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Current transport models for nanoscale semiconductor devices

V. Sverdlov *, E. Ungersboeck, H. Kosina, S. Selberherr

Institute for Microelectronics, TU Vienna, Gusshausstr. 27–29, A-1040 Vienna, Austria

Abstract

Due to the rapid decrease in device dimensions the well-established TCAD tools are pushed to the limits of their applicability.

Since conventional MOSFETs are already operating in the sub-100 nm range, new physical effects and principles begin to

determine the transport characteristics, and the validity of conventional current transport models is in question. The drift-diffusion

model, which has enjoyed a remarkable success due to its relative simplicity, numerical robustness, and the ability to perform two-

and three-dimensional simulations on large unstructured meshes, must be generalized to include hot-carrier and classical non-local

effects. This motivated the development of higher order moments transport models such as the hydrodynamic, the energy-transport,

and the six-moments models. After the introduction of stress for device performance enhancement the demand for accurate carrier

mobility calculations based on full-band Monte Carlo algorithms has significantly increased, since they allow calibration of

phenomenological mobility models and thus justify closure relations for higher order moments equations.

The transport models based on the semi-classical Boltzmann transport equation already contain information which can only be

obtained from quantum-mechanical consideration. These are the band structure, expressions for the scattering rates, and the Pauli

exclusion principle reflecting the Fermi statistics of carriers. With scaling continuing, other quantum-mechanical effects begin to

affect transport properties. Quantum confinement in the direction orthogonal to transport in inversion layers makes the energy

spectrum discrete. For sufficiently long channels, however, the carrier motion in transport direction can still be treated semi-

classically, and development of transport models based on a set of subband Boltzmann equations is possible.

A useful approximation to mimic the quantum-mechanical carrier concentration profile is to introduce an effective potential into

otherwise classical transport models. Transport calculations can then be carried out using conventional TCAD tools providing

accurate and timely results. However, when modeling transport in ultra-scaled structures with only a few subbands occupied the full

subband method must be applied.

Parallel to the search for new technological solutions for MOSFET scaling, the development of conceptually new devices and

architectures is becoming increasingly important. New nanoelectronic structures, such as carbon nanotubes, nanowires, and even

molecules, are considered to be prominent candidates for the post-CMOS era. At this small device size the geometrical spread of the

carrier wave packet in transport direction can no longer be ignored. When the device size becomes shorter than the phase coherence

length, the complete information about carrier dynamics inside the device including the phase of the wave function is needed and

one has to resort to a full quantum-mechanical description including scattering. Transport in advanced nanodevices is determined by

the interplay between coherent propagation and scattering. Numerical methods for dissipative quantum transport based on the non-

equilibrium Green’s function formalism, the Liouville/von-Neumann equation for the density matrix, and the kinetic equation for

the Wigner function are attaining relevance.

# 2007 Elsevier B.V. All rights reserved.

Keywords: Carrier transport model; TCAD tools; Six-moments model; Monte Carlo simulation; Wigner equation; Non-equilibrium Green’s

function

www.elsevier.com/locate/mser

Available online at www.sciencedirect.com

Materials Science and Engineering R 58 (2008) 228–270

* Corresponding author.

E-mail addresses: sverdlov@iue.tuwien.ac.at (V. Sverdlov), ungersboeck@iue.tuwien.ac.at (E. Ungersboeck), kosina@iue.tuwien.ac.at

(H. Kosina), selberherr@iue.tuwien.ac.at (S. Selberherr).

0927-796X/$ – see front matter # 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.mser.2007.11.001

mailto:sverdlov@iue.tuwien.ac.at
mailto:ungersboeck@iue.tuwien.ac.at
mailto:kosina@iue.tuwien.ac.at
mailto:selberherr@iue.tuwien.ac.at
http://dx.doi.org/10.1016/j.mser.2007.11.001


Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

1.1. TCAD tools: technological motivation and general outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

1.2. Brief history of TCAD transport modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

1.3. Formulation of the problem and the structure of the review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

2. Semi-classical transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

2.1. From drift-diffusion to higher moments equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

2.2. Mobility compact modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

2.3. Monte Carlo methods for transport calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

3. Mixed quantum semi-classical description and quantum corrections in current transport models . . . . . . . . . . . . . 242

