically anticipated long ago (Kleeorin et al. 1989, 1990, 1993,
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Fig. 11 Visualizations of By for a simulation with strong density stratification and a weak imposed magnetic
field (0,B0,0) with B0/Beq0 = 0.01, ReM = 18 and PrM = 0.5. Time is given in units of turbulent–diffusive
times. Note the gradual emergence of a large-scale magnetic flux concentration which then sinks as a result
of negative effective magnetic buoyancy. Adapted from Kemel et al. (2012)

1996; Kleeorin and Rogachevskii 1994; Rogachevskii and Kleeorin 2007), but only more
recently was it also seen in numerical simulations of the mean-field equations (Brandenburg
et al. 2010) and then in direct numerical simulations (Brandenburg et al. 2011; Kemel et al.
2012).

The essence of this effect is the suppression of turbulent intensity by a mean magnetic

field. This means that the effective pressure caused by B is not just B
2
/2μ0, but there must

also be an additional contribution from the suppression of the turbulence, which leads to a
negative contribution (Kleeorin et al. 1989, 1990, 1996; Kleeorin and Rogachevskii 1994;
Rogachevskii and Kleeorin 2007). This modifies the nature of the magnetic buoyancy in-
stability in such a way that magnetic structures become heavier than their surroundings and
sink. This has been demonstrated using both mean-field simulations (Brandenburg et al.
2010) as well as direct numerical simulations (Brandenburg et al. 2011). As an example
we show in Fig. 11 a snapshot from a direct simulation where a weak (B0/Beq0 = 0.01)
magnetic field is imposed in the y direction. The density stratification is isothermal, so the
density scale height is constant in the direction of gravity (the negative z direction). The
total density contrast from bottom to top is about 540. The instability grows at a rate which
scales with ηt0k

2, where ηt0 = urms/3kf is an estimate for the turbulent magnetic diffusivity,
which is well reproduced by simulations using the test-field method (Sur et al. 2008).

The study of this negative effective magnetic pressure is still very much in progress. In
particular, it has not yet been studied how this negative effective magnetic pressure instabil-
ity interacts with the mean-field dynamo. It is envisaged that this instability might produce
local magnetic field enhancements in the surface layers that resemble active regions. Such
regions are long lived (∼ 1/2 year). Traditionally such long timescales have not been as-
sociated with the surface layers. However, the time scale of the negative effective magnetic
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pressure instability is the turbulent–diffusive time, τtd = (ηt0k
2
1)

−1, where ηt0 = urms/3kf is
the estimated turbulent magnetic diffusivity. This time can be much longer than the local
turnover time, τto = (urmskf)

−1, which is about 1 day at the bottom of the near-surface shear
layer at 40 Mm depth. The ratio of these time scales is τtd/τto = 3(kf/k1)

2, which can be
around 300 for a scale separation ratio of just 10.

In the rest of this paper we focus on small-scale magnetic fields that occur over a range of
different astrophysical settings. They are believed to be important in understanding small-
scale magnetic fields in the surface layers of the Sun, although that part of the field might also
be a consequence of tangling the large-scale magnetic field. Another possible astrophysical
application of small-scale dynamos might be the clusters of galaxies, because in the absence
of rotation it is difficult to motivate any form of large-scale dynamo action.

4 Analytical Approaches to Small-Scale Turbulent Dynamos

Direct numerical simulations are now the most straightforward way to understand turbulent
dynamos. However, more traditional analytical method provide useful support for them.
Analytic methods have provided particular insights both into large-scale and small-scale
dynamos. We discuss some specific analytic considerations of small-scale dynamos further
below.

4.1 Correlation Tensor and Small-Scale Dynamo

A natural approach here is to introduce the second-order correlation tensor of the magnetic
field Bi(x, t) as

Bij (x,y, t1, t2) =
〈

Bi(x, t1)Bj (y, t2)
〉

, (12)

taken at two spatial points x and y and at two instants t1 and t2. Here 〈. . .〉 denotes averaging
over an ensemble of turbulent velocity field fluctuations which can be described by the
velocity field correlation tensor Vij (x,y, t1, t2) constructed in the same way as Bij .

