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Abstract: (1) Objective: This review aims to identify the clinical and practical barriers to optimizing
nutrition in newborn infants with congenital heart disease (CHD) and to describe updated evidence-
based recommendations for clinical and nutritional management of these patients in a narrative
review. (2) Research Methods and Procedures: We conducted a search of the relevant literature
published from 2000 to December 2021. (3) Results: CHD patients undergo several nutritional
challenges related to the underlying cardiac disease anomaly, the potential increased risk of NEC, and
delayed enteral feeding, resulting in inadequate energy intake and sub-optimal growth, increased
morbidity and mortality. (4) Conclusions: To optimize nutrition and growth in newborn infants with
CHD, standardized protocols should be implemented. Regular nutritional and growth assessment
with a multi-disciplinary team is essential. We propose a decisional algorithm that may represent a
potentially useful tool to guide clinicians to optimize growth and nutrition.

Keywords: congenital heart disease; nutrition; growth; necrotizing enterocolitis; parenteral nutrition;
enteral feed

1. Introduction

Congenital heart disease (CHD) is the most common birth defect with a prevalence of
9 per 1000 live births [1]. Disease severity and treatment choice depend on the underlying
anomaly. Despite advances in medical and surgical management leading to more affected
children now reaching adulthood, intestinal dysfunction, poor nutrition, and growth failure
remain common in infants with CHD [2,3]. Increased metabolic demand, reduced calorie
intake, malabsorption, genetic factors, and fluid restriction may result in an energy imbal-
ance that negatively affects morbidity and mortality in these patients [4,5]. Malnutrition is
a significant risk factor for adverse post-surgical outcomes [6].
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Improved nutrition may be fundamental to stimulating growth, wound healing, my-
ocardial and vascular function, reducing the length of hospital stay, the risk of nosocomial
infections, and improving neurodevelopmental outcomes [7,8]. Beyond the type of heart
defect, if infants with CHD are born prematurely, then they have higher odds for mortality
than their peers without congenital anomalies. If the CHD is severe, in-hospital mortality
increases two to three times [9]. Furthermore, extra-uterine growth restriction (EUGR) is
common in preterm infants even in the absence of CHD and has been associated with a
poor neurodevelopmental outcome [10].

However, addressing these challenges in newborn infants with CHD has, in part, been
limited by the absence of guidelines and standardized approaches for clinical assessment
and treatment. In 2009, the American Society of Parenteral and Enteral Nutrition recom-
mended standard feeding protocols for pediatric patients in the Intensive Care Unit (ICU)
for improved nutritional care and growth in critically ill patients, particularly those with
CHD [11].

This review aims to critically appraise currently described nutrition care in CHD
patients including assessing their practical utility and limitations. We then describe up-
dated evidence-based recommendations for future clinical/nutritional management of
these patients.

2. Materials and Methods

A literature search was performed using PubMed (https://pubmed.ncbi.nlm.nih.gov/,
accessed on 26 January 2022), eMedicine Medscape (https://emedicine.medscape.com/,
accessed on 26 January 2022), Scopus (https://www.scopus.com/, accessed on 26 January
2022) and Ovid MEDLINE (https://www.wolterskluwer.com/en/solutions/ovid/ovid-
medline-901, accessed on 26 January 2022). Search terms were: “parenteral nutrition” AND
“enteral nutrition” AND “infants” OR “neonates” OR “newborn” AND “congenital heart
defects” OR “congenital heart disease”. Studies published from January 2000 to December
2021 were selected in order to include all studies in the modern treatment era. We focused
on articles published in the last 5 years, when possible.

Abstracts and full papers were reviewed by two authors (ACM and GS) and selected
based on their relevance to CHD and nutrition. In addition, reference lists from papers that
met the criteria, together with current pediatric CHD guidelines, were reviewed by a third
reviewer (DUDR) to identify any additional relevant papers.

