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Abstract

Background: The introduction of the new generation of particle-filled and high strength ceramics, hybrid composites
and technopolymers in the last decade has offered an extensive palette of dental materials broadening the clinical
indications in fixed prosthodontics, in the light of minimally invasive dentistry dictates. Moreover, last years have seen
a dramatic increase in the patients’ demand for non-metallic materials, sometimes induced by metal-phobia or alleged
allergies. Therefore, the attention of scientific research has been progressively focusing on such materials, particularly
on lithium disilicate and zirconia, in order to shed light on properties, indications and limitations of the new
protagonists of the prosthetic scene.

Methods: This article is aimed at providing a narrative review regarding the state-of-the-art in the field of these
popular ceramic materials, as to their physical-chemical, mechanical and optical properties, as well as to the proper
dental applications, by means of scientific literature analysis and with reference to the authors’ clinical experience.

Results: A huge amount of data, sometimes conflicting, is available today. Both in vitro and in vivo studies pointed
out the outstanding peculiarities of lithium disilicate and zirconia: unparalleled optical and esthetic properties, together
with high biocompatibility, high mechanical resistance, reduced thickness and favorable wear behavior have been
increasingly orientating the clinicians’ choice toward such ceramics.

Conclusions: The noticeable properties and versatility make lithium disilicate and zirconia materials of choice for
modern prosthetic dentistry, requiring high esthetic and mechanical performances combined with a minimal
invasive approach, so that the utilization of such metal-free ceramics has become more and more widespread
over time.

Keywords: Lithium disilicate, Zirconia, ZLS, Ceramic, Minimally invasive, E.max, MDP, Aging, Translucent cubic zirconia

Background

At “The Digital Dentistry Society II Consensus Confer-

ence on Digital Technologies – Marrakech 2018” the

main topics of digital interest were thoroughly discussed,

in order to draw clinical recommendations based on

scientific evidence and, when missing, on the clinical

experience shared by the scientific community. The

present narrative review is focused on the technical and

clinical profile of the two most popular metal-free mate-

rials, lithium disilicate and zirconia, in order to briefly

shed light on their different indications, advantages and

shortcomings.

Methods

An extensive research has been carried out in the

literature available on the subject, worldwide, limiting

itself exclusively to articles in english, available on the

main search engines (Pubmed, Embase, Scopus) and

published in the most important indexed journals of

the Materials and Dental sector, with and without

impact factor. The results highlighted in this narrative

review were extrapolated from this literature search,

with reference to the authors’ clinical experience.
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Results

Lithium disilicate

Physico-chemical features, optical and mechanical

properties

Lithium disilicate (LS2) is classified as a glass-ceramic, in

the class of particle-filled glass materials. Introduced on

the market in the 90s with the commercial formulation

named “IPS Empress 2” (Ivoclar Vivadent, Schaan,

Liechtenstein), it was composed of 65 vol% lithium

disilicate, small needle-shaped crystals (3–6 μm× 0.8 μm)

embedded in a glass matrix, with a 1 vol% porosity [1–3],

showing valuable mechanical characteristics (flexural

strength: 350MPa; fracture toughness (KIC): 3.3MPa√m;

heat extrusion temperature: 920 °C; thermal expansion co-

efficient (CTE): 10.6 + 0.25 ppm/°C). At first, this material

was made commercially available as ingots, to be utilized

according to the “heat-pressing” fabrication procedure,

similar to the classic “lost wax” technique for metal-alloy

casts, aimed at producing cores, hot pressed into a mold.

In order to get an appealing reproduction of the optical

characteristics of natural teeth, the cores are lately

veneered with a very translucent fluorapatite ceramic,

containing 19–23% of fluorapatite crystals (Ca5(PO4)3F)

embedded in a glassy matrix [4].

Thanks to an optimization of the processing parame-

ters, allowing the formation of smaller and more

uniformly distributed crystals, in 2005 a new formulation

of LS2 was marketed as “IPS e.max Press” (Ivoclar

Vivadent), exhibiting improved mechanical properties

and optical features (flexural strength: 370–460MPa;

fracture toughness (KIC): 2.8–3.5MPa√m), much higher

than the older glass-ceramics. The high mechanical

performance of this material is due, on one side, to a

layered, tightly interlocked distribution of the elongated

disilicate crystals, hindering crack propagation across

the planes and, on the other side, to a mismatch

between the thermal expansion coefficients of LS2 crys-

tals and the glassy matrix, so that the latter induces a

tangential, compressive stress around the crystals [2].

Besides the production of ceramic cores for bilayered

crowns, the increase of strength and toughness of IPS

e.max Press has allowed to extend its clinical indication

to monolithic restorations, without veneering ceramic, ana-

tomically shaped, colored by surface stains and character-

ized by a higher fatigue resistance than the bilayered ones.