3.1. Subband Monte Carlo and degeneracy effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

3.2. Quantum correction to the density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

3.3. Quantum correction potential, density gradient, and quantum hydrodynamics . . . . . . . . . . . . . . . . . . . . . 249

4. Transport at nanoscale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

4.1. Ballistic transport and tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

4.2. Non-equilibrium Green’s function approach to scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

4.3. Dissipative transport: density matrix and Wigner function approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

5. Conclusion and trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

1. Introduction

1.1. TCAD tools: technological motivation and general outlook

Integrated circuits (IC) play a key role in modern information society. Rising demand for superior computer

performance, increased number of integrated components per area, and reduced power consumption lead to a pressing

need to scale down the channel length of MOSFETs. The minimum feature size of integrated circuits has been

continuously reduced in the past decades. This trend is expected to continue in the next decade, as predicted and

institutionalized by the International Technology Roadmap for Semiconductors [1] and supported by demonstration of

a MOSFET with the gate length as short as 6 nm [2].

The success of microelectronics technology has been partly enabled and supported by sophisticated Technology

Computer-Aided Design (TCAD) tools which are used to assist in IC development and engineering at practically all

stages from process definition to circuit optimization. At this moment, the TCAD related research and development

cost reduction amounts to 35%, and is expected to increase to 40% in the near future [1].

Most TCAD tools are based on semi-classical macroscopic transport models. From an engineering point of view,

semi-classical models, such as the drift-diffusion transport model, have enjoyed an amazing success due to their

relative simplicity, numerical robustness, and the ability to perform two- and three-dimensional simulations on large

unstructured meshes [3]. However, with device size dramatically reduced the TCAD tools based on a semi-classical

transport description begin to show shortcomings.

The problem is two-fold. First, with the downscaling the driving field and its gradient increase dramatically in the

short channel. As a result the carrier distribution along the channel can no longer be described by the shifted and heated

Maxwellian distribution. In order to properly account for hot-carrier and non-local effects, the drift-diffusion and even

the energy-transport model have to be improved to incorporate the substantial modifications in the distribution

function.

The second, more fundamental reason for semi-classical modeling tools to gradually loose their validity

lies in the particle-wave duality of carriers. The carrier motion can be described with the classical Newton law,

when the length of the device is much larger than the corresponding carrier wavelength. When the device

dimensions are comparable to the carrier wavelength, the carriers can no longer be treated as classical point-like

particles, and effects originating from the quantum-mechanical nature of propagation begin to determine

transport.
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A typical example of quantum effects in MOSFETs is the quantization of carrier motion in the potential well of the

inversion layer at the Si/SiO2 interface. The thickness of the channel is usually in the order of a few nanometers, which

is also the size of the electron de-Broglie wavelength. In this confining potential only levels with certain, quantized

energies are allowed. This results in the formation of subbands, and, therefore, transport can no longer be accurately

described by the classical equations in three dimensions. In consequence, a new description based on two-dimensional

subbands must be adopted [4].

Another problem of quantum-mechanical effects in modern MOSFETs is the tunneling of carriers through

classically forbidden regions. Tunneling leads to increasing leakage through thin gate dielectrics. This gate leakage is

responsible for an increased power consumption in modern MOSFETs. In the 65 nm technology node the gate

dielectrics are already so thin that the leakage current leads to critically high values of generated power. With scaling

continuing, the conventional thinning down of gate dielectrics seems no longer possible, and new technological

solutions must be employed to keep the heat production within reasonable limits [5]. Several options are considered

for the upcoming technology nodes. One option is the use of alternative gate dielectric materials with higher

permittivity and/or dielectric stacks combined with metal gates which help reducing the gate leakage current. A second

option is to increase the drive current and the performance by additionally stressing the MOSFET channel. Finally,

multi-gate device architectures with improved channel control and reduced short-channel effects can eventually be

employed [6].

