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Abstract 

 

 

The recent discovery of Tet (Ten eleven translocation) family of enzymes implicated in 

the chemical conversion of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine 

(5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) has significantly 

enlarged the repertoire of known modifications present in the genomic DNA of higher 

eukaryotes. Considered as new epigenetic marks but also as DNA demethylation 

intermediates, intense research efforts have been directed towards  deciphering of 

the biological function of Tet-driven DNA modifications. However, their low 

abundance in the mammalian genome, the relative similarity between their chemical 

structures and the predicted transient nature of 5fC and 5caC in genomic DNA make 

these modified DNA bases extremely challenging to study. The following review 

summarizes the techniques developed recently to quantify, profile and map 5hmC, 

5fC and 5caC in a genomic context. 

 

 

  



5-methylcytosine (5mC) has been considered a stable epigenetic mark ever since its 

identification several decades ago [1]. In contrast to the dynamic nature of histone 

modifications, DNA methylation patterns have shown to be stable and faithfully inherited 

through rounds of DNA replication in somatic cells. This attribute of DNA methylation has 

been mechanistically linked with phenotypic stability and maintenance of cell fate. 

Consequently, dynamic changes in DNA methylation patterns have been observed only 

during processes that involve cell fate reversal and global erasure of epigenetic information. 

In vivo, under physiological conditions, these processes are known to occur only twice 

during mammalian development: in the zygote immediately following fertilisation and in 

primordial germ cells (PGCs) [2]. Recent advances in our ability to manipulate cell fate and 

to reprogram cells in vitro [3] brought further mechanistic insights regarding the previously 

unappreciated dynamic character of DNA methylation patterns. Reprogramming of somatic 

cells or nuclei back to pluri- or totipotency through induced pluripotent stem cell (iPS) 

generation, cell fusion or somatic cell nuclear transfer (SCNT) is crucially connected with 

genome-wide changes in DNA methylation [2]. Additionally, the failure to efficiently 

reprogram DNA methylation patterns has been described as one of the barriers in the 

reprogramming process [4] The rapid and global changes in 5mC abundance and 

distribution observed during epigenetic reprogramming processes [5-8] and the anticipated 

key role of the underlying mechanism in the reprogramming efficiency have instigated an 

intensive search for potential molecular pathways implicated in DNA demethylation. 

 

The pursuit of the DNA demethylation mechanism has recently re-gained momentum due to 

the discovery of new DNA bases in the mammalian genome [9, 10]. Resulting from the 

successive oxidation of 5mC by Tet1-3 enzymes, the newly identified 5-

hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC) bases 

have been subjected to intense research focus in attempt to determine their biological 

function  (figure 1). The existence of higher oxidative products of 5mC has opened up a 

potential chemical route for the removal of 5mC and consequently various DNA 

demethylation pathways involving these oxidative intermediates have been suggested 

(figure 1). Amongst the proposed mechanisms, the only DNA demethylation pathway 

supported by clear biochemical evidence involves the recognition and cleavage of 5fC and 

5caC by thymine-DNA glycosylase (TDG), followed by the activation of base excision repair 

(BER) to restore an unmodified DNA base [11]. Other proposed mechanisms involve 

deamination of 5hmC, decarboxylation of 5caC or direct removal of the hydroxymethyl group 

of 5hmC (figure 1) [11]. The oxidative products of 5mC are challenging to study due to their 

low abundance in the genome, the similarity between their chemical structures and the 

predicted transient nature of 5fC and 5caC. In consequence, the quantification and mapping 



of these modified bases with sufficient accuracy and specificity has proven to be a technical 

feat. The following sections will review current methodologies recently developed to answer 

these questions. 

 

Global detection and quantification of nucleoside variants: first step for the discovery 

of new bases 

 

The presence of 5hmC in the genome of T-even bacteriophages was originally described in 

the 1950s [12], followed by reports of the detection of this modified base in animal DNA [13]. 

However, the recent discovery of the family of enzymes responsible for direct conversion of 

5mC to 5hmC and the suggested role for 5hmC in DNA demethylation brought about a 

renewed interest in this cytosine modification. 

 

Used for global assessment of DNA content and requiring a large amount of starting 

material, the thin-layer chromatography (TLC) technique has been greatly improved since its 

first use [14]. Based on the separation of compounds by capillary action on a stationary 

phase, this method can be combined with radioactive labelling to improve sensitivity. 

