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Abstract—Superconducting fault current limiters (SFCLs) may
play an important role in power-dense electrical systems. There-
fore, it is important to understand the dynamic characteristics
of SFCLs. This will allow the behavior of multiple SFCLs in a
system to be fully understood during faults and other transient
conditions, which will consequently permit the coordination of
the SFCL devices to ensure that only the device(s) closest to
the fault location will operate. It will also allow SFCL behavior
and impact to be taken into account when coordinating network
protection systems.

This paper demonstrates that resistive SFCLs have an inverse
current-time characteristic: they will quench (become resistive) in
a time that inversely depends upon the initial fault current mag-
nitude. The timescales are shown to be much shorter than those
typical for inverse overcurrent protection. A generic equation
has been derived which allows the quench time to be estimated
for a given prospective fault current magnitude and initial
superconductor temperature, and for various superconducting
device and material properties. This information will be of
value to system designers in understanding the impact of SFCLs
on network protection systems during faults, and planning the
relative positions of multiple SFCLs.

Index Terms—Distributed generation, fault current limitation,
low-carbon, power system protection, superconducting fault cur-
rent limiter (SFCL).

I. INTRODUCTION

SUPERCONDUCTING fault current limiters (SFCLs) offer
an attractive solution to the problem of rising fault levels

in highly power-dense electrical systems [1], [2], [3], [4].
However, for SFCLs to be effectively applied in power

systems, it is important to understand their transient properties
in order to coordinate their operation with power system
protection devices and to ensure that, in a multiple SFCL
application, that only the SFCL(s) closest to the fault location
operate in order to avoid unnecessary disturbance to healthy
elements of the power system. This paper analyzes a typical
transient SFCL model, and determines its current-time charac-
teristics. Section II introduces the SFCL model, and the model
is analyzed mathematically in Section III.

II. SFCL MODEL

A. SFCL Model Requirements

For this study, it is important to realistically model an
SFCL’s resistance characteristics, in particular:
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• In a three-phase power system, each phase of the SFCL
must be modeled independently because they will operate
independently, particularly during unbalanced primary
system faults, which represent the predominant mode
of fault in power distribution systems (particularly in
overhead systems) [5]. Each phase will have a dedicated
superconducting wire (or several wires) which form a
superconducting element. This means that within the first
cycle of fault current during a three-phase to earth fault,
each phase of the SFCL will develop resistance at a
slightly different time, hence creating a momentary phase
unbalance. Unbalanced faults may only cause a quench
in only one or two phases of the SFCL. Independent
operation of each phase must be represented such that
the effects on the overall power system can be evaluated
for all fault types at various locations.

• The SFCL model should be a reasonable approximation
of transient SFCL behavior during faults, and therefore
should consider thermal properties [6]. The model should
be adaptable, with little or no modification, for different
types of faults or other scenarios. It should be able
to model the effects of different fault durations, dif-
ferent times of fault occurrences, different fault current
magnitudes, and cater for any point of fault occurrence
with respect to the voltage waveform. The model should
execute without excessively long simulation times.

• The dimensions of the superconducting wires must be
known. A given superconducting wire will have a full
load current rating. To achieve a higher full load current
rating, several wires may be connected in parallel, as
described in [7], [8].

B. SFCL Model Implementation
SFCLs have been modeled using the equations from [9],

which is based on a BSCCO (Bi2212) superconductor, and
fits well with experimental results. Reference [10] extends
this model with a simplified, yet practical, thermal sub-system.
The model has been implemented in Simulink with SimPow-
erSystems [11]. An independent, single-phase superconductor
model has been replicated to create a three-phase SFCL.

The model is based on the three possible states for a
superconductor: flux-creep, flux-flow, and normal (resistive)
conducting. Fig. 1 illustrates the typical relationship between
electric field, E, and current density, J, for these three states.
Table I defines the symbols used. Note that, after entering
the flux-flow state, the superconductor heats up significantly,
which in turn shifts the E-J curve to the left; i.e., E increases
further.