Besides the heat-pressed technique, the widespread, in-

creasing implementation of computer-aided design/com-

puter-aided manufacturing (CAD-CAM) technologies

has led to the introduction of ceramic blocks aimed at

the production of restorations by milling devices (IPS

e.max CAD), also suitable for chairside production of

restorations. Partially, pre-crystallized blocks are manu-

factured in a “blue state”, containing 40% of metasilicates

(Li2SiO3) in addition to lithium disilicate crystal nuclei

(Li2Si2O5). Such blocks are characterized by moderate

flexural strength of ~ 130MPa, resulting in higher

cutting efficiency, easier and faster workability and lower

wear of the milling tools [2, 3, 5]. The milling procedure

is performed in this pre-crystallized state and, after its

completion, it is followed by a heating cycle (840°-850 °C

for 10 min) that turns metasilicate crystals into lithium

disilicate (~ 70%), increasing the flexural strength up to

values of 262 ± 88MPa, together with a fracture toughness

of 2.5MPa·m1/2. The blocks are available in different

colors, obtained by dispersing staining ions in the glassy

matrix [6] and in different degrees of translucency, on the

basis of the size and distribution of the crystals in the

glassy matrix [4]. The variability of flexural strength of

lithium disilicate among heat-pressed and CAD-CAM

blocks with different translucency is still under debate [7,

8]. Particularly, the flexural strength of IPS e.max Press

and IPS e.max CAD was reported to be similar and the

manufacturing process did not seem to affect the mechan-

ical characteristics of lithium disilicate ceramics; more-

over, the flexural strength was significantly influenced by

translucency only for CAD-processed materials [7].

In vitro fully anatomical e.max CAD crowns have been

shown to exhibit fracture resistance that is suitable for

posterior, monolithic restorations [9] and to be more

resistant to fatigue in cyclic loading than veneered zirco-

nia, that is more prone to chipping [10]. For the high

interest generated by its clinical versatility, further devel-

opments are expected on this material, being it influ-

enced by different production processes, like thermal

gradients, times and rates, that affect its microstructure

and mechanical properties. It has been shown, for

instance, that extending temperature range (750–840 °C,

compared to the standard 820–840 °C) or prolonging

holding time (14 min vs 7 min at 840 °C) increase elastic

modulus and hardness properties, without affecting

flexural strength and fracture toughness [11]. Moreover,

new technologies, as spark plasma sintering, can induce

a refinement and a densification of the nano-crystalline

microstructure, increasing lithium disilicate and metasi-

licate phases and reducing lithium orthophosphate and

cristobalite/quartz phases [12, 13].

As regards mechanical resistance, it has been clearly

demonstrated that, in vitro, veneered LS2 crowns exhibit

significantly lower fracture load values (1431.1 ± 404.3

N) compared to monolithic ones (2665.4 ± 759.2 N), the

main failure mechanism being bulk fracture initiating

from the occlusal surface [14]. To date, there is strong

evidence from in vitro studies that, differently from

bilayered restorations, monolithic ones show fracture

strength and fatigue resistance suitable for use in the

posterior areas, both in tooth- and implant-supported

single crowns (SC) and 3-unit fixed dental prostheses

(FDPs) [15–22].
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Monolithic LS2, as well as Zirconia reinforced-Lithium

Silicate ceramics (ZLS), offers higher fracture resistance

than bilayered, hand-veneered zirconia [20], while a

recent in vitro research has shown that load-to-fracture

values of monolithic zirconia are higher than those of

LS2; the latter, in turn, are higher than those of ZLS [23].

It has to be pointed out, however, that, particularly as

regards LS2, fatigue resistance is strongly influenced by

many experimental variables, like amount of cyclic

loading, abutment and antagonist design and material,

thermocycling parameters and test environment; for this

reason, the heterogeneity and lack of standardization in

research designs, tested materials and experimental condi-

tions make a comparison of data not easily feasible [24].

Abrasiveness and wear

As to wear and abrasiveness, LS2 shows quite

favourable properties, that are highly depending on the

surface characteristics of the restoration. When accur-

ately polished at its surface, the material exhibits

convenient tribological behaviour in vitro, in terms of

friction and wear of restorations, being its abrasiveness

quite close to enamel, although more aggressive when

compared to type III gold [25] or to polished mono-

lithic zirconia in in vitro simulations [26–28]. Such

favourable wear behaviour and durability have been

also confirmed by some in vivo evidence [15].

On the other hand, it has been reported that grinding,

glaze coating and fluorapatite ceramic veneering can

increase wear, both of the antagonist teeth and of the

restoration itself; at the same time, surface roughness

can also be increased, besides a reduction of gloss, in the

presence of basic pH environment and after toothbrush-

ing with abrasive toothpaste [29–33]. For these reasons,

when it is not crucially needed for esthetic reasons,

glazing of monolithic restorations should be avoided on

the occlusal surfaces in posterior sites and only limited

to the esthetically relevant zones; moreover, careful

polishing procedures should always follow any occlusal

grinding or esthetic refinement of disilicate restorations,

although in vitro evidences at scanning electron micro-

scope (SEM) have shown that LS2 is one of the most

critical materials to adjust intraorally, due to significant

chip accumulation in the diamond burs, requiring higher

machining forces and energy, with likely onset of inter-

granular and transgranular fractures, besides risks of

thermal damage to tissues and restorations [32].

Biocompatibility

One of the strongest points of LS2 is the excellent

quality of soft tissue response. In vitro, this material

exhibits high levels of biocompatibility, not only due to

low plaque retention, but also to adhesion and prolifera-

tion of human epithelial cells [34] and human gingival

fibroblasts [35], particularly when its surface is polished.

In vivo, in the presence of LS2 restorations no inflamma-

tory reactions were detected, analyzing the concentra-

tion of inflammation indicators in the gingival crevicular

fluid; the same results were found with zirconia restora-

tions [36]. Such favourable tissue responses have also

been confirmed by tissue culture data [34]. In clinical

experience, LS2 restorations are likely to yield very

natural and sound aspect of soft tissues when in contact

with marginal gingiva or peri-implant mucosa, in the

presence of subgingival margins.