Pertaining to this, the two research teams implicated in the re-discovery of 5hmC used 

initially 1D and 2D-TLC [9, 10], confirming their finding subsequently by mass spectrometry. 

While initially used for separation of dC, 5mdC and 5hmdC, the optimization of buffer 

conditions has made the method recently suitable also for the detection of 5fC and 5caC [15-

17]. 

 

Apart from the above mentioned chemical approaches, antibody-based techniques have 

been widely used for the detection and the semi-quantitative measurement of DNA 

modifications. Immunofluorescence staining using commercial or custom-made antibodies 

specifically recognising 5hmC, 5fC or 5caC has been frequently used, especially in 

instances where only a limited amount of material is available such as early mouse embryos 

(e.g. [18-21]). Although the specificity of the antibodies used is usually confirmed by dot blot 

and competition assays, the linearity, sensitivity and cross-reactivity under actual 

experimental conditions remain a serious concern. Moreover, the cross-comparison between 

different samples (for instance control versus treated) requires internal controls due to the 

inherent variability of signal obtained by immunofluorescent staining. 

 

In order to increase the specificity and accuracy of 5hmC quantification, a number of new 

methods incorporated the use of T4-β-glucosyltransferase (T4-BGT). T4-BGT, an enzyme 

found in T-even phages, catalyses the covalent addition of uridine diphosphoglucose (UDP-



glucose) on the hydroxyl group of 5hmC to generate β-glucosyl-5-hydroxymethylcytosine 

(g5hmC) [22]. T4-BGT glucosylates 5hmC with high efficiency in a distributive, context-

independent manner. The efficiency of this reaction is also not affected by 5hmC density, 

which is a common problem in antibody based 5hmC detection methods. The enzymatic 

conversion of 5hmC to g5hmC has been used in techniques for both the global quantification 

(using labelled UDP-Glucose [22, 23]) and mapping of 5hmC (TABseq, Aba-seq, discussed 

in the following section). 

 

Ultimately, the gold standard used to identify and accurately quantify DNA modifications is 

provided by chromatographic separation of modified nucleosides (typically liquid 

chromatography (LC)), coupled with mass spectroscopy (MS). LC/MS delivers specificity by 

monitoring selected mass ion transitions and extreme sensitivity by enhanced signal-to-noise 

ratio. LC/MS has been successfully used to detect and quantify 5hmC, 5fC and 5caC in 

mouse embryonic stem cells (ESCs) and mammalian tissues [5, 9, 10, 16, 17, 24-26]. 

Despite its superior sensitivity and accuracy, one of the often underestimated drawbacks of 

the LC/MS approach is the occurrence of ion suppression. This phenomenon results from 

the presence of less volatile compounds such as salts, ion-pairing agents, endogenous 

molecules and metabolites, which perturb the ionization and thus affect the amount of 

charged ions that ultimately reach the detector of the mass spectrometer [27]. Either 

suppression or enhancement of the signal can result from co-elution of matrix components 

(i.e. enzyme digestion mix, salts, glycerol) with the compound of interest. The 

chromatographic conditions, including elution buffer composition and especially the ion-

pairing agent present in the buffer can affect the signal intensity and signal-to-noise ratio. 

Additionally, the sample concentration can also influence the quantification of the amount of 

modified bases. As recently shown by Tang and colleagues, the signal response of 5hmC is 

significantly suppressed by an increasing amount of digested DNA loaded on the LC/MS 

system. This clearly demonstrates that poor sensitivity of a particular instrument or method 

cannot necessarily be counterbalanced by an increased amount of material loaded for 

analysis [28].  

 

Several approaches can be implemented to address the effect of ion suppression. Isotope-

labelled standards can be spiked into the samples to provide an internal control [24, 25]; the 

isotope-labelled “heavy” standard will be affected the same way as its “light” counterpart and 

thus can be used to monitor the loss/gain of signal caused by ion suppression. This 

technique has been used to accurately quantify 5hmC in different parts of the brain, 

confirming 5hmC as a new post-replicative mark [25]. It should be noted, however, that even 

the use of labelled internal standards cannot fully resolve the accuracy problems if ion 



suppression is observed and hence one must carefully investigate the potential deleterious 

effects of various components such as the matrix on the final quantification. 