3. Nutritional Challenges in CHD Patients

The increased metabolic demand in CHD is attributed to the combination of chronic
hypoxia, increased cardiorespiratory work, venous congestion, increased pulmonary artery
pressures, and catecholamine secretion [8,12]. Ventricular hypertrophy and dilation, which
are frequently observed in these patients, increase myocardial oxygen consumption to
20% to 30% of the body’s total oxygen consumption, instead of the typical 10% [13]. The
concomitant metabolic requirements for growth, cognitive and motor development are also
necessary [8].

Adequate energy supply is a key factor to help children reach optimal clinical con-
ditions before surgery, resulting in a decreased risk of morbidity and mortality. The
preoperative poor nutrition of children with CHD impacts the postoperative rehabilitation
process, contributing to delayed healing of the surgical wound, myocardial dysfunction, en-
dothelial damage, reduced muscle function and increased risk of post-operative infections
(in particular pneumonia) [14–16].

As a result, patients with hemodynamically significant CHD require increased nutritional
support compared to healthy infants. Energy intake need may vary from 130–150 kcal/kg/day
to 175–180 kcal/kg/day depending on the type of CHD [13].

https://pubmed.ncbi.nlm.nih.gov/
https://emedicine.medscape.com/
https://www.scopus.com/
https://www.wolterskluwer.com/en/solutions/ovid/ovid-medline-901
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3.1. CHD Hemodynamics and the Consequences for Nutrition

Three hemodynamics mechanisms influence nutrition and growth failure (shown in
Figure 1):

(1) Hypoxia, such as in double-outlet right ventricle (DORV), transposition of the great
arteries (TGA), tetralogy of Fallot (TOF), pulmonary atresia/pulmonary stenosis (PA/PS),
anomalous pulmonary venous return (APVR), critical aortic valve obstruction (cAVO);

(2) Hypoperfusion, such as in aortic interruption (AI), aortic coarctation (CoA), cAVO,
tricuspid atresia (TA), hypoplastic left heart syndrome (HLHS), patent ductus arterio-
sus (PDA);

(3) Overcirculation, such as in ventricular septal defect (VSD), atrial septal defect (ASD),
PDA, complete atrioventricular septal defect (CASD), truncus arteriosus.
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Malnutrition is common in neonates with cyanotic CHD, particularly if associated
with pulmonary hypertension [13,17]. These are associated with right-to-left shunting,
resulting in hypoxemia leading to weight and height impairment. These defects, which
are characterized by an intracardiac mixing, require a delicate balance to provide adequate
pulmonary and systemic blood flow. Circulatory imbalance may also lead to decreased
mesenteric blood flow, resulting in malabsorption, feeding intolerance or intestinal is-
chemia [13,18]. For example, when repair is postponed for various reasons (such in the case
of infants with tetralogy of Fallot (TOF) from developing countries who did not undergo
primary complete repair in infancy), children are more hypoxemic and growth-restricted,
and have a worse left ventricular ejection fraction [19]. Conversely, early repair of TOF
results in significant acceleration of weight and height and restoration of genetic growth
potential [20].

Acyanotic CHD, such as large left-to-right shunts, may be associated with pulmonary
overcirculation, characterized by tachypnoea, hepatomegaly, and tachycardia, leading to
increased metabolic demand, which combined with the use of diuretics, may result in
growth failure [13]. The growth improvement with increasing age could be, in some cases,
due to a decrease in the size of a left-to-right shunt consequent to either spontaneous
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decrease or closure of a septal defect or the onset a pulmonary vascular obstructive disease,
highlighting the role of cardiac shunts in affecting growth [21].

CHD characterized by an obstruction to systemic blood flow, such as left ventricular
outflow obstruction and aortic arch anomalies, are associated with intra and extra-cardiac
mixing, resulting in decreased systemic oxygen saturation and reduced systemic blood flow.
The resulting impaired systemic oxygen delivery leads to acute end-organ dysfunction,
including compromised mesenteric oxygenation [18].

Furthermore, CHD patients are more often exposed to the use of multiple drugs and
medications, such as inotropes, which may themselves increase myocardial oxygen and
energy demand. Analgesia, sedation, and muscle relaxation used in critical care may delay
oral and enteral feeding. Unstable CHD patients are exposed to prolonged duration of
mechanical ventilation, or prostaglandin E1 (PGE1) infusion, which may also contribute to
delays in optimal enteral feeding [8,22].