Surface treatment and cementation

In addition to excellent biocompatibility and high mech-

anical properties, LS2 exhibits very good esthetic

features, especially as regards translucency, that is about

30% higher than conventional zirconia [37]. Moreover,

for the presence of silica, LS2 is an acid-sensitive ceram-

ics, so that high strength of adhesion to the substrate is

expected, due to both micromechanical and chemical

bonding mechanisms. Micromechanical interlocking

between ceramics and resin cement at the intaglio

surface is based on the creation of surface microirregula-

rities, pits and roughness by means of acid etching and/

or physical treatments like alumina particles sandblast-

ing or diamond bur grinding. For the glass-ceramic

class, to date hydrofluoric acid (HF) etching is the best-

established procedure, to be performed according to val-

idated protocols taking into account both acid concen-

tration and etching time. For LS2, 20 s HF etching (at 5%

concentration) is suggested, that is a shorter time than

requested for feldspathic and leucite-based ceramics

(generally 60 s). Higher HF concentrations (9–10%) and

longer etching times have been shown to be too aggres-

sive and can introduce relevant damages, not only to the

surface but also to the internal microstructure of the

material, negatively influencing mechanical performance

(reduction of flexure strength), adhesion potential and

long-term success of ceramic restorations, particularly

when thickness is low [38–41]. Another system to create

surface microirregularities is sandblasting LS2 with

aluminum oxide particles. Nevertheless, it has been shown

that this procedure, as well as laser etching, can determine

excessive loss of material, with surface modifications that

are less uniformly distributed than after HF etching and

that can significantly reduce flexural strength [42, 43]. In

addition to micromechanical interlocking, as for all silica-

based materials, adhesive bonding of LS2 is efficiently

increased by silane, ensuring a chemical interaction

between the resin-based agent and the ceramics, obtained

forming strong siloxane linkages [44–50].

Recently, it has been shown that the use of silane

combined to a phosphate functional monomer, the 10-

Methacryloyloxydecyl-Dihydrogen-Phosphate (10-MDP),
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creating an acidic environment further improves the

bond strength of resin-based luting cement to lithium

disilicate ceramics [51].

Clinical indications and performances

As regards clinical indications of LS2, it has to be

pointed out that this is one of the most versatile metal-

free materials for its high esthetic potential, good mech-

anical properties and favourable bonding strength to

dental tissues, thanks to its silica content. Lithium

disilicate ceramics can be utilized both for tooth- and

implant-supported restorations, ranging from SCs to

FDPs, from anterior veneers to posterior inlays, onlays

and overlays [4, 7].

To date, due to its relatively recent market introduction,

there is still a lack of data about long-term outcomes of

LS2 restorations, particularly as regards CAD-CAM

production. Prospective, medium-term studies reported

good cumulative survival rates, both for tooth-supported

crowns (94.8% after 8 years [52]) and implant-supported

crowns, made by CAD-CAM procedure following

conventional impression (100% after 5 years [53]). A recent

prospective study on implant-supported, single-unit mono-

lithic restorations made of LS2 in a complete digital work-

flow has demonstrated survival rates of 100%, without any

technical or biological complications, after 2 years of

service [54]. Similarly, retrospective studies have shown

that LS2 can yield satisfactory clinical performance with

favourable survival rates and low incidence of mechanical

failures, like debonding, fractures and chipping [15, 55–58].

As regards chairside procedures, monolithic LS2
crowns revealed a survival rate of 83.5% after 10 years of

follow-up; the main complications were loss of retention,

secondary caries and hypersensitivity [59].

In the last decade, LS2 has been proposed for produ-

cing full-contoured, monolithic SCs to be bonded to

CAD-CAM zirconia full-arch frameworks supported by

implants. In a mid-term study, such a restorative solu-

tion exhibited 100% survival rate, after 5 years of follow-

up [60]. Recently, an in vitro study has suggested that

LS2 crowns supported by ceramic-reinforced polyether

ether ketone (PEEK) implant abutments may be an alter-

native to zirconia abutments with a titanium base for

single-implant restorations in the anterior region [61].

Thanks to the high reliability of resin bond to glass-

ceramics, LS2 clinical indications also include adhesively

retained, tooth-supported restorations. In the anterior

sites, in the authors’ and in other clinicians’ clinical

experience, laminate veneers made of bilayered, hand-

veneered LS2 are a likely choice, particularly when

clinical performance and high esthetic results are

expected [62]. Clinical and in vitro studies demonstrated

that, in the presence of long teeth, margins positioned

beyond the cemento-enamel junction (CEJ), large areas

of exposed dentin or flexural tensile stresses due to high

functional loads, laminate veneers are exposed to higher

failure risks, being maximum enamel preservation and

veneer mechanical resistance paramount success factors

[63, 64]. Due to its mechanical properties, lithium

disilicate can be considered a viable option to fabricate

ceramic veneers in the presence of unfavorable biomech-

anical conditions; in fact, it was reported that more rigid

ceramic materials exert a kind of shield effect onto

underlying tooth structures, strengthening the restora-

tive complex [65].