 

Mapping of DNA modifications: towards the discovery of their functions 

 

Determining whether or not 5hmC is a true epigenetic mark, an intermediate for DNA 

demethylation or a product of oxidative stress damage is a scientific challenge adopted by 

numerous teams. One of the key steps towards solving this question is to analyse the 

localisation and local abundance of these DNA modifications. Several new techniques 

designed to map 5hmC, 5fC and 5caC have recently emerged; most of these techniques 

have been commercialised and can be obtained as a kit at low cost. These are described 

below and summarized in figure 2. 

 

5hmC quantification at specific genomic sites 

 

GlucMS-PCR (glucosylation followed by methylation sensitive PCR) is used to interrogate 

5mC and 5hmC levels at a particular CCGG genomic site. The method originally developed 

by Kinney et al. [29] combines treatment of genomic DNA with T4-BGT and restriction 

enzyme digest. The restriction isoschizomers used differ in their recognition and subsequent 

cleavage of modified CCGG sites: HpaII recognises only unmethylated sites, whereas MspI 

cleaves 5mC and 5hmC, but not 5ghmC. Following T4-BGT conversion and restriction 

digestion with HpaII and MspI carried out in parallel on both mock- and T4-BGT-treated 

samples, semi-quantitative analysis of end-point PCR products spanning the CCGG-

containing restriction site allows an estimation of the relative amount of 5mC compared to 

5hmC. 

 

Low to medium resolution mapping approaches 

 

In a similar manner to methylated DNA immunoprecipitation (meDIP), the hydroxy-meDIP 

(hmeDIP) technique coupled with whole-genome sequencing provides a relatively low 

resolution, but high-throughput approach to 5hmC mapping. The method has been optimised 

and used in mouse ESCs [30-33] to show that 5hmC is enriched at intermediate to high 

CpG-density regions, transcription-start sites and gene bodies. However, even though the 

5hmC antibody shows high specificity compared to 5mC, meticulous studies have 

documented that the binding capacity of this antibody depends on the 5hmC density [34]; 

the antibody additionally displays off-target affinity for CA dinucleotides and simple repeats 

[35].  



 

To avoid issues associated with antibody specificity towards 5hmC, methods using chemical 

modification or direct labelling of 5hmC have evolved. Rao’s group generated an antibody 

recognizing cytosine 5-methylene sulfonate (CMS), the product of the reaction of sodium 

bisulfite with 5hmC [34]. Anti-CMS antibodies are far more specific than the anti-5hmC 

counterpart; they do not depend on 5hmC density and show much higher sensitivity in dot 

blot assays, allowing for more accurate immunoprecipitation experiments (CMS-IP) [34, 36]. 

Importantly, the presence of CMS does not affect PCR efficiency during library preparation 

except at very high, biologically irrelevant densities [34]. 

 

In an alternative method called GLIB-IP (glucosylation, periodate oxidation, biotinylation) 

also developed in Rao’s lab, 5hmC is firstly glucosylated by T4-BGT and the glucose moiety 

is then oxidized with sodium periodate, which converts two hydroxyl groups to aldehydes. 

The aldehyde groups can then be chemically cross-linked with biotin using an aldehyde-

reaction probe (ARP) followed by immunoprecipitation with streptavidin coupled beads. 

During PCR, the biotinylated adduct has only a minimal inhibitory effect and does not 

produce mutations [34, 37].  

 

The use of chemically modified UDP-glucose in combination with T4-BGT has allowed 

researchers to be even more stringent and specific in their pull-down experiments. In the 

hmeSEAL (Selective Chemical Labeling and Capture) method [38], Song’s group used an 

azide-modified glucose (UDP-6-N3-glucose) and T4-BGT to selectively label 5hmC on DNA. 

The N3 group allows chemical coupling with biotin in a reaction known as “click” chemistry 

(Huisgen cycloaddition). Quantification of modified 5hmC is possible through avidin-

horseradish peroxidase (HRP) detection; alternatively, streptavidin pull-down and deep-

sequencing analysis provides genome-wide distribution profiles. The latter has revealed that 

5hmC is prominent in gene bodies of highly transcribed genes and seems to accumulate 

with age in mouse cerebellum [38].  

 

In an alternative approach, Klungland and colleagues searched for enzymes recognizing 

g5hmC [39]. The genome of Trypanosoma brucei contains base J (β-glucosyl-5-

hydroxymethyluracil). This glucosylated T derivative replaces about 1% of total thymine in 

the T.brucei genome and is specifically recognised by the J-binding protein JBP1. 