TABLE I
SUMMARY OF SFCL MODEL PARAMETERS

Parameter description Symbol Value Units

Length of the superconductor wire lsc 50 m

Diameter of the superconductor wire dsc 4.0 x 10-3 m

Cross-sectional area of the superconductor wire asc π

(
dsc
2

)2
m2

Superconductor temperature T (t) — K

Superconductor current isc(t) — A

Ambient (starting) temperature of the superconductor and cooling reservoir Ta 77 K

Superconductor critical temperature Tc 95 K

Flux-creep region exponent (at 77K) n77K 6 —

Flux-flow region exponent β 3 —

Current density J(t) isc(t)
asc

A/m2

Critical current density (at 77K), i.e., current density where E = 1µV/cm Jc77K 1.5 x 107 A/m2

Electric field at transition from flux-creep state to flux-flow state E0 0.1 V/m

Normal conducting state resistivity (at Tc) ρ 1.0 x 10-6 Ωm

Coefficient for heat transfer to cooling reservoir κ 1.5 x 103 W/Km2

Superconductor volumetric specific heat cv 1.0 x 106 J/Km3

Superconductor heat capacity csc lscasccv J/K

Thermal resistance from superconductor to cooling reservoir θ sc
1

κlscπdsc
K/W

Heat dissipated in the superconductor Qsc(t)
´

isc(t)2Rsc(t)dt J

Heat removed by the cooling system Qremoved(t)
´ T (t)−Ta

θsc
dt J

Instantaneous superconductor resistance Rsc(t)
E(t,T )lsc
J(t)asc

Ω

Fig. 1. Superconductor E-J characteristic, showing three states (from [9])

The thermal sub-system has been modeled as follows:

T (t) = Ta +
1

csc

tˆ

0

[Qsc(t)−Qremoved(t)]dt. (1)

It is assumed that the resistivity varies linearly with temper-
ature, when T (t) ≥ Tc, as given by (2). This is a reasonable

assumption and is justified and supported by the experimental
results in [12]. The variation of Jc with temperature is also
assumed to be linear, as shown in (3). Reference [13] illustrates
this property for BSCCO, and reference [14] for MgB2; it is
this variation of Jc (and J0) with temperature which allows the
operating current for an SFCL to be adjusted.

E(t,T )≈ ρ

(
T
Tc

)
J(t), T (t)≥ Tc (2)

Jc(T )≈ Jc77K

(
Tc−T (t)
Tc−77

)
(3)

Many of the parameter values given in Table I are taken
from [10]. The resistivity at Tc, ρ , was selected as 1 µΩm
and the length, lsc, was varied to limit fault current to
approximately the same root-mean-square (RMS) value as
load current. This results in an SFCL phase resistance of
approximately 4.0 Ω at 95 K, and 12.6 Ω at 300 K. The
diameter, dsc, was chosen such that the superconductor does
not enter the flux-flow state during normal load current, but
that each SFCL will enter the flux-flow state during the first
cycle of fault current. In reality, the wire diameter may be
fixed, but several wires may be connected in parallel to achieve
a particular current rating [8]. β was reduced to 3 to reduce
the rate of increase of flux-flow resistance. A cylindrical
superconductor wire geometry is used, rather than the cuboid
shape modeled in [10].



Fig. 2. SFCL fault current limitation test network
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Fig. 3. SFCL model response for a three-phase to earth fault

C. SFCL Model Example

To test the fault current limitation properties of the model,
the circuit in Fig. 2 was simulated. Fig. 3 illustrates the
response of the model for a three-phase to earth fault, with
negligible fault resistance. The SFCL quenches in each phase
during the first peak of fault current. If the fault is cleared 0.1
s after occurrence, each phase of the SFCL takes between 2
s and 4 s to drop below Tc. This SFCL design corresponds
to the “slow-heating” category described in [9], because the
quench time is in the order of 10ms.

Resistive SFCLs typically incorporate an impedance that is
connected electrically in parallel with the SFCL [1], [8], [10],
as shown in Fig. 2. To simplify the analysis in this paper, it
is assumed that there is no shunt impedance. The effect of
the shunt impedance will be most prominent after an SFCL
fully quenches to the resistive state, which does not affect the
analysis in the following section.