Although a higher risk of mesenteric arterial thrombosis has been postulated when
an umbilical arterial catheter (UAC) is in place, due to disruption of the blood flow [23],
the ESPNIC (European Society of Pediatric and Neonatal Intensive Care) issued a policy
statement in favor of the introduction of enteral feeding in term neonates with CHD [24].

When ductal patency should be maintained, such as in obstruction to systemic circu-
lation, obstruction to pulmonary circulation, and inadequate mixing of pulmonary and
systemic blood flow, PGE1 infusion is paramount. According to a recent European survey,
infants receiving PGE1 infusion were routinely fed in only 63% of the responding units [16].
Nordenström et al. recently noted a low risk of necrotizing enterocolitis in enterally-fed
neonates with critical CHD, even in ductal-dependent systemic circulation [25]. Given
that a low-dose PGE1 infusion (0.01 µg/kg/min) has been shown to be a safe practice in
these infants [26] and even long-term infusion have relatively minor side effects [27], a
priori pre-operative enteral fasting during PGE1 administration should be discouraged
and individualized.

3.2. Prematurity, Low Birthweight and Genetic Anomalies

Growth restriction may be proportional to the degree of heart failure and/or hypoxia,
rather than uniformly occurring if an infant has a mild cyanosis or a small defect, unless
other factors affect this outcome, such as prematurity and genetic or syndromic disorders.

Prematurity and low birthweight add to the risk of serious CHD in infants, with a new
definition of “low birth weight” for cardiac surgery moving toward 2 kg. Anderson et al.
assessed that cardiac surgery increased the risk of mortality from 4.8% to 9.5% in neonates
with a weight less than 2 kg [28]. Furthermore, growth is poorer in preterm infants with
CHD than their peers without, although the reported incidence of growth restriction can
vary widely in preterm infants, according to the different definitions and growth charts
that are used. Growth should be longitudinally monitored once a week in preterm infants,
after the physiological loss of fluids in the first weeks of life, in order to make changes in
the nutritional strategy and promptly intervene while infants are still hospitalized [10], and
thus beyond the type of heart defect.

Overall, approximately up to 30% of CHD are due to known chromosomal, genetic or
other anomalies that can be associated with growth restrictions, with a higher incidence
of small for gestational age (SGA) infants when CHD is not isolated, such as in the case
of Down syndrome or Turner syndrome. The increased rate of SGA infants may also be
due to maternal, fetal or placental components that can influence both CHD and growth
restriction since fetal life. [29].

Moreover, anomalies in fetal hemodynamics and oxygen saturation due to CHD play
a key role. Beyond the presence or not of a CHD, growth-restricted preterm infants have
a maladaptive arterial–ventricular coupling [30]. All these aspects concur afterwards in
growth-restriction of preterm CHD infants: for example, when comparing catch-up growth
in term and preterm infants after surgical repair of ventricular septal defect, preterms
caught up later than term infants [31].
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3.3. Other Clinical Barriers

Enteral feeding is often temporarily discontinued, reduced, or postponed, including
for surgical procedures. The reasons for interrupting enteral feeding include deterioration
in the clinical status, extubation failure and need of mechanical ventilation or respiratory
support, placement of chest tubes or central venous catheters, infections/fever, various
gastrointestinal issues (such as gastro-esophageal reflux, feed intolerance or emesis, abdom-
inal distention, or presence of bloody stools), sucking/swallowing issues, chronic fatigue,
and vocal cord dysmotility. Genetic syndromes, additional non-cardiac anomalies and
unknown causes may also influence enteral feeding [5,6,18,22].

Postoperatively, extracardiac complications (e.g., chylothorax, infections, acute kidney
injury) can occur, necessitating withholding of enteral feeds [22]. Among critical CHD,
infants with hypoplastic left heart syndrome (HLHS) are more likely to undergo several
surgical treatments and are therefore at even greater risk of failure to thrive [32].

Nutrition and growth after surgery are affected by poor preoperative nutritional state,
combined with a complex inflammatory state, and protein catabolism [5,15].