For a particular model of turbulence (short-correlated random flow), Kazantsev (1967),
and simultaneously Kraichnan and Nagarajan (1967) for a slightly different model, ob-
tained a governing equation known now as the Kazantsev equation. In particular Kazantsev
(1967) assumed Vij (x,y, t1, t2) = V̄ij (x,y)δ(t1 − t2), and derived an evolution equation for
the magnetic field correlation tensor calculated at two simultaneous instants Bij (x,y, t) =
Bij (x,y, t, t), with t1 = t2 = t . This reads

∂Bij

∂t
= L̂ijkmBkm (13)

where L̂ijkm is a second-order differential operator with coefficients depending on V̄ij , its
spatial derivatives and coefficient of magnetic diffusion η. In some sense, the Kazantsev
equation is similar to the famous Steenbeck-Krause-Rädler α effect equation in mean-field
electrodynamics. In practice however the latter equation provided much more astronomi-
cally fruitful results than the first one. The reason is presumably two-fold. First of all, the
Kazantsev equation requires more algebra for its solution than the mean-field equations. We
only take here some new points isolated recently in this bulky algebra and refer to a detailed
review given by Zeldovich et al. (1990). The other reason is that the physical interpretation
of solutions of Eq. (13) is more delicate than that for the mean-field equation. This is the
main issue presented in following sections.
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Original insight which led Kazantsev to Eq. (13) required some mathematics from quan-
tum field theory that can hardly be considered ‘user friendly’ for a person with an ordi-
nary MHD background. A more familiar approach, which is however rather bulky, can be
found elsewhere (Zeldovich et al. 1990; Subramanian 1997; Brandenburg and Subramanian
2005a). The particular form of the Kazantsev equation (13) is associated with a specific
model of turbulence assumed, in particular the assumption of δ-correlated (in time) velocity
fluctuations. This model is quite restrictive and does not allow one to represent adequately
some basic properties of the Kolmogorov cascade. Various attempts to derive these equations
for more realistic models were undertaken (see, e.g., Kleeorin et al. 2002). For example, in-
corporating a finite correlation time results in quite complicated albeit beautiful mathematics
and gives rise to integral equations. As far as it is known however the results are more or
less the same if just applied to Eq. (13) with V̄ij taken from a suitable model of turbulence
ignoring the fact that this very model is incompatible with the derivation of Eq. (13).

A reasonable way to simplify Eq. (13) to a useful level is to consider statistically homo-
geneous, isotropic and mirror-symmetric turbulence and look for solutions having the same
symmetry. This means that we exploit a velocity correlation tensor of the form

V̄ij = A(r)rirj + B(r)δij (14)

(r = y − x) and look for the magnetic field correlation tensor in a similar form. The incom-
pressibility condition means that the functions A and B depend on a single function, say,
F(r) while the solenoidality condition of the magnetic field means that Bij depends on a sin-
gle function, say, W(r, t). Then Eq. (13) can be reduced to a single second-order ordinary
differential equation for a single function which depends on W with coefficients depending
on F . In fact this is the equation which was obtained by Kazantsev (1967). The algebra here
remains quite bulky and we avoid to present it here in detail; see, for example, the detailed
discussions in Zeldovich et al. (1990) and Brandenburg and Subramanian (2005a).

There is no problem to solve the Kazantsev equation in the homogeneous and isotropic
case for a particular choice of F numerically or by analytical approximations. In fact the
Kazantsev equation can be reformulated as a Schrödinger type equation for a particle with
variable mass m(r) in a potential U(r) (both of which depend on F(r)), whose bound states
correspond to exponentially growing W(r, t). It is possible to develop a WKB-like method
for an approximate solution in the limit of large magnetic Reynolds numbers ReM (∼ η−1).