Interestingly, JBP1 also shows a strong affinity for g5hmC as these bases differ only by a 

single amine group. Klungland et al. describe a protocol in which JBP1 is covalently linked to 

magnetic beads and used for the pull-down of g5hmC-containing DNA. Although the 

resolution of this technique is relatively high (50bp), highly 5hmC-enriched sequences are 



likely to be overrepresented due to increased pull-down efficiency [39]. Moreover, a 

comparative analysis between hmeDIP, hmeSEAL and JBP-1 affinity-based methods 

indicates that although results generated using hmeDIP and hmeSEAL are highly 

reproducible in detecting genome-wide patterns of 5hmC across different tissues, profiling of 

5hmC distribution using JBP1 shows only poor overlap [35].  

 

While considerable effort has been invested into the development of 5hmC mapping 

methods, there is a lack of techniques available for the detection and localization of 5fC and 

especially 5caC in a genomic context. This is mainly due to the very low abundance of these 

two bases (10 and 100 times lower than 5hmC, respectively). One of the methods described 

so far to profile 5fC relies on the chemical reaction (first described in [26]) of the aldehyde 

moiety present on 5fC with the oxyamine group of an ARP which contains biotin. This is 

followed by streptavidin based pull-down and genome-wide sequencing. Using this approach 

(called 5fC-DP-seq), 5fC enrichment in ESCs was found to follow a similar pattern as that 

observed for 5hmC (exons, promoters and CpG islands) [40]. 

 

More recently, He’s group developed two different techniques for genome-wide profiling of 

5fC. For profiling by pull-down (5fC-SEAL method), pre-existing 5hmC is first converted to 

g5hmC using T4-BGT. In a second step, 5fC is specifically reduced to 5hmC using sodium 

borohydrate (NaBH4) and the newly generated 5hmC is tagged using UDP-6-N3-glucose and 

selectively captured by “click” chemistry, as in the hmeSEAL method [41]. An alternative, 

single-base resolution mapping approach developed by this group is explained in the next 

section. 

 

As described above, most of the techniques developed to regionally map 5hmC or 5hmC-

oxidative products rely on chemical modification using either T4-BGT or ARP. In this context, 

it is important to note that in addition to 5hmC, T4-BGT also recognises and modifies 5hmU 

(5-hydroxymethyluracil), which is a product of either 5hmC deamination or T oxidation. 

Although 5hmU is mostly generated by oxidative stress and hence is present in only small 

quantities in genomic DNA, it can produce background signal in GLIB-IP and hmeSEAL 

experiments. Moreover, the symmetrical pattern of 5hmC seems to affect glucosylation 

efficiency, with hemi-hydroxymethylated CpG being less efficiently modified by T4-BGT. This 

substrate preference can thus potentially interfere with studies on 5hmC symmetry [22]. A 

final drawback of some of these methods is the known capacity of ARP to crosslink abasic 

sites as well as aldehyde moieties. Abasic sites naturally occur by hydrolysis of N-glycosidic 

bonds between the base and the phosphorus DNA backbone, leading to an average of 0.08-



0.25 abasic sites per 106bp per cell [42] potentially producing (albeit low) background signal. 

Further pros and cons of these methods are described in table 1. 

 

 

Genome-wide mapping of DNA modifications at single base resolution 

 

It is well documented that 5mC influences the chromatin landscape by recruiting readers (i.e. 

chromatin regulators) and thus exerts an effect on transcription. Similarly, 5hmC has been 

proposed to either mask 5mC in order to exclude these readers or to serve as a platform for 

the recruitment of 5hmC specific binders [43-46]. As affinity based strategies do not 

generally provide enough resolution to investigate 5hmC function/presence on specific 

sequences such as transcription factor binding sites or transcription start sites, there is a 

clear requirement for genome-wide mapping of 5hmC at single-base resolution. 