The prolonged hospitalization that often characterizes these patients, may expose
infants to repeated infections and fever, further impairing feeding, optimal nutrition, and
caloric expenditure [13,33].

3.4. Necrotizing Enterocolitis: Risks and Fear

Prevention and management of necrotizing enterocolitis (NEC) requires special consid-
eration in infants with CHD. The incidence of NEC in neonates with CHD ranges from 2%
to 8% and may increase up to 20%, particularly in those with a single ventricle physiology
and ductal dependency (such as HLHS) [8]. NEC usually develops earlier in CHD infants
than is typically observed in preterm infants. Furthermore, in the CHD population, the
colon is more often involved compared to the small intestine or ileocecal region in the
preterm population [34].

The pathophysiological mechanisms underlying NEC in CHD infants may be different
to those in preterm infants. Contributing factors include impaired mesenteric blood flow
due to low cardiac output, restricted flow in duct-dependent lesions, and diastolic run-off
from shunts, as well as systemic hypoxia and acidosis associated with cyanotic defects as
well as rapid increases in feed volume [13,25]. Other risk factors associated with increased
risk of NEC in CHD infants include chromosomal anomalies, immunodeficiency, and low
birth weight [25].

For these reasons, clinicians may have concerns about initiating and increasing feeds
in CHD patients, leading to frequent interruption or delay, which may itself be deleteri-
ous [25]. Prolonged periods of fasting result in intestinal villus atrophy as well as intestinal
microbiota impairment with loss of barrier function, which may increase the risk for NEC
and negatively affect growth [22,35,36].

Early commencement of minimal enteral feeding (MEF) has been shown to improve
the development of the intestinal mucosa and maturation of gut immune response [33].
An exclusive human milk diet may reduce the risk of pre-operative NEC in infants with
CHD [18,36,37]. Additionally, the use of probiotics in newborns with ductal-dependent
CHD has been potentially associated with reduced risk of NEC [38].

Conversely, caution should be used in fortifying feeds in premature infants with
serious CHD, considering the increased post-fortification osmolality of human milk, which
should be measured before administration to high-risk infants (if possible) [39].

During enteral feeding, CHD patients should be monitored closely for early signs of
NEC (Table 1). Near-infrared spectroscopy (NIRS) and mesenteric blood flow velocities
may also assist in monitoring gut oxygenation, to guide clinical management including
potential early detection of mesenteric ischemia [40–42]. Furthermore, intestinal ultrasound
markers (pneumatosis intestinalis, portal venous gases, bowel wall thinning or thickening,
peritoneal fluid, absent bowel wall signature, hyperaemia by colour-Doppler, fixed dilated
bowel loops) can provide a more accurate evaluation of gut injury and diagnosis of NEC, in
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comparison to standard abdominal X-ray [43]. Guidelines and standardized recommenda-
tions in preterm infants have reduced the incidence of NEC [44]. However, the current lack
of standardized protocols in the preoperative enteral nutrition management of infants with
CHD leads to clinician variability on when, with what and how to feed. This potentially
exposes new-born infants to negative post-operative outcomes such as NEC, poor growth
and increased length of hospital stay [35].

Table 1. NEC alert signs.

“Red Flags”

• Hypotension during inotropes infusion
• Acute respiratory distress

• Apnoea (>2 within 2 h associated to respiratory distress and worsening)
• Disseminated Intravascular Coagulation

• Severe acidosis (pH < 7.15 for >2 h; EB > 10 mmol/L)
• Persistent hypoxia (PaO2 < 40 for >2 h)

• Clinical abdomen signs of suspected NEC
• Bile-colored vomiting or gastric drainage

• Blood in the stool/absence of stool

4. Pre- and Post-Operative Strategies and Recommendations

Adequate nutrition is crucial in children with CHD; a structured approach to correct
timing and type of feeding may be beneficial. Strategies to optimize nutrition in CHD cases
may be challenging, depending on the infants’ age, or the congenital heart defect, and the
timing (pre- or post-operative period), though the goal remains to increase the quality or
volume of feeds and to support the metabolic demands (Figures 2 and 3) [13,14,16].
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In centers where feeding protocols have been developed for infants with CHD, the
observed benefits include improved postoperative enteral feeds, reduced parenteral nu-
trition (PN) use, fewer placements of nasogastric and gastric tubes, and improved weight
and outcomes such as NEC onset, hospital stay and mortality [8,45–48].