Since their introduction in 1991, all-ceramic, resin-

bonded fixed dental prostheses (RBFDPs) have been

increasingly utilized as minimally invasive restorations

aimed at replacing one missing tooth in the anterior arch

[66]. Although recording a high rate of early (1-year),

unilateral retainer fractures in conventional, two retainers

all-ceramic adhesive bridges, the authors noticed that the

fractured, unilaterally supported restorations stayed in situ

for 5 to 10 years [67–69]; for that reason, since 1997

cantilevered all-ceramic RBFDPs were proposed as a new

conservative treatment modality for replacement of single

anterior missing teeth, with minimal tooth preparation on

the lingual side, just aimed at achieving a correct position-

ing during cementation [70]. Different materials have been

proposed over the years, mainly, for their high strength,

glass-infiltrated alumina ceramics [71] and densely

sintered, bilayered zirconia, treated with a combination of

moderate pressure air-abrasion and MDP, with promising

medium-term outcomes [72–75]. Thanks to its advanta-

geous optical properties and to its HF etching/silane

bonding option, LS2 has also been proposed as an alterna-

tive material for such cantilevered restorations, showing

comparably promising clinical results [76–78]. In a

systematic review, cantilevered RBFDPs showed a lower

failure rate than conventional, two-retainer, “Maryland

bridge-style” ones, in which higher biomechanical stress

arises for the different directions of forces acting on the

adjacent supporting teeth during anterior guidance in

protrusive and lateral mandibular movements [79]. In

another recent review, an estimated 91.2% survival rate at

5 years was reported for all-ceramic RBFDPs, exhibiting

higher debonding rate with zirconia resin-bonded restora-

tions than with glass-ceramic ones; conversely a higher

fracture rate was reported with glass-ceramics [80], even

though higher level of evidence will be necessary to draw

final long-term evaluations of all-ceramic RBFDPs clinical

performances. RBFDPs are a suitable prosthetic solution

as an alternative to implant-supported SCs, in the pres-

ence of anatomical impairment requiring costly and inva-

sive surgical procedures, financial problems, young age of

patients with congenitally or post-traumatically missing

incisors; in any case, to limit the risks of mechanical

failure or debonding, after an extensive esthetic, occlusal
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and technical evaluation of the case, a very careful treat-

ment planning has to be defined prior to proceed with the

operative phases.

In the posterior sites, LS2 can be successfully employed

for resin-bonded single restorations, like inlays, onlays,

non-retentive partial crowns and full coverage table-tops,

in the monolithic form. The material offers undisputable

advantages, like high fracture resistance, showed by high

load-at-fracture values in table-tops/occlusal veneers,

allowing reduced thickness of the restorations (1–1.5

mm), low wear and abrasive potential, adhesive bonding

strength and high biocompatibility, properties that are

very favourable when teeth are severely abraded or a heavy

occlusal correction is needed (like in lateral post-

orthodontic open bite) [10, 81–85]. These restorative

solutions have shown favourable clinical outcomes in the

most recent literature, even though with limited follow-up

[86, 87]. A recent 3-years randomized, controlled

prospective trial has shown that LS2 partial crowns can be

used as successful restorative solutions for endodontically

treated posterior teeth, with no significant differences

between premolar or molars and with or without the use

of fiber posts [88].

The utilization of LS2 for FDPs is a controversial topic:

literature data is quite scant and not homogeneous, with

a high variability of reported survival and success rates,

ranging from rather poor clinical results [89–92] to

acceptable long-term serviceability both in anterior and

posterior sites, similar to metal-ceramics [93]. In the

opinion of the authors, from a strictly clinical point of

view, taking into account the cost/benefit ratio in terms

of esthetic needs and structural resistance, the material

of choice for 3- or 4-unit FDPs is still zirconia, in all of

its different typologies.

Marginal accuracy and internal fit

Several studies evaluated the adaptation of lithium disili-

cate restorations, fabricated in both conventional and

digital workflow. According to the most recent literature,

there is no significant difference in terms of marginal

accuracy between conventional and full-digital procedures

for the fabrication of monolithic lithium disilicate crowns

[94–96]. Moreover, some authors reported that hot-

pressed LS2 crowns made from conventional impressions

with polyvinylsiloxanes exhibit better fit than CAD-CAM

digitally produced ones [97].

Furthermore, centralized milling production has been

reported to result in better fit compared to chairside

system; in the same study, occlusal internal adaptation

was better in the conventionally manufactured crowns

than in the digitally fabricated ones [95]. Conversely,

other studies reported that marginal and internal fit of

LS2 crowns were more accurate when using digital im-

pression technique; in any case, whatever the workflow

used, the adaptation was shown to be within clinical

acceptability range [98–101].

To date, drawing univocal conclusions about adapta-

tion accuracy of lithium disilicate restorations is not

easy, due to the high number of variables involved in the

final prosthetic fit, like digital impression system and

technique, used material and fabrication procedure, so

there is still a noticeable amount of controversial debate

[3, 102]. As regards fabrication techniques, hot-pressed

lithium disilicate is reported to offer better internal fit

and mechanical performances compared to CAD-CAM

pre-crystallized blocks, even if, also about this topic,

further data will be necessary to definitely shed light on

these aspects, due to the constant evolution and increas-

ing quality of milling procedures and devices [103–108].