 

Bisulfite-sequencing (BS-seq) relies on the chemically induced deamination of DNA yielding 

conversion of cytosine to uracil, whilst 5mC is refractory to such modification [47]. In 

consequence, as uracil is converted to T following PCR amplification, any remaining Cs 

represent original 5mC sites, allowing for direct 5mC mapping by sequencing. Although 

widely-used, this technique has several drawbacks. First, as 5hmC is also resistant to 

deamination during the bisulphite reaction, BS-seq cannot distinguish between these two 

DNA modifications. Additionally, 5fC and 5caC are indistinguishable from unmodified C, as 

they become deaminated and recognized as a T after bisulfite sequencing [48-50]. Second, 

the harsh conditions of the treatment induce DNA degradation can be problematic when 

dealing with a very low amount of starting material. Finally, primers and PCR conditions 

must be carefully optimised in order to avoid amplification bias towards C-rich or T-rich 

fragments. It should also be noted that this technique cannot be used to assess the global 

level of 5mC in the genome because of the presence of repetitive elements with unknown 

copy number. Additional techniques related to 5mC mapping and their drawbacks have been 

reviewed elsewhere [51]; we will hence further focus only on methods related to mapping of 

5hmC, 5fC and 5caC, shown in figure 3.  

 

Different strategies have been formulated to discriminate 5hmC and 5mC using modified BS-

seq techniques. Tet-assisted bisulfite sequencing (TABseq) requires the initial protection of 

5hmC by glucosylation using T4-BGT. The method subsequently relies on in vitro enzymatic 

oxidation of 5mC to 5caC using a recombinant Tet1 catalytic domain. Following bisulfite 

conversion, original 5mCs are converted to Ts and only 5hmC sites are read as Cs [52]. 

Compared to affinity-based strategies which conclude that 5hmC is enriched at CpG-dense 



promoters, this method showed that 5hmC is mostly present on distal regulatory elements in 

human and mouse ESCs [50]. 

 

Oxidative BS-seq (oxBS-seq) discriminates between 5mC and 5hmC via highly selective 

chemical oxidation of 5hmC to 5fC using potassium perruthenate (KRuO4). Subsequent 

bisulfite treatment causes 5fC to be deformylated and deaminated to U. Thus, any remaining 

Cs after oxBS-seq specifically represent 5mC [49, 53]. Direct comparison of results 

generated by oxBS-seq with traditional BS-seq can allow discrimination between 5mC and 

5hmC. 

 

Despite the extremely low abundance of 5fC and 5caC in genomic DNA, two new techniques 

have recently emerged to map these modified bases at single base resolution. In the CAB-

seq method (chemical modification-assisted bisulfite sequencing), specific chemical 

modification using EDC (1-ethyl-3-[3-dimethylaminopropyl]-carbodiimide hydro-chloride) 

allows the protection of 5caC by forming an o-acylisourea reactive ester. After an EDC-

coupling reaction, biotin can be added onto the modified 5caC for streptavidin-pull-down. 

This chemical conversion makes 5caC resistant to bisulfite-driven deamination, allowing 

5caC mapping after bisulfite-sequencing by comparison between protected versus 

unprotected DNA. Importantly, the EDC-coupling reaction of 5caC does not introduce bias 

during PCR amplification [54]. This recently optimised technique has not been used so far to 

map 5caC in the mammalian genome. 

 

For 5fC mapping, He & colleagues developed a similar technique (fCAB-seq) based on the 

specific protection of 5fC using hydroxylamine reduction, which prevents 5fC from 

undergoing bisulfite-mediated deamination. Consequently, the comparison of traditional BS-

seq and fCAB-seq reveals the presence of 5fC at single base resolution [41]. 

All the above mentioned methods combine various chemical reactions with traditional 

bisulfite sequencing. The clear advantage of these approaches is the simultaneous detection 

of both unmodified and modified sequences, which provide a direct readout of the level of 

modification at a particular site (see table 1). However, as the levels of 5hmC, 5fC, 5caC 

modifications in genomic DNA are very low, reliable quantification by these methods requires 

very high coverage sequencing. This remains extremely costly for genomes of mammalian 

size. To circumvent this, some methods include an enrichment step which consequently 

allows higher sequence coverage for the genomic regions containing the modified base. 

This, however, prevents reliable quantification of the site specific modification level. 



Considering the above mentioned constraints, alternative approaches to map oxidative 

products of Tet enzymes are of particular interest. 

The unique specificity of the restriction endonuclease AbaSI to recognise 5ghmC has been 

harnessed by Zhen’s group for AbaSI sequencing (Aba-seq) [55]. 5hmC present in genomic 

DNA is firstly converted to 5ghmC using T4-BGT. The modified DNA is then digested with 

AbaSI, generating DNA double-strand breaks (DSBs) 11-13bp 3’ of 5ghmC sites. 