Tunneling is not only affecting the gate leakage currents. In MOSFETs with gate lengths of 10 nm and smaller

quantum-mechanical tunneling under the barrier in the transport direction from source to drain becomes important

[7]. When carrier scattering is negligible, a coherent transport approach based on the solution of the Schrödinger

equation provides an accurate description for quantum-mechanical transport. This method is fast and efficient and

can be implemented into commercial TCAD tools. However, since all devices operate at room temperature, carrier

scattering in Si-based FETs is still important, and transport is significantly affected by scattering even in ultra-

scaled FETs [8]. Recent studies indicate that the crossover from diffusive to ballistic transport in nanowire

transistors may occur at a much shorter distance than previously anticipated [9]. An adequate transport model for

ultra-scaled MOSFETs must, therefore, account for quantum-mechanical coherent and dissipative scattering

effects simultaneously.

Modern TCAD tools have to be flexible enough to address challenges due to upcoming technological changes

resulting from the use of new materials and structures. They must be prepared to adequately describe the quantum-

mechanical phenomena which will determine transport in ultra-scaled CMOS and post-CMOS devices.

1.2. Brief history of TCAD transport modeling

The first fully numerical transport description was already suggested in 1964 by Gummel [10] for the one-

dimensional bipolar transistor. The approach was further developed and applied to pn junctions [11] and to avalanche

transit-time diodes by Scharfetter and Gummel [12]. The first application of a solution of the two-dimensional Poisson

equation to metal–oxide–semiconductor (MOS) structures was performed by Loeb [13] and Schroeder and Muller

[14]. The first simultaneous solutions of the coupled continuity and Poisson equations applied to junction field effect

transistors (FET) [15] and to bipolar transistors [16] date back to 1969.

Since these pioneering works on device modeling many different approaches have been applied to practically all

important devices, and the number of papers in the field has grown exponentially. Today the modeling of integrated

devices has matured into a well-established field with active research, intensive software development, and vast

commercial applications. Many textbooks, monographs, and reviews devoted to theoretical and computational aspects

of device modeling have been published. The first monograph comprehensively covering aspects from modeling and

discretization to applications is [3]. Not pretending to cover all the literature we mention only the most recent

monographs relevant to the review. Various transport models were summarized in [17], while new approaches to

transport are well described in [18].

As the costs of development and maintenance of today’s TCAD software have significantly increased, only few

large semiconductor companies can afford to support their own TCAD development team. There is a fairly large

number of commercial TCAD software products available on the market [19–21] which serve most of the industrial

demands. Numerous TCAD tools developed at universities have the advantage that they are freely distributed

[23,22,24]. These tools regain popularity due to the concept of a complex approach to simulations based on different
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levels of precision and complexity. It makes these tools valuable not only for pure educational and research purposes.

Semiconductor manufacturing companies which need more refined simulations of complex phenomena often consult

researchers from universities to verify their data obtained experimentally.

1.3. Formulation of the problem and the structure of the review

In order to analyze a semiconductor device under general operating conditions, an adequate mathematical model

has to be formulated first. Regardless of the complexity of carrier dynamics in the semiconductor, two equations are an

important part of anymodel and always have to be included. The Poisson equation relates the density rðr; tÞ of charged
carriers in the device to the electrostatic potential fðr; tÞ:

divðe grad fðr; tÞÞ ¼ �rðr; tÞ: (1)

The Poisson equation must be supplemented by the proper boundary conditions, which usually are of the Dirichlet

or Neumann type. The Dirichlet boundary condition fixes the potential at the domain boundary and is conveniently

applied to model the interface between an external electrical contact and the device. The Neumann boundary condition

sets the normal component of the electric field at the interface En ¼ �n � gradfðrÞ to zero in order to isolate the

simulation domain from the environment.

The second equation is the continuity equation, relating the current density jðr; tÞ to the time derivative of the

charge density:

@rðr; tÞ
@t

¼ �divjðr; tÞ: (2)

In semiconductors, two types of particles carrying positive (holes) and negative (electrons) charges are present. By

introducing the electron nðr; tÞ and hole pðr; tÞ concentrations, the continuity equation can be written for each carrier
type:

q
@nðr; tÞ

@t
¼ divjeðr; tÞ � qRðr; tÞ;

�q
@ pðr; tÞ

@t
¼ divj pðr; tÞ þ qRðr; tÞ;

(3)

where Rðr; tÞ is the net electron–hole generation rate.