Zirconia reinforced-Lithium silicate ceramics (ZLS)

In the last years, the continuous research and progress in

prosthetic material field for dental CAD-CAM applica-

tions has led to the introduction on the market of promis-

ing materials, the ZLS, thanks to an alternative strategy to

enhance translucency: a glassy matrix, containing a homo-

geneous crystalline structure made of lithium silicate crys-

tals, is reinforced with tetragonal zirconia fillers (about

10% by weight) allowing higher strength values than LS2
[109]. The higher mean translucency, together with proper

biaxial flexural strength values, make such material a

proper choice for minimally invasive, single tooth esthetic

restorations, like inlays, onlays, partial crowns, veneers,

anterior and posterior crowns, both tooth- and implant-

supported [109, 110], also fulfilling the “no-prep, table-

top” strategy [85]. The restorations show higher translu-

cency and ease of intraoral polishing than both feldspathic

and disilicate blocks, but, at the same time, exhibit high

brittleness [110–112]. In case of a dark substrate, more-

over, it has to be considered that the high translucency of

the material requires adequate thickness (1.5–2.0mm) in

order to get a proper chromatic masking [113].

To date, as regards mechanical properties and clinical

performances of ZLS, data are still limited, often contro-

versial and short-term; these highly promising ceramics

need further studies, both in vitro and in vivo, in order to

precisely define physical-mechanical properties, clinical

indications, limits and long-term performance of such

restorations [114–117].

Zirconia

Physico-chemical features

In the ceramic classification, zirconia (ZrO2) is a

heterogenous, highly-resistant, polycrystalline ceramic,

characterized by favourable mechanical properties

(toughness: 5–10 MPa√m, flexural strength: 500–1200

MPa, Young’s modulus: 210 GPa) and good optical

characteristics [118–121]; however, differently from
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glass-ceramics, it is not susceptible to conventional

acid etching techniques and, consequently, does not

take advantage of conventional adhesive bonding

procedures [122].

Both in vitro and in vivo, it shows excellent biocom-

patibility, lower plaque retention than titanium and good

radiopacity; moreover, it is not soluble in water and its

susceptibility to corrosion in the oral environment is

negligible [118–121]. Among the various metal-free,

ceramic materials, after conventional finishing and

polishing, monolithic zirconia exhibits the lowest wear

behaviour towards opponent teeth [123].

Phase transformation toughening (PTT)

In dentistry, zirconia is usually considered an all-ceramic

material but, from the physical-chemical point of view, it

is a metal oxide with ceramic properties characterized

by polymorphism and allotropy. In fact, it is present in

nature with three different crystalline configurations at

different temperatures: cubic (from the melting point at

2680 °C to 2370 °C), tetragonal (from 2370 °C to 1170 °C)

and monoclinic (from 1170 °C to room temperature).

These different allotropic states present with distinct

mechanical and optical properties that can be exploited

differently in Prosthodontics [118–121, 124].

Conventionally, zirconia is mainly used in its partially

yttria-stabilized tetragonal phase (Y-TZP) as a prosthetic

material for indirect restorations. Under the effect of

mechanical, thermal and/or combined stresses, the

adsorbed energy can break part of the atomic bonds of

its polycrystalline structure turning such tetragonal crys-

tals to a stabler monoclinic shape. This spontaneous and

irreversible transformation is known as Phase Trans-

formation Toughening (PTT) and shows a contemporary

4–5% increase in crystals volume, creating significant

compressive stresses within the material [118–121, 124].

From the technological and prosthetic sides, the PTT

has been advertised as a paramount advantage, since it

allows a kind of self-repairability of zirconia; indeed, it

permits to block or at least to hinder the propagation of

micro-cracks and fractures within the material. In fact,

the subsequent volumetric increment of the crystals

generates comses within the material at the fracture tip,

limiting crack propagation [118–121, 124–126]. It is

worth noticing that at room temperature such trans-

formation is irreversible and localized, centered at the

stress bearing area (i.e. occlusal load area, traumatic

impact zone, etc.): once the limiting action of the frac-

ture propagation has occurred, in its monoclinic config-

uration zirconia is no longer able to limit cracks any

further [119, 124, 126]. On the contrary, heating mono-

clinic zirconia again up to 900–1000 °C (for limited

time according to manufacturers’ instructions), the

PTT becomes reversible: by means of a process called

“regeneration” or “annealing”, monoclinic crystals can

be moved back to the tetragonal phase, causing the

relaxation of compressive stresses within the material

[125, 126]. After annealing, however, zirconia toughness

tends to be reduced and, as regards the optical

properties, a chromatic oversaturation can occur; con-

sequently, thermal treatments at high temperature

should be used carefully and only after potentially

aggressive mechanical procedures (i.e. relevant occlusal

grinding, polishing, etc.) [126–128].

In order to profit from the positive features of the PTT

intraorally, during industrial manufacturing cubic and

tetragonal zirconia are stabilized with metal oxides, just

like yttrium, magnesium, cerium and lanthanum; the per-

centage of such dopants can vary according to manufac-

turing techniques and clinical use. These stabilizing oxides

contribute to keep zirconia in its crystalline tetragonal

phase also at room temperature in a thermodynamically

metastable state, preventing the spontaneous transform-

ation in the more stable monoclinic crystals. However,

such dopant oxides can get lost after traumatic events,

surface modifications (i.e. occlusal adjustments, grinding,

polishing, etc.) and material aging [118–121, 124–127].