A general result following from these solutions can be summarized as follows. For a
sufficiently large ReM , the magnetic field correlation tensor (i.e. W ) grows exponentially
with a growth rate γ2 which is determined by l/v where l is the turbulence correlation time
and v is its rms velocity. The critical magnetic Reynolds number is of order Rm,crit ≈ 102,
with Rm,crit = 26 in the most simple example with F = exp−(r/ l)2. For this illustrative
example, the function W which determines the magnetic field correlation properties has
quite a complicated form which contains spatial scales from l up to lRe−1/2

M .
A plausible scenario for the nonlinear saturation of the growth of the magnetic field cor-

relation tensor governing the Kazantsev equation was suggested by Subramanian (1999).
The main idea here is that nonlinearity results in an effective suppression of ReM up to
Rm,crit. It is quite straightforward to consider Kazantsev equation for homogeneous, isotropic
and mirror-asymmetric turbulence and to combine concepts of the second-order correla-
tion tensor with the mean-field approach (Subramanian 1999; Gabov and Sokoloff 2004).
Interestingly, the Kazantsev equation in the presence of kinetic helicity, can be reformu-
lated into a tunneling type quantum mechanical problem, whereby the bound states of the
small scale dynamo can ‘tunnel’ to develop long range correlations (Subramanian 1999;
Brandenburg and Subramanian 2000; Boldyrev et al. 2005). It is also possible to solve the
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Kazantsev equation for locally homogeneous and isotropic turbulence in a finite body of
size L ≫ l (Maslova et al. 1987; Belyanin et al. 1993).

It has been argued that the small-scale dynamo at large Reynolds numbers exhibits a uni-
versal behavior in the sense that the magnetic energy grows at a constant rate (of about 5 %
as determined from simulations) of the total turbulent dissipation rate (Beresnyak 2012). Nu-
merical simulations have also shown that when the turbulence becomes transonic, the critical
value of ReM for small-scale dynamo action increases by about a factor of two (Haugen et
al. 2004b). Similar results have also been obtained by Federrath et al. (2011) who find a de-
crease in the growth rate when the Mach number Ma crosses unity, but a subsequent increase
proportional to Ma1/3.

4.2 Random Magnetic Fields in Cosmology

The description of a random magnetic field by a second-order correlation function is widely
exploited in cosmology. To be specific, Chernin (1966) considered at first a cosmological
model with a random magnetic field and discussed cosmological evolution of its magnetic
energy. We have to stress however that the concepts of statistical hydrodynamics, which are
a mathematical basis for the Kazantsev approach, need some modification to be applicable
for curved spaces of General Relativity. The point is that Eq. (12) considers the product of
two vectors applied at different spatial points while such option is absent in Riemannian
geometry. We have to consider a geodesic line connecting points x and y, transport a field
from the second point to the first one and consider the product of the two fields applied
at one spatial point. This recipe presumes that a geodesic line which leaves the point x

does no longer cross other geodesic lines which leave this point. In other words this means
that geodesic lines do not contain conjugated points and the space-time has no gravitational
lenses. If they do exist we have to elaborate somehow the concept of the correlation tensor
and no general recommendations are suggested until now.

Under statistical homogeneity, isotropy and mirror symmetry in a curved spatial section
of a Friedmann cosmological model, the magnetic correlation function reads

B
ij = C(r)ninj + D(r)gij , (15)

i.e. we have to distinguish upper and lower indices and use tangent vector ni of the geodesic
line connecting x and y instead of the vector r which does not exist in curved space. The
other point is that one deals with a curved space formulation of the solenoidality condition
to reduce C and D to one function. Inspired by earlier work of Garcia de Andrade (2010),
Rubashny and Sokoloff (2010) performed a corresponding analysis to show that for the
Lobachevsky space with negative curvature,

C = −R
th r

R

2
F ′, D = F + R

th r
R

2
F ′, (16)

where R is the curvature radius of the spatial section and r is the distance between x and y.
It is instructive to compare this representation with that for Euclidean space

C = − r

2
F ′, D = F + r

2
F ′. (17)

Because th r
R

has a finite limit at r/R → ∞, correlations decay slightly slower for the
Lobachevsky space than in Euclidean space (of course F is the same in both cases). More
significantly, however, the volume of a sphere with radius r grows exponentially in the
Lobachevsky space and not as a power law, like in Euclidean space. It means that F has
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to decay much faster in Lobachevsky space than in Euclidean space to get convergence of
various spatial means which are based on the correlation tensor.