In order to form a closed set of equations and complete the formulation of the mathematical model, the system of

Eqs. (1) and (3) must be supplemented by the material properties relating the current density jðr; tÞ to the electron and
hole concentrations and the electric field, which requires an accurate consideration of the physical mechanisms

responsible for carrier motion inside the device.

Although we do not have the intention to completely cover this enormously large field of research here, we

present several important examples and outline some difficulties and challenges to describe transport in modern

MOSFETs. In the next section, we review the semi-classical description of carrier dynamics inside the device, which

is justified when the characteristic device size is much larger than the corresponding electron wavelength. In ultra-

scaled devices quantum effects start playing a role. Different types of quantum potential and density gradient

corrections are reviewed in Section 3. Special attention is paid to the subband description of carriers in single- and

double-gate structures, which is quantum-mechanical in the confinement direction and semi-classical in the current

direction. Transport descriptions based on a fully quantum-mechanical approach are reviewed in Section 4.

Beginning with the description of ballistic coherent transport, the importance of scattering in modern devices is

highlighted. Methods to include scattering based on the non-equilibrium Green’s function (NEGF), on the density

matrix and the Wigner function are described. We conclude with a summary and an outline of future trends for

TCAD transport models.

2. Semi-classical transport

An ensemble of interacting classical particles is conveniently described by the single-particle distribution function

f ðr; k; tÞ in phase space, formed by position r and momentum �hk. It can be shown [25] that by introducing the
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self-consistent potential and by neglecting the exchange and higher order correlations the distribution function

satisfies the Boltzmann equation [3], if the potential is a smooth function both in space and time:

@ f n

@t
þ u � rr f n þ

sn q

�h
E � rk f n ¼

�

@ f n

@t

�

coll

(4)

The charge sign sn distinguishes between electrons, sn ¼ �1, and holes, s p ¼ 1. The right-hand side represents the

collision operator which describes scattering of particles due to phonons, impurities, rough interfaces, and other

scattering sources.

For realistic structures, a direct numerical solution of this equation by discretization of the phase space is

computationally too expensive. TCAD tools, however, do not usually solve the Boltzmann equation and are based on

simplified transport models. Approximate solutions can be obtained by the method of moments. Defining the moments

of the distribution function f ðr; k; tÞ, one consecutively obtains the drift-diffusion model [10], the hydrodynamic

model [26], the energy-transport models [27], or the six-moments model [28]. Transport models based on the moments

of the Boltzmann equation are well accepted in TCAD. Although these semi-classical transport models have been used

for a long time and are well understood, research on this subject is still required for several reasons. With down-scaling

of device feature sizes the semi-classical transport description is gradually losing its validity. Large electric fields

rapidly changing within the scaled devices give rise to hot-carrier and non-local effects, and therefore, an extension to

physically more sophisticated transport model is necessary. The six-moments model which is the most advanced

moment-based transport model, is briefly discussed in the first subsection.

All models depend on several material parameters. For the drift-diffusion model the most relevant parameter is the

mobility [3] relating the drift velocity to the driving force. Mobility dependence on materials, structure, and physical

effects, such as remote Coulomb scattering or soft-phonon scattering at the interface of high- k materials, must be

quantified. Demands on mobility modeling also arise from currently investigated effects to increase transistor on-

current. Such effects are, for instance, mobility enhancement in strained Si and Ge channels, possibly in combination

with a favorable substrate orientation and channel orientation. An example of accurate physics-based modeling of

stress-dependent low-field mobility is discussed in the second subsection.

TCAD tools are using reduced transport models, because solving the Boltzmann equation with a Monte Carlo

technique is computationally very expensive. Nevertheless, Monte Carlo solutions are conveniently used for

calibration of TCAD models. A Monte Carlo solution of the Boltzmann equation is necessary to obtain accurate

closure relations, expressing higher moments via the moments of lower order, to introduce and control scattering

mechanisms at the microscopic level and, most importantly, to incorporate the peculiarities of the semiconductor band

structure. An example of the stress-induced modification of the conduction band structure and its impact on electron

transport in Si is discussed in the third subsection.