Low temperature degradation (LTD) and aging

In turn, the PTT is closely related to a negative

phenomenon, the so-called “Low Temperature Degrad-

ation (LTD)”, responsible for zirconia aging. At room

temperature, the material can undergo a spontaneous

and irreversible transformation to the monoclinic phase,

even in the absence of any mechanical stress. This

phenomenon causes a worsening of mechanical proper-

ties, till the possible occurrence of spontaneous fractures

[118–121, 124–127, 129, 130]. The LTD is a multifactor-

ial phenomenon affected by several variables, such as

crystals dimension, temperature, surface defects, manu-

facturing techniques, percentage and distribution of

stabilizing oxides, mechanical stress and wetness; par-

ticularly, the last two factors can significantly accelerate

zirconia aging. Although aging is considered a risk factor

for mechanical failure, to date no univocal correlation

has been evidenced between this phenomenon and the

failures affecting zirconia during clinical service. None-

theless, the LTD is known to cause a worsening of

zirconia characteristics, contributing to the onset of

micro-cracks, toughness reduction, increased wear,

roughening and plaque accumulation, till a severe

surface degradation, affecting both mechanical and

optical properties [118–121, 125–127, 129, 130].

As reported in a recent in vitro study, monolithic tetrag-

onal zirconia restorations can undergo hydrothermal

degradation (i.e. aging) also after short observation times;

however, such phenomenon does not reduce significantly

the mechanical properties of tetragonal zirconia even in
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the presence of wide monoclinic transformed areas [126].

In the same research, the glassy layer used for glazing effect

can act as a protective barrier against hydrothermal degrad-

ation; nonetheless, some restoration areas, particularly at

the margins, can show absence of glazing protection and

subsequently can be more susceptible to aging [126].

In vitro studies have clearly demonstrated that mech-

anical properties of zirconia, expressed by parameters

like load-to-fracture values, are higher than those of LS2,

which, from their part, are higher than those of ZLS; the

number of fatigue loading cycles does not seem to affect

the load-to-fracture of zirconia restorations [23].

Optical and mechanical properties

Laboratory investigations reported that monolithic zirco-

nia restorations showed higher resistance to fracture

than bilayered ones, even after mechanical cycling and

aging [131–136]. Surface finishing techniques did not

influence mechanical performance [132], neither did ce-

mentation techniques, particularly onto implants [137];

on the contrary, fracture resistance has been reported to

be significantly influenced by preparation design [138,

139] and low temperature degradation [138], so it can be

inferred that material and geometrical characteristics are

crucial to optimize longevity of monolithic zirconia

restorations [140]. The high mechanical reliability of

zirconia has been confirmed by recent in vitro analyses,

demonstrating that monolithic zirconia crowns with

occlusal thickness of 0.5 mm exhibit sufficient fracture

resistance to withstand occlusal loads in the molar

regions [134, 135]. Moreover, increasing the content of

yttrium oxide to improve the optical properties of zirco-

nia can reduce mechanical properties after aging,

although fracture resistance was reported to be higher

than masticatory loads (3000 N) [141].

Zirconia is usually considered as an opaque restorative

material with optical and esthetic properties less attract-

ive than glassy ceramics, particularly in terms of translu-

cency. By means of transillumination, it has been shown

that tetragonal zirconia allows only about 25% of

incident light to pass through; this characteristic can be

advantageously used to mask dark substrates (i.e. metal

posts/abutments, dark teeth, etc.) [126, 127, 142–144].

Recently, in order to enhance the esthetic properties

of the material, translucent zirconia has been introduced

in the market, characterized by the presence of 30–35%

of cubic crystals. Besides the improved optical character-

istics, in the presence of such cubic phase no hydrother-

mal degradation (i.e. aging) of this allotropic component

is evidenced. However, apart from the better optical

properties, the toughness of translucent zirconia is

reduced, compared to tetragonal one, with values of

flexural strength ranging between 500 and 900MPa; as a

consequence, translucent zirconia represents a suitable

esthetic and mechanical compromise to be preferred in

anterior areas up to the first premolars in its monolithic

configuration [126, 142, 143]. As demonstrated by a

recent investigation, the reduced mechanical properties

of translucent zirconia are due to the dimensions and

distribution of the crystals: in fact, cubic grains present

with wider dimensions than tetragonal ones and segre-

gate a higher amount of stabilizing oxides, making the

tetragonal phase more prone to aging [126].

Manufacturing procedures

Although new additive technologies are emerging from

the research on dental materials, to date, zirconia is still

fabricated by CAD-CAM milling, according to two

different production techniques: either soft machining of

pre-sintered zirconia or hard machining of fully-sintered

zirconia. Both procedures can be accomplished in indus-

trial milling centers, in dental laboratories or by chair-

side devices [118–121, 124, 127].

Soft machining represents the most popular manufac-

turing technique and is based on milling of pre-sintered

zirconia blanks fabricated by cold-isostatic pressing a

mixture of zirconia powder, stabilizing oxides and bind-

ing agents (the latter removed during the pre-sintering

process). With this technique, zirconia is highly

homogenous and easier to mill, reducing production

times, machinery wear and surface flaws; furthermore,

soft machining generates negligible internal porosities

(about 20–30 nm). The downside is that this process re-

quires a 25% oversizing of the framework to be milled,

since following sintering a linear shrinkage of the final

volume occurs; as a consequence, although milling

procedures are easier, soft machining requires a precise

matching of CAD oversizing and material shrinking in

order to avoid dimensional inaccuracies, particularly in

the presence of complex framework geometry [118–121,

125, 127].