Biotinylated adaptors are next ligated to capture AbaSI-digested DNA and used for library 

preparation and sequencing. The presence of a C at the expected distance from the adaptor 

subsequently identifies the original 5hmC sites. Contrary to hmeDIP or TABseq, this method 

is not biased towards regions with high density or levels of 5hmC [55]. However, the method 

is extremely sensitive to the quality of the initial genomic DNA as the presence of DSBs 

caused by mechanical shearing (AbaSI independent) may lead to identification of false 

positive 5hmC sites. 

The ultimate goal in mapping of DNA modifications is to “read” the presence of a modified 

nucleoside directly from the DNA molecule. In this context, the recently developed single-

molecule real-time sequencing (SMRT-seq) method allows identification of epigenetic 

modifications on individual DNA molecules with single base resolution [56, 57]. For this third-

generation sequencing, a single DNA polymerase molecule is monitored during 

incorporation of fluorescently labelled nucleotides into newly synthesised DNA. The 

incorporation of each new nucleotide generates a fluorescent pulse whose length and 

frequency yields information on the polymerase kinetics, reflecting a signature of the DNA 

structure and composition. In a first attempt to optimize this technique for the detection of 

DNA modifications, Flusberg et al. successfully detected N6-methyladenine, however 

differential kinetic signatures were missing for 5mC and 5hmC [56]. Coupled with chemical 

modification using T4-BGT enzyme and UDP-6-N3-glucose, a modified version of SMRT-seq 

with a 5hmC enrichment procedure has been optimised, increasing the confidence of 5hmC 

assignments [57]. However, the field is still eagerly awaiting the validation of this method for 

5hmC mapping in the mammalian genome. An obvious drawback of this technique is the 

cost of the instrument (PacBio RS High-Resolution Genetic Analyzer) and the relative low 

throughput (in comparison with standard next generation sequencing) precluding genome-

wide studies. 

 

 

 



 

 

 

Outlook and future technological challenges 

 

The identification of new DNA modifications present in the mammalian genome and the 

emergence of novel technologies for their detection and quantification within a genomic 

context have raised new scientific questions and challenges.  

 

The currently available methods each have shortcomings in sensitivity, large input material 

requirements or sequencing costs, limiting their use (table 1). As opposed to studies using in 

vitro systems of genome-wide DNA methylation remodelling, such as pluripotent stem cells 

[5], the study of in vivo demethylation in mouse zygotes and PGCs requires ultra-sensitive 

methods due to the limited availability of the starting material. Considerable efforts are thus 

required to improve and develop techniques suitable for small cell numbers. Furthermore, 

diverse chemical methods are currently required to probe the existence of individual DNA 

modifications. In this context, the commonly used BS-seq method does not distinguish 

between 5mC and 5hmC modifications; in view of this, caution should be taken when 

interpreting previously published data. Additional technological challenges will thus involve 

development of a single method capable of delivering information regarding all known DNA 

modifications simultaneously. In this context, the technological progress in the field of single 

molecule sequencing is eagerly awaited by the field. 

 

Aside from the technological challenges, an important question concerns the underlying 

biological function of 5hmC, 5fC and 5caC, which still remains the subject of intense 

scientific debate. These modifications are considered as DNA demethylation intermediates, 

while also being recognized as the 6th, 7th and 8th bases of the mammalian genome with 

potential biological functions distinct from the DNA demethylation pathway [11]. A key 

attribute of a demethylation intermediate would be a transient, highly dynamic behaviour, as 

is the case for oxidative DNA lesions. However a true epigenetic mark should be, like 5mC, 

heritable, stable and specifically recognized by molecular readers. Results from various 

biological systems including mouse zygotes and PGCs provide grounds to support either of 

these hypotheses [21, 58-61]. For example, numerous papers have suggested a role for 

5hmC and further 5hmC oxidative products as intermediates during zygotic DNA 

demethylation [21, 60, 61]. On the other hand, mapping studies on these modifications in 

mouse and human ESCs clearly show their stable enrichment on specific genomic loci such 

as gene promoters, suggesting a distinct epigenetic function potentially linked with 



transcriptional regulation. Using a proteomics approach, a set of proteins specifically 

recognizing 5hmC has been identified [43-46] with overrepresentation of repair-associated 

factors. While 5hmC is clearly a product of enzymatic TET-mediated oxidation of 5mC, it can 

also be considered as an oxidative lesion. Although rare, 5hmC and 5fC (but not 5caC) can 

be generated in the absence of TET enzymes by reactions involving either hydroxyl radical 

or one-electron oxidants (reviewed in [62]). In consequence, the oxidative stress generated 

during DNA modification profiling procedures should be accurately monitored and restrained 

using oxidant scavengers. These findings thus raise further questions on the underlying 

biological functions of 5hmC and 5fC. 