2.1. From drift-diffusion to higher moments equations

From an engineering point of view, the advantages of the drift-diffusion model has been its efficiency and numerical

robustness. These properties make feasible two- and three-dimensional numerical studies of fairly complex device

structures. The robustness comes from the fact that in this approach the current density is given by a potential flowwith

the gradient of the quasi-Fermi level as the driving force. However, several shortcomings of this model are critical for

miniaturized devices. Hot-carrier effects such as impact ionization are difficult to estimate correctly and non-local

effects such as velocity overshoot are completely neglected. Higher order transport models such as the hydrodynamic

transport [26] and the energy transport [27] models are designed to overcome some of the shortcomings of the drift-

diffusion model. The energy-transport model additionally takes into account the carrier energy balance. However,

problems with the energy-transport model for TCAD applications are manifold. It typically tends to overestimate the

non-local effects and thus the on-current of a device. With the heated Maxwellian assumption [28] implicit in the

model the high energy tail of the carrier distribution is often considerably overestimated. This may result in

unacceptable errors, for example, in the estimation of the hot-carrier-induced gate tunneling current [29]. Because of

an overestimation of hot-carrier diffusion into the floating body of the device the energy-transport model may even

fail completely in predicting the device characteristics for the specific situation of a partially depleted SOI MOSFET

[30–32]. These facts motivate the development of transport models including higher order moments.

V. Sverdlov et al. /Materials Science and Engineering R 58 (2008) 228–270232



Recently a six-moments transport model has been proposed [33]. Such a model, while computationally more

efficient than theMonte Carlo method, provides additional information on the shape of the distribution function. In the

following, we outline the derivation of the six-moments model, closely following Refs. [28,31,34]. We highlight the

differences between the drift-diffusion, energy transport, and the six-moments transport models and discuss the

validity conditions for each of them.

The derivation is based on equations for statistical averages defined as

hFi ¼ 1

4p3

Z

FðkÞ f ðr; k; tÞd3k; (5)

where FðkÞ is a weight function in k-space. For simplicity we assume that the energy band is isotropic and parabolic,

although generalization to a non-parabolic band is possible [35]. In order to derive the six-moments model, the

following weight functions are chosen:

F0 ¼ 1; F2 ¼ E; F4 ¼ E2;
F1 ¼ �h k; F3 ¼ u E; F5 ¼ uE2:

(6)

Here, E ¼ EðkÞ ¼ �h2k2=ð2mnÞ is the dispersion relation, mn the effective mass, and u ¼ rkEðkÞ the carrier group

velocity. Taking the moment of the Boltzmann Eq. (4) gives the following general moment equation,

@hFi
@t

þrr � hu�F ji � snqEhr p�F ji ¼
Z

d3 kF j

�

@ f

@t

�

coll

; (7)

where � denotes the tensor product of two vectors One defines the relaxation times tF as
Z

d3kF

�

@ f

@t

�

coll

¼ �hFi � hFi0
tF

: (8)

The relaxation times tF depend on the distribution function and can in principle only be determined when the

solution of the Boltzmann equation is known. Therefore, approximations have to be introduced in order to obtain a

closed set of equations for the moments.

The distribution function can be separated into a symmetric part and an antisymmetric part:

f ðkÞ ¼ f SðkÞ þ fAðkÞ: (9)

In the so-called diffusion approximation, it is assumed that the antisymmetric part is small compared to the

symmetric part. It implies that the displacement in k-space of the distribution function and correspondingly the drift

velocity is small. The symmetric part of the distribution function is assumed to depend only on the absolute value of

k; f SðkÞ ¼ f SðjkjÞ. With these assumptions all tensor-valued averages reduce to scalar quantities. As a result one

obtains the following balance equations for the even moments:

@h1i
@t

þr � hui ¼ 0; (10)

@hEi
@t

þr � huEi � sn qE � hui ¼ � hEi � hEi0
tE

; (11)

@hE2i
@t

þr � huE2i � sn2qE � huEi ¼ � hE2i � hE2i0
tE2

; (12)

For the odd moments representing fluxes the equations are:

2

3
rhEi � snqEh1i ¼ �mm

hui
tm

; (13)

2

3
rhE2i � sn

5

3
qE; hEi ¼ �mm

huEi
tS

; (14)

2

3
rhE3i � sn

7

3
qEhE2i ¼ �mm

huE2i
tK

: (15)
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In these equations, we have omitted the time derivatives of the fluxes. We are, therefore, restricted to describe

processes changing in time with frequencies smaller than the corresponding inverse relaxation time. However, this is

not a practical limitation, since the typical value of the inverse momentum relaxation time tm in Si is of the order of

1012 � 1014 s�1. It will be demonstrated below that the values of the relaxation times tS of the energy flux huEi and tK
of the kurtosis flux huE2i are similar to tm.