Viceversa, hard machining requires milling of fully-

sintered zirconia blanks generally produced with hot

isostatic pressing (HIP) at 1400°-1500 °C. This approach

eliminates the problem of post-milling shrinkage, since

neither oversizing nor sintering are necessary; however,

hard machining needs longer milling times and more

complex manufacturing, involving higher costs due to

accelerated wear of production machinery and increased

risks of attrition flaws. In addition, right after hard

machining, zirconia frameworks can undergo a certain

amount of monoclinic transformation phase due to

mechanical stress, working burs friction and overheating

subsequent to machining of the hard material [118–121,

125, 127].

Literature data are still controversial about which tech-

nique is the best, being the choice mainly guided by the

operator preference, according to considerations related
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to shape, volume and complexity of the prosthetic geom-

etry as well as time and cost of the milling procedures

[118–121, 127].

High temperature and prolonged sintering time gener-

ate bigger zirconia crystals and the dimension of such

grains significantly influences the mechanical properties

of the material. In fact, the critical crystal dimension is

about 1 mm: above this diameter, zirconia becomes

spontaneously more susceptible to PTT, while under 0.2

mm such phenomenon does not occur and the tough-

ness of the material decreases. Consequently, fabrication

procedures (particularly sintering) significantly affect

mechanical properties and stability of zirconia and have

to be carefully checked during the whole manufacturing

process [126, 127, 129, 130, 142].

In order to get a proper color of the restorations,

specific metal oxides can be used as stains within the

pre-sintering zirconia powder mixture or metallic salts

can be infiltrated after milling; moreover, zirconia blanks

are also available in multilayered color configurations. It

has been clearly demonstrated that the coloring process

does not influence mechanical properties of tetragonal

zirconia, whilst uncertainty still remains regarding trans-

lucent cubic crystals [118–121, 125, 127, 129, 130].

Zirconia can be fabricated in monolithic or layered

configurations. The monolithic material, not veneered

with any ceramic layer, shows a less attractive esthetic

appearance, but is not affected by the frequent cohesive

fractures of the layering ceramics, known as “chipping”

[134, 145].

To date, scientific evidences support the use of mono-

lithic zirconia in posterior regions and in not esthetically

relevant areas of the anterior arch (i.e. lingual tooth sur-

faces), while the use of layered restorations should be

mainly addressed in highly esthetic zones [134, 145–

149]. The minimum thickness suitable for monolithic Y-

TZP restorations is 0.5 mm [134]; as regards layered

prostheses, the total thickness ranges between 1.0 and

1.5 mm [134, 145–149]. In order to optimize mechanical

resistance of layered restorations, it is paramount that

veneering ceramics exhibit zirconia-compatible CTE

[128, 150].

Marginal accuracy and internal fit

The accuracy of zirconia prostheses can be influenced

by several factors, such as manufacturing, complexity of

framework geometry (i.e. marginal finish line, span

length, connectors dimension, etc.) and aging. The

comparison of data regarding internal precision and

marginal fit of zirconia is quite difficult, as literature

data are heterogeneous and study designs are different

for both laboratory and clinical investigations [119, 120,

127]. To date, it is possible to state that marginal preci-

sion of zirconia restorations is better than internal fit

(probably because of the shape/size of the CAD-CAM

milling burs) and that, in any case, precision values are

well within the range of clinical acceptability reported in

the specifications of the American Dental Association

(ADA). Marginal gap values have been reported between

0 and 75mm for SCs [151, 152] and 140 mm for FDPs,

the latter showing an increasing proportional to frame-

work span [119, 120, 127, 153].

As regards preparation geometry, the high stability

and structural resistance of zirconia are compatible with

both vertical and horizontal finish lines [124, 153].

Surface treatment and cementation

Due to the absence of any glassy matrix, zirconia is free

from silica and, consequently, cannot be conditioned with

conventional acid etching techniques, differently from

glass-ceramics [119, 122]. Several surface treatments

aimed at getting a reliable bond to the substrate have been

reported in the literature but to date this topic is still con-

troversial [154–163]. Aggressive sandblasting (i.e. 250mm

alumina particles at 0.4MPa) can cause loss of the stabiliz-

ing oxides with a subsequent increased risk of accelerated

PTT and aging of the material; as a consequence, it would

be advisable to treat zirconia surfaces with milder sand-

blasting, using 110mm alumina particles at 0.2MPa. Such

treatment can be advantageous for partially stabilized

zirconia (PSZ) while it seems to weaken the fully stabilized

material (FSZ) [155, 156, 158, 159, 163].

The use of coupling agents like silane can be adopted

only after a tribochemical conditioning with silica-coated

alumina particles or after infiltrating the zirconia surface

with a thin layer of glassy ceramics [154, 155, 161]; how-

ever, the latter approach can determine the creation of

excessive ceramic thickness and the effectiveness of adhe-

sion between the glassy matrix and the polycrystalline

network still remains unclear [154, 155, 158, 161].

The combination of mechanical and chemical treat-

ments of zirconia surface was proved to offer the best

results; particularly, the use of primers and adhesion pro-

moting agents containing acidic monomers (10-MDP) can

have a synergic effect with silane, improving the effective-

ness of simplified adhesive techniques [155, 160–163].