For spherical space (closed cosmological model) one obtains

C = −R
tg r

R

2
F ′, D = F + R

tg r
R

2
F ′. (18)

This representation gives C(πR) = 0, i.e., C vanishes if y is just the opposite point to x.
This looks reasonable because ni is not determined uniquely for the opposite points. tg r

R
di-

verges for r = πR/2 so the finiteness of correlations means that F ′( πR
2 ) = 0. This condition

is specific for spherical geometry and has no direct analogues for the Euclidean one. Re-
markably, a closed universe admits another homogeneous and isotropic topological structure
of spatial section, namely an elliptical space which is twice smaller than the spherical one.
Instead of the above condition we find here F ′′(πR/2) = 0. Moreover, an elliptical space
does not admit orientation, so one cannot distinguish between left- and right-handed coordi-
nate system there. It means that quantities such as helicities, α effect and other pseudo-scalar
quantities cannot be introduced there. Such topological constrains on the magnetic field cor-
relation properties look rather strange. Fortunately they do not affect substantially physically
interesting conclusions because the correlation length l is usually much smaller than the cur-
vature radius R. The problem however is that both quantities as well as the horizon radius
vary strongly during the course of cosmological evolution, that is, a given length scale l

being negligible in the present day cosmological scale might be very large in scales of the
Early Universe. A more severe problem arises if we are going to consider a homogeneous
and isotropic ensemble of random gravitational waves (Ivanova and Sokoloff 2008), which
are often discussed in cosmological context.

4.3 Higher Statistical Moments and Intermittency

To get more detailed information concerning a dynamo-generated small-scale magnetic
field, it is useful to consider higher statistical moments which are introduced as ensemble

averages of a product of p magnetic field vectors (p is the order of the statistical moment).
Following the Kazantsev approach one can obtain the governing equations for these quanti-
ties and demonstrate that the moments grow provided ReM is high enough (see, e.g., Klee-
orin et al. 2002). Of course, the algebra becomes more bulky as m increases. The problem
is that the higher moments grow faster than the lower ones in the sense that

γ2/2 < γ4/4 < γ6/6 . . . . (19)

Of course, this fact can be supported by a direct calculation. However, it is much more in-
structive to demonstrate the phenomenon at a qualitative level (e.g. Molchanov et al. 1988).
Let us consider a flow with a memory time τ so the magnetic field B(nτ) at instant nτ can
be considered to be developed from the initial field B(0) which is affected by n independent
random transport operators T̂i

B(nτ) = T̂nT̂n−1 . . . T1B(0). (20)

As a matter of fact, progressive growth of higher statistical moments in Eq. (19) does not
depend critically on the fine structure of operators T̂i so we can illustrate the phenomenon
by considering the simplest operators T̂i , i.e. just independent random numbers Ti .

For the sake of definiteness, let lnTi have Gaussian distribution with zero mean and
standard deviation σ . Then

T = TnTn−1 . . . T1 (21)
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is a log-normal random quantity and lnT has zero mean and standard deviation
√

nσ =
σ
√

t/τ . A straightforward calculation shows that
〈

T p
〉

= exp
(

σ 2p2t/2τ
)

, (22)

so the normalized growth rates of the moments γp/p = σ 2p/2τ grow linearly with the
degree p of statistical moment. The other point is that the growth is determined not by
a typical value of Ti which is of order σ , but by strong deviations which are of order
σ
√

tp/τ . The probability density of a Gaussian quantity to achieve the level σ
√

tp/τ

is of order exp(−tp/2τ) so the size N of a statistical ensemble should be as large as
N∗(t) = exp(tp/2τ) to include such rare events.

Note that the above analysis presumes that the statistical ensemble is infinitely large. If
the ensemble is only large but finite, its size N should exceed a critical value N∗(t) which
grows in time exponentially. For large t we obtain N < N∗(t) and the above estimates
becomes inapplicable.