4.1. Total Nutritional Requirements
4.1.1. Fluid Volume

The adequate total amount of fluid required is calculated depending on the cardio-
respiratory condition at birth and in the early days of life.

Fluid volume should then enable catch-up growth without promoting overcirculation
or altering the fluid retention [13]. In infants with CHD characterized by pulmonary
over-circulation, fluid restriction or/and use of diuretics are key symptom-management
strategies [49]. Conversely, fluid restriction is reported to be a barrier in providing adequate
nutrition and may exacerbate poor pre-operative nutritional status, further reducing limited
energy and protein reserves [49].

Increasing the quality and quantity of dietary nutrients, and focusing on nutrient
energy-dense feed, are associated with improved weight gain and the achievement of
nutritional targets [1,2]. Total fluid intake in conjunction with optimal energy protein
supply, guided by a multidisciplinary team is essential [50,51].

Fluid overload has been related to adverse outcomes, such as acute kidney injury,
more days on mechanical ventilation, greater need of vasoactive drugs, delayed chest
closure after neonatal cardiac repairs, and mortality [52].

In the preoperative period, clinicians should consider the changes in pulmonary
vascular resistance and the possible risk of excessive pulmonary blood flow, especially in
those who receive PGE1 infusion. Conversely, relative hypovolemia could also occur given
the insensible losses due to enteral fasting before surgery and tachypnoea [53].

During surgical repair, the use of cardiopulmonary bypass (CPB) deeply influences
fluid homeostasis, with haemodilution due to crystalloid prime, inflammatory reaction
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and capillary leak-syndrome after CPB leading to a significant risk of myocardial and
pulmonary oedema [54].

The post-operative period is more often characterized by fluid accumulation than
hypovolemia; therefore, according to a worldwide survey, most pediatric intensivists
usually limit total fluid intake to 50% during the first 24 h after cardiac surgery, despite a
lack of evidence on what extent of fluid restriction may be sufficient [55].

4.1.2. Energy Intake

Indirect calorimetry (IC) appears to be the most accurate tool to quantify resting
energy expenditure (REE) in CHD infants; it can distinguish hypometabolism (<90% of
predicted), normal metabolism (90–110% predicted) and hypermetabolism (>110% pre-
dicted) patterns [56]. If IC measurement is not feasible, clinical equations (such as Schofield
or WHO equations) may be used to estimate REE, although no presently used equation
seems to precisely measure it, especially in infants under 5 kg and after CPB, up to a mean
discrepancy of 16.9 kcal/kg/day [56,57].

However, there is a strong consensus (according to ESPNIC recommendations) that
energy intake provided should not exceed REE in the acute phase, whereas afterwards,
the energy intake provided to critically ill children should be personalized for energy debt,
physical activity, rehabilitation, and growth [24].

4.1.3. Protein Intake

Protein loss is frequently associated with CHD, particularly following surgical treat-
ment [58]. A primary aim in infants with CHD is also to provide sufficient dietary protein
to enable adequate new protein synthesis. Proteins are necessary for tissue repair and
growth, and they facilitate wound healing, modulate inflammatory responses, and preserve
skeletal muscle mass [8,51].

A minimum protein intake of 1.5 g/kg/day is recommended by both European
and American guidelines, to prevent a cumulative negative protein balance [24,56]. A
standard protein requirement of up to 3 g/kg/day should be ensured in critically ill infants
aged <2 years [8,11,47], especially those requiring mechanical ventilation [56].

However, administration of protein via PN should be done with caution, particularly
in critically ill patients. Findings obtained in cohorts of preterm infants showed that a high
dose of aminoacids provided parenterally seems to affect the size of brain structures during
neonatal life, whereas enteral protein intake is more likely associated with better brain
development [59].