On the basis of the physical-chemical properties of

zirconia, in the presence of retentive preparation

geometries and full coverage prostheses, conventional

water-based luting agents (i.e. glass-ionomer and zinc

phosphate cements) and hybrid cements (i.e. resin-

modified glass-ionomer cements) can be considered a

good choice for cementation. Otherwise, in the pres-

ence of partial coverage restorations, scarcely retentive

preparation geometries (e.g. abutment teeth with

reduced occluso-cervical dimension) and/or high mas-

ticatory loads, besides the above mentioned condition-

ing treatments of zirconia surface, it is possible to use
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conventional resin cement or simplified self-adhesive

luting agents, so as to allow resin better adsorb, distrib-

ute occlusal forces and withstand possible micro-cracks

on the inner surface of the restorations [155, 158, 162].

Clinical indication and performances

From a clinical point of view, in the last decades zirconia

has more and more gained ground in the realm of

metal-free, mainly utilized to restore both natural teeth

and osseointegrated implants with SCs and short- and

medium-span FDPs up to 5 elements [134, 145, 146,

148, 149, 164, 165]. As regards FDPs, besides the high

mechanical properties of the material, fracture resistance

and clinical performance are also strongly related to a

proper framework architecture. In case of bilayered

FDPs, in particular, an “anatomic” design has to be

performed, ensuring proper support and thickness to the

veneering; moreover, connectors are to be designed with

adequate dimensions (minimum area of section: 9, 15

and 25mm2 for 3-, 4- and 5-unit FDPs respectively) and

with rounded interdental embrasures, in order to avoid

sharp angles that can contribute to generate risky stress

concentration [146]. The presence of an adequate occlu-

sal support is a relevant factor in maintaining an effi-

cient chewing [166]; consequently, due to the absence of

veneering ceramics that could be subjected to wear over

time, monolithic restorations could be helpful in keeping

occlusal stability during clinical service, particularly in

the presence of discrepancies in occlusal contact patterns

that could influence the onset of temporo-mandibular

disorders [167].

Recently, clinical investigations regarding tooth- and

implant-supported full-arch restorations have been pub-

lished [165]. Although short- and medium-term results

were encouraging with 94.8% success rate after 3 years

of clinical service for monolithic full-arch bridges [145],

it is worth noticing that a systematic review of the litera-

ture has reported 5-year complication rates of 27.6 and

30.5%, respectively for tooth-supported and implant-

supported full-arch restorations [168]. Moreover, layered

restorations showed 5-year success rates significantly

lower than monolithic prostheses (i.e. 60.4% vs 90.9%)

[169]. Consequently, the use of full-arch, extended zirco-

nia restorations should always be carefully evaluated and

further long-term clinical studies are necessary to valid-

ate the effectiveness of their serviceability.

As regards zirconia implants, the literature reports

controversial, short-term and mainly anecdotal data

[165, 170–174]. A recent systematic review with meta-

analysis has evidenced similar potentialities of hard- and

soft-tissue integration between zirconia and titanium im-

plants, although with a slower initial osseointegration

process detected in zirconia ones. In any case, the use of

the latter should be cautiously evaluated, until more

light is shed on long term outcomes and, particularly, on

the possible mechanical complications. Viceversa, zirco-

nia abutments are to be considered widely validated

today in the esthetic sites, where the clear color of zirco-

nia contributes to achieve a natural aspect of peri-

implant soft tissues, particularly when they are quite thin

[127, 148, 165, 172, 173]. A retrospective clinical study

on a relevant number of ceramic abutments reported

that internal zirconia implant connections are much

more prone to mechanical complications (i.e. unscrew-

ing, fractures, etc.) than hybrid connections with zirco-

nia abutments cemented onto titanium bases; moreover,

the same investigation reported that the distance

between the implant/abutment connection and the

occlusal plane can significantly influence the onset of

bending moments that can be detrimental for the long-

term prognosis of metal-free restorations [172].

Conclusions

At the moment, it can be stated that silicate- and

zirconia-based ceramics are amongst the most versatile

metal-free materials available for the “digital prostho-

dontic environment”. In the last years, an increasing

amount of available in vitro and in vivo data is

shedding precious light on the outline of guidelines for

a restorative rational use, focused on specific materials

advantages and limitations, taking into account mech-

anical, optical and biological properties in the light of

a widespread clinical experience (Table 1). In the

meanwhile, the world of industry is intensively

Table 1 Lithium disilicate and zirconia: pros and cons

Lithium disilicate

Pros Cons

• excellent optical
characteristics and good

mechanical properties
• clinical versatility
• biocompatibility
• favourable abrasiveness
• marginal accuracy and
internal fit

• high strength of adhesion
to the substrate

• monolithic and layered

• glaze coating and fluorapatite
ceramic veneering can
increase wear

• critical to adjust intraorally
• chipping of the veneering
ceramics

Zirconia

Pros Cons

• excellent mechanical
characteristics and

good optical properties
• excellent biocompatibility
and low plaque

retention
• favourable wear behaviour
• implant abutments for esthetic sites
• crack-hindering potential (through PTT)
• marginal accuracy and internal fit
• monolithic and layered

• opacity
• unetchable with
conventional methods

• low temperature degradation
and aging

• critical to adjust intraorally
• glaze coating and fluorapatite
ceramic veneering can
increase wear

• chipping of the
veneering ceramics
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working on new strategies aimed at further enhancing

microstructural characteristics of these materials,

together with the introduction of new production tech-

nologies, mainly based on additive processes.
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