In order to obtain the six-moments model it is convenient to define the following quantities in analogy to the energy-

transport models:

h1i ¼ n; hEi ¼ 3

2
kBnTn; hE2i ¼ 15

4
k2BnTnQn; hE3i ¼ 105

8
k3BnM6; hui ¼ Jn

snq
;

hu Ei ¼ Sn; hu E2i ¼ Kn:

Here, n is the carrier concentration, Tn denotes the carrier temperature, Jn the electrical current density, and Sn the

energy flux density. As compared to the energy-transport model, for the six-moments model the new variables are a

second order temperatureQn which is a measure for the kurtosis of the distribution function, the moment of sixth order

M6, and a flux Kn related to the kurtosis of the distribution function. With generation-recombination terms added, the

balance equations for the new variables become

r � Jn ¼ �sn q

�

@n

@t
þ Rn

�

; (16)

r � Sn ¼ �C4

@ðnTnÞ
@t

þ E � Jn � C4n
Tn � TL

tE
þ GEn; (17)

r �Kn ¼ �C5

@ðnTnQnÞ
@t

þ 2snqE � Sn � C5n
TnQn � T2

L

tE2
þ GQn

; (18)

C4 ¼
3

2
kB; C5 ¼

15

4
k2B: (19)

We note that the generation-recombination terms may depend on both electron and hole distribution functions in an

integral, non-local manner [3], which makes the task of solving the corresponding equations extremely difficult.

Therefore, generation-recombination terms have to be modeled carefully using knowledge from semiconductors

physics and may represent a significant challenge [37].

The system of equations for the densities is completed with the following flux equations:

Jn ¼ �C1

�

rðn TnÞ � sn
q

kB
En

�

; C1 ¼ snkBmn; (20)

Sn ¼ �C2

�

rðnTnQnÞ � sn
q

kB
E n Tn

�

; C2 ¼
5

2

k2B
q

tS

tm
mn; (21)

Kn ¼ �C3

�

rðnM6Þ � sn
q

kB
E n Tn Qn

�

; C3 ¼
35

4

k3B
q

tK

tm
mn; (22)

where the mobility

mn ¼
qtm

mn

(23)

is introduced.

The drift-diffusion transport model consists of the continuity Eq. (16) and the current relation (20). The

latter is decoupled from the higher order equation by introducing a closure assumption for the second order

moment, Tn ¼ TL. The physical meaning of this assumption is that the carrier gas is in equilibrium with the

lattice. The parameters of the model are the mobilities and generation-recombination rates of electrons and holes.

The mobilities can either be measured or calculated from an independent solution of the Boltzmann equation.
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We briefly outline the frequently used numerical ways of solving the Boltzmann transport equations in the next

section.

In bulk devices the mobilities and the generation rates are functions of the doping concentration, electric field,

stress, and other external parameters of interest. In practical device simulations, analytical dependences of the

mobilities and generation rates on the system parameters are used. A generic device simulator should be able to

account for different semiconductor materials to model their properties for a wide range of material compositions,

temperature, and doping. Several analytical models calibrated to different semiconductors are usually available in

TCAD device simulation tools. Below we present an example of the mobility dependence on the driving field used in

the drift-diffusion model to describe the current saturation and outline the way to include a stress dependence into the

low-field mobility model for Si. More examples of mobility models can be found in [23]. The drift-diffusionmodel can

be adapted to deal with new materials with high potential for usage in novel devices. The mobility in wide-gap GaN

[38] and AlGaN/GaN [39] was recently calibrated. A narrow-band InSb has also attracted attention because of its high

mobility [40,41].

The drift-diffusion model is the simplest macroscopic transport model widely used in industrial TCAD. The partial

differential equations of the model can be discretized on an arbitrary unstructured mesh and the iterative solution is

stable and robust. The model allows a generalization to account for an anisotropic mobility. Due to its relative

simplicity the drift-diffusion model is also used for two- and three-dimensional device simulations. These simulations

are needed to account for a complex geometrical device structure, doping profiles, and material compositions.