If we consider a medium of independent cells of size l renovating after a memory time τ ,
then the critical size of the system which allows one to recognize the growth governed by
Eq. (22) is given by

L∗(t) = lN1/3 = l exp(tp/6τ). (23)

This means that the behavior of the statistical moment of the order p is determined by very
rare cells and Eq. (23) gives an estimate for the distance to the nearest cell which deter-
mines the moment at a given point. The phenomenon of a random field whose properties are
determined by rare and remote events is known as intermittency. The wording comes from
medicine and means a state when a person is near death, but his/her heart still works from
time to time. These rare events of the heart activity determine the fact that the person is still
alive.

Note that if we calculated a PDF of T based on a limited sample with N < N∗(t) it is
practically impossible to recognize the existence of the above mentioned rare events which
do not contribute to the PDF calculated. Of course, the importance of the result depends on
how large t should be to make the intermittency recognizable and how large the correspond-
ing value N∗ is in comparison with N typical of celestial bodies.

It is natural to address this point based on a simple physical example rather than just a
product of random operators. A simple example of this kind accessible for simple numerics
has been suggested by Zeldovich (1964) in a cosmological context. Let a remote object have
a (small) angular size θ , let x be the distance to the object and y = θx its linear size. y(x) is
known in the Riemannian geometry as Jacobi field and is governed by the so-called Jacobi
equation

y ′′ + Ky = 0, (24)

where a prime means the derivative taken with respect to x and K is the spatial (sectional)
curvature. Zeldovich (1964) recognized the importance of density and then curvature fluc-
tuations on the evolution of y along the line of sight. In other words, we consider K as a
random, say, Gaussian quantity.

It is quite easy to simulate many independent solutions of Eq. (24) and determine exper-
imentally how large N∗(t) is. It appears (Artyushkova and Sokoloff 2005) that one needs
N ≈ 5 × 105 . . .106 to recognize the difference between γ2/2 and γ4/4 for t ≈ 102. Of
course, a simulation of 106 independent 3D cells for a hundred turnover times becomes
prohibitive given the purely computational problems, in addition to the problems associated
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with the further data processing of the results. On the other hand, the number of indepen-
dent turbulent cells in a typical galaxy is of the order of 106, so the effects of intermittency
can contribute in mean quantities of interest for galactic dynamos. In practice however the
difference between γ2/2 and γ4/4 is for the intermittent fields, as far as it is known, not very
large.

The other point here is that the growing magnetic field becomes sooner or later dynam-
ically important. Of course, it is important to know which happens first, whether the field
becomes dynamically important first or whether the size of the domain becomes too small to
contain the intermittent structure? Unfortunately, the abilities of simple models like Eq. (24)
to reproduce the stage of nonlinear dynamo saturation are limited. A numerical experiment
with a simple model shows that the number N required to reproduce the behavior of higher
statistical moments declines strongly when the solution becomes dynamically important
such that exponential growth of statistical moments saturates.

Yet another point which can be recognized from the experience with simple models is that
ensemble averaging is not the only option to describe the behavior of the growing solution.
Lamburt et al. (2003) demonstrated that the quantity

ln |y|
t

→ γ > 0 (for t → ∞) (25)

for almost all realizations (with probability 1, or “almost sure” in the wording of probability
theory) where no averaging is taken at all. Quantities such as γ are known as self-averaging
quantities and γ in particular is known as Lyapunov exponent. The phenomenon becomes
clearer if one introduces a 2D row-vector (y, y ′) and rewrites Eq. (24) as a vectorial equation

z′ = zÂ, (26)

where Â is a random matrix process with vanishing trace (i.e. Tr Â = 0). Then the evolution
of z from an initial condition z0 can be represented as a product of independent random
unimodular matrices Bi = exp(Âiτ), detBi = 1, where Âi is a realization at a given interval
of renovation of the random matrix process Â.

The product of independent random matrices is quite well investigated in probability
theory (so-called Furstenberg theory). Zeldovich et al. (1984) stressed the importance of
this theory for small-scale dynamos (here the elements of Â are ∂vi/∂xj ). Molchanov et al.
(1984) argue that magnetic field generated by a small-scale dynamo grows such that

ln |B|(x, t)

t
→ γ > 0 for t → ∞, (27)

where γ is a positive constant. A numerical experiment for the Jacobi equation supports this
interpretation and shows that t should be of the order of a hundred memory times to get this
behavior (Artyushkova and Sokoloff 2005). The PDF of the dynamo-excited magnetic field
is investigated by Chertkov et al. (1999).