 

Developing existing technologies and discovering novel approaches to assess the oxidative 

products of 5mC has driven intense research since their initial discovery. Continued efforts in 

this area will allow us to define the biological role of these intriguing modifications and their 

exact contribution to DNA demethylation processes. The recent discovery of Tet enzymes 

and their oxidative products may thus be a first step towards the discovery of other novel 

DNA base modifications participating in the complex epigenetic regulation of mammalian 

cells.   
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Figure 1.  Conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC) and 5-carboxycytosine (5caC) by Tet enzymes (Tet1-3) with known and 

putative mechanisms for DNA demethylation. TDG, thymine-DNA glycosylase; BER, base 

excision repair; SMUG, single-strand selective monofunctional uracil DNA glycosylase; AID, 

activation-induced cytidine deaminase; APOBEC, apolipoprotein B mRNA editing enzyme, 

catalytic polypeptide; Dnmt, DNA (cytosine-5-)-methyltransferase; Tet, Ten eleven 

translocation; dC, deoxycytosine; 5hmU, 5-hydroxymethyluracil. 

  



 
 

 

Figure 2. Schematic of the recent techniques used for the profiling of 5-

hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) at low to medium resolution. 

hmeDIP, hydroxymethylated DNA immunoprecipitation; CMS-IP, cytosine 5-methylene 

sulfonate immunoprecipitation; JBP1-IP, J-binding protein immunoprecipitation; GLIB-IP, 

glucosylation, periodate oxidation, biotinylation immunoprecipitation; hmeSEAL, 

hydroxymethyl selective chemical labeling and capture; 5fC-DP-seq, 5-formylcytosine DNA 

pulldown sequencing; 5fC-SEAL, 5fC-selective chemical labeling and capture; g5hmC, β-

glucosyl-5-hydroxymethylcytosine; ARP, aldehyde-reaction probe; T4-BGT, T4-β-

glucosyltransferase. 

 



 
 

 

Figure 3. Genome-wide methods developed to map DNA modifications at single-base 

resolution. 5mC, 5-methylcytosine; 5hmC, 5-hydroxymethylcytosine; 5fC, 5-formylcytosine; 

5caC, 5-carboxycytosine; T4-BGT, T4-β-glucosyltransferase; BS-seq, bisulfite sequencing; 

TABseq, Tet-assisted bisulfite sequencing; oxBS-seq, oxidative bisulfite sequencing; fCAB-

seq, 5-formylcytosine chemical modification-assisted bisulfite sequencing; CAB-seq, 

chemical modification-assisted bisulfite sequencing. 

  



 
 

  



Table 1. Summary of recent methods optimised for the detection, quantification and 

mapping at low, medium or single-base resolution of Tet-dependent DNA modifications. 

TLC, thin-layer chromatography; LC-MS, liquid chromatography-mass spectroscopy; IF, 

immunofluorescence; GlucMS-PCR, glucosylation methylation sensitive PCR; hmeDIP, 

hydroxymethylated DNA immunoprecipitation; GLIB-IP, glucosylation, periodate oxidation, 

biotinylation immunoprecipitation; hmeSEAL, hydroxymethyl selective chemical labeling and 

capture; CMS-IP, cytosine 5-methylene sulfonate immunoprecipitation; JBP1-IP, J-binding 

protein immunoprecipitation; 5fC-SEAL, 5fC-selective chemical labeling and capture; 5fC-

DP-seq, 5fC-DNA pulldown sequencing; BS-seq, bisulfite sequencing; SMRT-seq, single-

molecule real-time sequencing; TAB-seq, Tet-assisted bisulfite sequencing; OxBS-seq, 

oxidative bisulfite sequencing; Aba-seq, AbaSI sequencing; CAB-seq, chemical modification-

assisted bisulfite sequencing; fCAB-seq, 5-formylcytosine chemical modification-assisted 

bisulfite sequencing; 5mC, 5-methylcytosine; 5hmC, 5-hydroxymethylcytosine; 5fC, 5-

formylcytosine; 5caC, 5-carboxycytosine; mA, methyladenine; BGT, β-glucosyltransferase. 

 

 