4.2. Parenteral Nutrition

To support the growth of infants with CHD, particularly when the enteral support
exceeds the metabolic reserves, it is recommended that PN be started as soon as possible.
This may concern cases in the early postoperative stage, or mechanically ventilated, or with
gastrointestinal issues [13].

Use of intravenous intralipids in addition to enteral feeding was also suggested
as a support to those children with insufficient enteral feeds, to prevent fatty acid de-
ficiency [5,13]. Given that systemic inflammation may influence outcomes in CHD in-
fants [60,61], the use of new multicomponent lipid emulsions (MLE) should be preferred;
they are rich inω-3 fatty acid metabolites (such as docosahexaenoic and eicosapentaenoic
acids) that can stimulate anti-inflammatory pathways [62], compared to standard soybean
lipid emulsions (SLE) that are only rich inω-6 fatty acids [63]. This has been confirmed also
in infants undergoing open-heart surgery [64]. Recently, concerns have been raised over
the adverse effects of excessive PN. Withholding parenteral nutrition while administering
micronutrients intravenously for a week in critically ill infants has been associated with
fewer new infections, a shorter duration of dependency on ICU, and a shorter hospital
stay [65].
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4.3. Enteral Nutrition
4.3.1. Types of Feed

Clinicians may be reluctant to initiate preoperative trophic feed in infants with CHD,
due to fear of NEC [66]. However, early enteral feeding appears safe and is associated with
a shorter duration of mechanical ventilation, a trend toward more stable postoperative
hemodynamics, less fluid overload, and earlier postoperative feeding tolerance [67]. Min-
imal enteral feeding (MEF, defined as 10 to 20 mL/kg/day of milk) has been associated
with improved intestinal mucosa development and reduced risk of NEC [8].

After surgical repair, infants usually tolerate trophic feeds; moreover, trophic feeds
appear to decrease the infection-related morbidity following surgery [68]. Furthermore, the
early initiation of feeding helps to meet energy targets in a shorter period [69].

Data obtained in preterm infants show how the presence of a patent ductus arteriosus
(PDA), with either a pulsatile or restrictive shunt pattern and no evidence of reversed
end-diastolic flow in descending aorta, does not seem to have a significant influence on
splanchnic oxygenation in response to the first enteral feed [70]. Similarly, in CHD infants,
the NIRS monitor is a feasible tool to easily monitor splanchnic oxygenation, which is
well correlated with serum lactate and measurements of systemic mixed venous saturation
(SVO2) [71].

Breast milk has been demonstrated to be protective in term, preterm and infants
undergoing surgery and therefore should be encouraged in the CHD population [47,72,73].
Unfortunately, infants with CHD are less breastfed compared to their healthy peers, both
for their clinical conditions and for long periods of mother–infant separation.

Donor breast milk has been shown to be protective against alterations in gut microbiota
associated with NEC and feeding intolerance; thus, these benefits may also be considered
in infants with CHD [74]. Human milk may be fortified with human milk fortifiers to
meet the infant’s metabolic demand. Glucose polymers, medium-chain triglycerides (MCT)
oil, and protein supplements can also be added to optimize caloric intake [8]. The use of
high-energy formula compared with standard formula in postoperative infants with CHD
was associated with weight increase but also increased feeding intolerance [50]. The use of
a peptide nutrient-energy dense enteral feed may have particular benefit in infants with
cow’s milk protein intolerance [2].

4.3.2. Routes

Infants should always be encouraged to feed orally, if possible. Oral feeding during
hospitalization is associated with shorter length of hospital stay, and a decreased risk of
neurodevelopmental delay at 12 and 24 months [75].

However, several factors, such as fatigue, anorexia, lack of ability in suckling or
swallowing, gastroesophageal reflux, may avert this [13]. Oral gastric tube feedings may
represent a useful transitional substitute in the short term for providing adequate feed
quantity, particularly in neonates with respiratory issues. Alternatively, nasogastric tube
feeding should be considered to allow oral feeding training. In cases of delayed gastric
emptying or gastroesophageal reflux, a nasojejunal tube may be a valid option too [13].