However, due to the high computational costs the three-dimensional simulations are employed in rare cases, when the

structure cannot be reduced to a set of two-dimensional cuts.

Since the carrier temperature is constant, the drift-diffusion model does not account for any non-local effects and

cannot capture the non-local transport inside short-channel devices. This is the reason why the accuracy of the drift-

diffusion model decreases for gate lengths shorter than 100 nm [42], where the restriction of constant carrier

temperature must be relaxed.

Due to the temperature gradient, heat flow and thermal diffusion appear. The drift-diffusion transport model must be

augmented with the energy flow, or the third moment equation. In Bløtekjaer’s approach [26], the energy flow is

expressed phenomenologically via the carrier current and temperature gradient. As it was pointed out in [42] the closure

relations for the oddmoments depend on all the fluxes in sub-100 nmdevices, and the truncation of the closure relations at

a fixed number of fluxes introduces an additional uncertainty into themodel and should be avoided. The energy-transport

model takes into account the energy fluxEq. (21) in addition to the carrier energy balance Eq. (17). To close the systemof

equations, an approximate dependence of the fourth order moment on the lower moments has to be introduced. The

assumption of a heated Maxwellian distribution for the symmetric part of the distribution function gives the closure

relationQn ¼ Tn, thus decoupling themodel from the equations for the highermoments.We note that a slightly different

approach adopted by Stratton uses theweight functionsmultiplied by themicroscopic relaxation time in the definition of

the moments, which results in a similar set of equations of the four-moments transport model [27].

The energy-transport model requires for each carrier type the modeling of twomobilities for the current density and

the energy flux, one relaxation time, and the non-parabilicity factor for non-parabolic bands [35]. Since these models

are not always available, a simplified model with the energy flux mobility being proportional or equal to the carrier

mobility has been proposed [23,43]. This assumption introduces an error into the energy flux even for homogeneous

conditions but does not influence the current density. The assumption of a constant energy-relaxation time is more

severe, because it also affects the current density [42].

The simplified four-moments model is implemented in standard TCAD simulation tools and can be applied to a

large set of semiconductor materials [21,23]. We note again that the accurate calibration of the parameters of the

macroscopic transport model is required, before the model can be extended to new materials. Recently, an InSb

narrow-gap semiconductor as a potential material for the future low-power, high-speed planarMOSFETs was modeled

with the energy-transport model [40]. Also, the models for the hydrodynamic mobility and the relaxation time were

improved [39] to achieve a better agreement with Monte Carlo simulation data and measured DC and AC

characteristics of AlGaN/GaN high electron mobility transistors.

Since the energy-transport model overestimates the drive current in a MOSFET as short as 25 nm [42], the next

moments should be included into consideration.

Going one step further in the model hierarchy one obtains a transport model of sixth order. A balance equation for

the average squared energy (18) and the related flux Eq. (22) are added. To close the equation system, the moment of
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sixth order M6 has to be approximated using the lower order moments. For a Maxwellian distribution function and

parabolic energy bands one would obtain M6 ¼ T3
n . However, as the six-moments model does not require the heated

Maxwellian approximation by treating the kurtosis of the distribution function as an unknown, a more general closure

relation is desirable. Sonoda et al. [36] proposed a similar six-moments transport model, however, with a very

restrictive closure relation. In Ref. [44], an empirical closure relation has been proposed taking into account also the

second order temperature Qn.

M6 ¼ T3
n

�

Qn

Tn

�c

: (24)

From Monte Carlo simulations serving as an accurate reference, a value of c ¼ 2:7 has been estimated [42].

Compared to the energy-transport models, the six-moments model requires two additional relaxation times for the

second order temperature tE2 and the kurtosis flux tK . In the simplest approximation, the relaxation times for Si are

approximated as constants te ¼ 0:33 ps and t
e2 ¼ 0:2 ps, while the mobility ratios are taken as tS=tm ¼ 0:8 and

tk=tm ¼ 0:7 [44].

Having too many adjustable parameters is a particular inconvenience of the six-moments model. A solution to this

problem is based on tabulating some parameters of the model using Monte Carlo simulations [42]. The parameter

dependences on temperature, doping, and driving field are determined from the condition that the six-moments transport

model reproduces exactly all the six-moments obtained from theMonte Carlo simulator under homogeneous condition.