Unfortunately, this approach of simple models cannot mimic the α effect. The point is
that one cannot produce a pseudoscalar quantity α based on correlations of Aij and Amn and
a Levi-Civita tensor epqr .

Generally speaking, the analytical results discussed above show that detailed direct nu-
merical simulations of small-scale dynamos at the kinematic stage can be nontrivial to in-
terpret due to the rapidly growing intermittency. Fortunately, the magnetic field becomes
dynamically important quite rapidly (at least at small scales), so the dynamo becomes non-
linear and mathematical distinctions between properties of various statistical moments be-
come less and less important. Artyushkova and Sokoloff (2005) investigated several simple
models of how catastrophic intermittency typical of the kinematic stage gradually evaporate
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when nonlinear effects become important. Presumably, something like that happens for the
much more complicated full small-scale dynamo equations.

4.4 Small-Scale Magnetic Field and Shell Models

The Kazantsev model is developed for the kinematic or weakly nonlinear stage of the dy-
namo and its ability to describe the strongly nonlinear stage of a dynamo is obviously quite
limited. However, it remains useful to have a simple model of strongly nonlinear dynamos
in terms of ordinary (instead of partial) differential equations. An option of this kind is given
by so-called shell models of MHD-turbulence.

The starting point of the shell model approach is to note that for random fields and flows,
one can hardly reproduce in a numerical simulation the actual realization of the random field
which are obtained in a given celestial body. In practice we are interested in some spectral
properties of the field of interest. If we can get such properties without solving the full set
of equations, we would be happy with such a result.

Shell models are designed to describe the cascade process over a large range of scales
(wavenumbers) by a chain of variables un(t), bn(t), each of them characterizing velocity
and magnetic field oscillations with wavenumbers k in the range from kn = k0λ

n to kn+1

i.e., a shell of wavenumbers. The parameter λ characterizes the ratio of two adjacent scales
(the width of the shell) and usually λ ≤ 2. The model includes a corresponding set of ordi-
nary differential equations, which should reproduce the basic properties of the equation of
motion. In particular, the model has to reproduce the type of nonlinearity of the primitive
equations and to retain the same integrals of motion in the dissipationless limit. Let us note
that shell models can possess positively defined integrals of motion (energy, enstrophy in
two-dimensional turbulence, and the square of magnetic potential in 2D MHD-turbulence),
as well as quadratic integrals with an arbitrary sign (the integrals of this kind are usually
called ‘helicities’). The signs of the helicities are defined by the balance between the contri-
butions of odd and even shells to corresponding quantity.

The shell models were suggested by Kolmogorov’s school to describe the spectral en-
ergy transfer (Gledzer 1973; Desnianskii and Novikov 1974). After numerous refinements
they became an effective tool for description of the spectral properties of the small-scale
turbulence (see for review Bohr et al. 1998). The shell models for MHD turbulence were
introduced by Frick (1984), Gloaguen et al. (1985), Brandenburg et al. (1996), and Frick
and Sokoloff (1998). This approach reveals many intrinsic features of small-scale dynamo
action in fully developed turbulence of conducting fluids (for review see Biferale 2003).
In particular, the shell model suggested by Frick and Sokoloff (1998) gives a fast growth
of small-scale magnetic fields (on the timescale l/v) and its saturation at the equipartition
level as well as non-Gaussian (similar to lognormal) PDF for small-scale magnetic field in
the saturated state. In some cases shell models give a hint concerning dynamo action in the
parametric domain inaccessible to direct numerical simulations. In particular, Stepanov and
Plunian (2006) and Frick et al. (2006) argue, based on simulations of MHD-shell models,
that the critical magnetic Reynolds number for small-scale dynamo action remains moderate
Rm,crit ≈ 80 in the case of low Prandtl numbers. This is also confirmed by the simulations
discussed in Sect. 3.2. General speaking, shell models seem to provide an effective way to
investigate small-scale dynamos.