III. ANALYSIS OF SFCL CURRENT-TIME
CHARACTERISTICS

A. Analytical Solution

The SFCL model equations can be analyzed to approximate
the current-time grading, i.e., the time taken to quench for
a given fault current. The temperature of the superconduc-
tor is calculated using (1), where E(t,T ) (within Qsc(t)) is
calculated according to [9], in the flux-flow region (where
E(t,T ) ≥ E0 and T (t) < Tc). When T (t) ≥ Tc, it is assumed
that the superconductor quenches. Equation (1) can be differ-
entiated and manipulated as follows:

dT
dt

=
1

csc
[Qsc(t)−Qremoved(t)]

dT
dt

=
1

csc

[
i(t)E(t,T )lsc−

T (t)−Ta

θsc

]
dt =

dT
1

csc

[
i(t)E(t,T )lsc− T (t)−Ta

θsc

] .
To simplify the analysis, a constant dc fault current, I, is

assumed. Therefore, E can be simplified to be only a function
of temperature:

ˆ
dt =

ˆ
dT

1
csc

[
IE(T )lsc− T (t)−Ta

θsc

] (4)

where E(T ) is [9]:

E(T ) = E0

(
Ec

E0

) β

n77K
(

Jc77K

Jc(T )

)(
J(t)
Jc77K

)β

. (5)

Substituting (3) into (5) gives:

E(T ) = E0

(
Ec

E0

) β

n77K
(

Tc−77
Tc−T

)(
J(t)
Jc77K

)β

= E0

(
Ec

E0

) β

n77K
(

Tc−77
Tc−T

)(
I

Jc77K asc

)β

.

For convenience, the non-temperature-dependent part of E(T ),
along with I and lsc from (4), can be combined as k as follows:

IE(T )lsc = k
Tc−77
Tc−T

k = IE0

(
Ec

E0

) β

n77K
(

I
Jc77K asc

)β

lsc

k = E0

(
Ec

E0

) β

n77K Iβ+1

(Jc77K asc)
β

lsc.

This provides an expression for t, the time for the super-
conductor to reach a particular temperature, T , as follows:

t = csc

ˆ
dT[

k Tc−77
Tc−T −

T−Ta
θsc

] . (6)

Equation (6) can be solved by (8). The constant, C, given
in (9), can be calculated by substituting T (0) = Ta into (8).

In the common case, using liquid nitrogen as the cryogen,
where Ta = 77 K, Tc = 95 K, and T = 95 K, (8) can be
simplified to (7) as follows:

t = 6cscθsc

arctan
(

3√
2θsck−9

)
√

2θsck−9
. (7)

Fig. 4 illustrates the current-time characteristics for three
different values of the initial temperature, Ta. For example,
for Ta = 77 K, a fault current of at least 1.9 kA (RMS or



t = cscθsc

arctan
(

Ta−2T+Tc√
−(Ta−Tc)

2+4θsck(Tc−77)

)
(Ta−Tc)√

−(Ta−Tc)
2 +4θsck (Tc−77)

−
ln
(
T 2 +(−Ta−Tc)T +TaTc +θsck (Tc−77)

)
2

+C (8)

C = cscθsc

arctan
(

Ta−Tc√
−(Ta−Tc)

2+4θsck(Tc−77)

)
(Ta−Tc)√

−(Ta−Tc)
2 +4θsck (Tc−77)

+
ln(θsck (Tc−77))

2

 (9)
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Fig. 4. SFCL model current-time characteristics (analysis and simulation).
Fault current for dc simulation is the initial fault current from a constant dc
voltage source.

dc) is required to ensure SFCL quenching within the first
ac cycle (20 ms), compared with 1.4 kA when Ta = 85 K.
The cut-off current for which quenching would not occur is
shown by the vertical asymptotes. It can be noted that varying
the initial superconductor temperature, Ta, affects both the
critical current and the position with respect to the y-axis of
the current-time curve, as illustrated in Fig. 4. Although this
analysis excludes factors such as the instantaneous values of ac
current and the point on wave of fault inception (see Section
III-B), it does show that an SFCL will inherently act in a
manner that is consistent with an inverse current-time graded
protection system.