Therefore, feeding by orogastric or nasogastric tube using either continuous or inter-
mittent bolus delivery of human milk or formula may be provided [76]. Intermittent bolus
feeding simulates the feeding pattern of infants when they are breast or bottle fed and
has been advocated to promote more physiological feeding–fasting hormonal levels than
continuous feedings [76]. Continuous feed has been shown to be a safe and effective way
to increase nutrient intake and improve the nutritional status with less energy expenditure
than bolus feeds [13]. Each case should be personalized in order to provide an optimal
patient-targeted treatment.

Sometimes infants refuse to suck on the breast or feeding bottle, the so-called oral
aversion, which is often triggered by oral intubation or surgery [18]. Desensitization
of the mouth by an appropriately trained clinician, often a speech therapist, may help
facilitate the sucking abilities of the baby. If prolonged nutrition via tube feeding and/or
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parenteral nutrition is required, when infants have oral aversion or poor coordination
of sucking, swallowing, and breathing, a percutaneous endoscopic gastrostomy (PEG)
tube may be inserted to maintain growth and development, particularly in those cases
undergoing several surgical procedures (such as HLHS) [77]. A structured program with
close monitoring of weight and nutritional management may help in the early identification
of those cases who may benefit from a PEG [78], sometimes associated with laparoscopic
Nissen fundoplication in case of severe gastroesophageal reflux [79].

The diagnosis of a genetic syndrome, single-ventricle physiology, aortic arch recon-
struction, and delayed sternal closure were identified as related to gastrostomy tube place-
ment, as well the number of days intubated and the presence of dysphagia [80].

Careful monitoring of nutritional status and growth during hospitalization is recom-
mended as an overall strategy in critically ill patients to improve outcomes [11,12].

4.3.3. Short- and Long-Term Difficulties after Cardiac Surgery

Chylothorax is a known complication of cardiothoracic surgery (up to 5% of cases) [81]
and is associated with increased mortality, cost, and length of stay [82]. Conservative
management is appropriate as the initial treatment, with a fat-free and MCT-enriched
diet [83]. Because of the high level of long-chain triglycerides in human milk, this usually
results in the discontinuation of breastfeeding. Modified breast milk that has undergone
fat removal, with low fat content (LFBM), has been shown to be an efficient treatment for
chylothorax, providing the benefits of human milk equally in those who cannot receive
it [84,85]. Furthermore, changes in mean weight, length and head circumference for age
Z-scores did not differ among infants nourished with defatted breast milk and infants
receiving high-MCT formulas [85].

Given the role of some nerves (vagus, recurrent laryngeal and phrenic) in triggering a
timely swallow response and simultaneous airway closure, a post-operative nerve paraly-
sis/paresis could complicate enteral feeding after congenital heart surgery [18]. In a recent
review, Sinha et al. reported an incidence of vocal cord palsy ranging from 1.1% to 100% in
different studies [86]. Most studies suggest a gradual improvement in swallowing function,
whereas the rate of recovery of vocal fold motion impairment is less predictable [87].

Finally, growth failure is common in infants with CHD and has a multifactorial
etiology. Mitting et al. described how 28.2% of the infants in their cohort had a mild
degree of malnutrition (weight-for-age Z-score < −1 to ≤−2 SDS) and 10.9% had severe
malnutrition (<−2 SDS) [88]. A standardized longitudinal monitoring of weight, length
and head circumference Z-scores for age allows for earlier identification of failure to thrive,
thus improving postoperative outcomes and neurodevelopment [89].

5. Conclusions

In this narrative review, we proposed a decisional algorithm that may guide clinicians to
optimize growth in infants with CHD, both in the pre- and post-operative period [8,11,78].

However, a multi-disciplinary team is fundamental to improve the nutritional status
of CHD infants, as it supports healthcare workers with nutritional standardized protocols
and targeted strategies to fight feeding intolerance [90].

Parents and families play a crucial role too. Family support programs can help to
address parental concerns and anxieties, increasing confidence and skills to improve their
child’s nutritional status and outcome [91,92].

Regular nutritional and growth assessment is essential during inpatient management
and during follow-up or home surveillance, and for early intervention in case of failure
to thrive.
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