It may be possible to combine shell models as a tool to describe small-scale variables in
a dynamo with grid or spectral methods for large-scale variables in mean-field equations.
However only the first steps in this direction have been made until now (Frick et al. 2002,
2006; Nigro and Veltri 2011).
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4.5 Dynamical Chaos and Small-Scale Dynamo

One more point of comparison between numerical and analytical approaches to the small-
scale dynamos is as follows. The Kazantsev model and its related investigations consider
turbulence as a truly random field and apply concepts of probability theory in full extent.
In contrast, direct numerical simulations and shell models consider turbulence as a chaotic
behavior of solutions for deterministic equations of motion. It is quite risky to insist a priori

that dynamical chaos reproduces all properties of random flows required for analytical ap-
proaches. It is even less obvious that interstellar turbulence driven by supernova explosions
(e.g. Korpi et al. 1999; Gressel et al. 2008) provides a truly random velocity field. On the
other hand, dynamo models based on steady flows with stochastic flow lines such as ABC
flows excite magnetic fields which look rather different from the field discussed for turbulent
dynamos. Zeldovich (see Zeldovich et al. 1983) suggested that dynamo action in nonstation-
ary flows (say, when parameters A, B and C in the ABC flow fluctuate in time) becomes
much more similar to the dynamo action in random flows than dynamos in stationary flows.
Recent work of Kleeorin et al. (2009) supports this idea and demonstrates that in a fluctu-
ating ABC flow, a large-scale magnetic field can indeed grow in a way similar to what is
supposed to grow in a random mirror-asymmetric (helical) turbulent flow.

5 Conclusions

In this review we have discussed our current understanding of both large-scale and small-
scale dynamos that are relevant in astrophysics. In particular, we have illustrated differences
and similarities between them and have compared them in terms of the energy spectra with
the corresponding cases at low magnetic Prandtl numbers. We have also briefly highlighted
the resistively slow saturation phenomenon as well as catastrophic quenching of helicity-
driven large-scale dynamos. Finally, we have discussed new issues in connection with small-
scale dynamos and their intermittency.

Relative to earlier reviews (e.g. Brandenburg and Subramanian 2005a) there have been
some unexpected advances regarding the nature of magnetic helicity fluxes and direct obser-
vational evidence for magnetic helicity in the solar wind. Another completely unexpected
development concerns the numerical detection of the negative effective magnetic pressure
instability in simulations of strongly stratified turbulence. It is expected that these develop-
ments will contribute to an improved understanding of the magnetic field generation in as-
trophysical bodies. On the technical side, Brandenburg and Subramanian (2005a) discussed
just the basics of the test-field method, but now this technique has provided significant in-
sights into issues such as non-locality in space and time, as well as the nonlinear quenching
of dynamo coefficients.

In this review we have barely touched upon applications to actual astrophysical bodies.
In fact, a lot of progress has been made by trying to model the Sun. Direct numerical simu-
lations of convection in spherical shells has shown signs of cyclic large-scale fields (Brown
et al. 2010, 2011; Käpylä et al. 2010; Ghizaru et al. 2010; Racine et al. 2011), but only for
systems that are rotating at least 3 times faster than the Sun; see Brown et al. (2011) for sim-
ulations with otherwise realistic solar parameters. Similar results have also been obtained
for local simulations of the galactic dynamo, which only appears to be excited when the ro-
tation speed is artificially enhanced (Gressel et al. 2008). This might well indicate that one
is on the right track, but that the turbulence present in the system is exerting too much ef-
fective diffusion owing to it being dominated by rather large eddies. It is conceivable that in
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reality the turbulent eddies would be smaller, lowering thereby the effective turbulent diffu-
sion, which can at the moment (with the larger eddies) only be emulated by adopting faster
rotation. Similar results have recently also been seen in models of the negative effective
magnetic pressure instability, where direct numerical simulations showed the development
of the instability only when there were enough turbulent eddies in the domain and thereby
the turbulent diffusivity sufficiently small on that scale; see Brandenburg et al. (2011) and,
in particular, Fig. 17 of Brandenburg et al. (2012). Thus, much has been learned about tur-
bulent dynamos and their relevance for astrophysical systems but as usual, much remains to
be elucidated.
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