It should be noted that, unlike inverse current-time pro-
tection relays, the flux-flow resistance will reduce fault cur-
rent before a circuit breaker opens, thereby slightly delaying
quenching, compared with the quench time predicted by (7).
For simplicity, this is ignored in the analysis above, but
Fig. 4 also illustrates simulation results, using a single-phase
constant dc voltage source. The fault current only drops by
approximately 1-5%, until very close to the quench point.
Furthermore, very short quench times, in the order of 1 ms or
less, may be problematic in practice because of the potential
for transient overvoltages due to the high rate of change of
current through the circuit inductance, L, with voltage given
by L di

dt [9].

Fig. 5. Effect of current magnitude and α on quench time

B. Effect of the ac Point on Wave of Fault Inception

The instantaneous ac current during a fault can be modeled
using (10) as follows [8]:

i(t) = I
(

sin(ωt +α−φ)− sin(α−φ)e
−Rt

L

)
(10)

where I is the current magnitude, ω = 2π f , f = 50 Hz, α

is the point on wave of fault inception, and φ = arctan
(

ωL
R

)
=

arctan
(X

R

)
. The X/R ratio is kept constant with a value of

7. Fig. 5 illustrates how I and α affect the quench time.
The point of wave can delay a quench by 5-10ms, depending
on the current magnitude. The sharp transition between π/2
and 3π/4 is due to the combination of dc offset and current
phase (α − φ ) which results in a relatively small area under
the current curve (and therefore low energy dissipation in the
superconductor) during the first half cycle. If quenching does
not occur within the first half-cycle of fault current, then there
is a relatively long delay until quenching may occur at some
point during the second half-cycle. SFCLs must therefore be
carefully applied such that quenching will occur within the first
cycle of fault current (at the required fault current magnitude),
for any possible point on wave of fault inception.

C. Comparison of SFCL and Overcurrent Protection Current-
Time Characteristics

To place the SFCL current-time curves in Fig. 4 into
perspective, they can be compared with an equivalent inverse
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Fig. 6. SFCL model current-time characteristics vs. Standard Inverse curve

definite minimum time (IDMT) curve, commonly used for
overcurrent protection. Fig. 6 compares the SFCL character-
istics with the Standard Inverse curve [5], given by (11):

t = T MS
0.14

Ir
0.02−1

(11)

where T MS is the time multiplier setting, Ir =
I
Is

, and Is
is the setting current. For Fig. 6, T MS = 0.002 and Is = 750
A. Clearly, the curves differ, especially at higher currents, but
this does demonstrate that an SFCL has similar characteristics
to IDMT protection, albeit with a T MS value that would be
extremely small in practice. This information could be used
to coordinate the operation of multiple SFCLs in a power
system in a similar fashion to the method used to coordinate
overcurrent protection relays.

IV. CONCLUSIONS

This paper has established, through analysis of an existing
SFCL model, that resistive SFCLs have an inverse current-
time characteristic. This has been verified mathematically. The
analysis approach represents a generic design tool which could
help with the following:

• The coordination of multiple SFCLs, especially if they
have different designs, e.g., from different manufacturers.

• Quickly investigating the effect that modifying parame-
ters, such as superconductor length, diameter, etc., has
on the current-time characteristics and the critical current
value.

• As a guide for adjusting the superconductor temperature,
while the SFCL is in service, to cater for different system
conditions and fault current reduction requirements.

• To determine the required superconductor volume for a
desired current-time characteristic (i.e., solving for k, or
a particular component of k).

Note that these results are closely linked to this particular
SFCL model; nevertheless, the technique is valid as long as
the SFCL characteristics are well known. Further work is
needed to examine the coordination of multiple SFCLs, and
the implications for existing protection systems.
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