This results in models with ‘‘no knobs to turn’’. However, since it requires extensive simulations, the tables are available

only for Si [23], and calibration of the six-moments model for other important materials has yet to be done.

The partial differential equations of the macroscopic transport models describing the spatial distributions of

continuous quantities have to be solved numerically. This is performed by discretizing the equations on a suitable

mesh. The question of whether a mesh is suitable for the equations under consideration is a complicated issue [45].

Improper meshes are a common source of errors [46]. The well-established Scharfetter–Gummel discretization

scheme [12] can be extended for the higher moments models, with several variants existing [47–51]. In general, the

convergence properties of higher moments models degrade significantly when compared to the drift-diffusion model,

and also a proper choice of a mesh is a critical issue for convergence [51].

Fig. 1 shows a comparison of different macroscopic simulation approaches with full-band Monte Carlo simulation

results for a 250 nm and a 50 nm double-gate MOSFET [42]. It can be seen that transport models based on two, four,
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Fig. 1. Comparison of macroscopic transport models with full-band Monte Carlo calculations. While all models yield similar results at large gate

lengths, only the six-moments model reproduces the short-channel Monte Carlo simulation results.



and six-moments deliver similar results for the long-channel device, while only the six-moments model is able to

reproduce the full-band Monte Carlo simulation results for the short-channel device.

2.2. Mobility compact modeling

The transport models discussed in the previous subsection contain several parameters which have to be accurately

modeled for the purpose of predictive simulations. The drift-diffusion model described by (16) and the current relation

(20) requires the carrier mobility (23) as a parameter. The mobility relates the drift velocity to the electric field and

depends on scattering mechanisms cast into the momentum relaxation time t as well as on the band structure via the

effective mass m. Knowledge of the mobility dependence on temperature, doping, stress, substrate orientation, and

driving electric field allows investigation of device performance in different regimes for arbitrary parameters.

In some cases, the physics-based consideration helps to generalize the model and to include additional effects. For

example, the saturation of current at high drive voltage allows extension of the low-field mobility expression mL to

include the dependence on the driving force E [23]:

mðEÞ ¼ 2mL

½1þ ð1þ ð2mLE=vsÞ1=bÞ�
b
: (25)

This expression contains two parameters determined usually frommeasurements orMonte Carlo simulations: b and

the saturation velocity vs at high driving forces E. Mobility dependences on E for electrons and holes in Si are

illustrated in Fig. 2. We note that accurate modeling of the driving force E in inhomogeneous systems requires

approximations [3]. Often, the field component in the direction of the current flow is adopted as a simple model of the

driving force. We also note that transport models with higher moments use different expression for mobility which

depends on carrier temperature [52,53] and not the driving force.

To develop a model for stress-dependent mobility, the peculiarity of the band structure modifications has to be taken

into account. In Si, the conduction band consists of three pairs of equivalent valleyswith theirminima located close to the

X-points in the Brillouin zone. For definitiveness we consider the biaxial stress applied in the (001) plane. This type of

stress is practically realized in Si grown on (001) SiGe substrate [54]. In this case, the degeneracy between the three pairs

of valleys is lifted, and a relative shiftDE
ðiÞ
C between the in-plane andout-of-planevalleys appear. The shift is given as [55]

DE
ðiÞ
C ¼ Jdðexx þ eyy þ ezzÞ þJueii; i ¼ x; y; z; (26)
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Fig. 2. Mobility (25) as function of driving force E, for electrons (filled symbols) and holes (open symbols).



whereJd denote the dilation andJu the uniaxial deformation potentials for the conduction band and the eii denote the

diagonal components of the strain tensor expressed in the principal coordinate system. Changes in both the conduction

and valence band structure of Si induced by biaxial stress are illustrated in Fig. 3.

The electron occupation in the valleys depends on their relative energy shifts [56,57]. As suggested in [56], the

electron mobility can be computed by taking the weighted average of the electron mobility tensors m̂ðiÞ
n;uns of the ith pair

of valleys in Si with the corresponding electron population pðiÞ:

m̂tot
n ¼

X

3

i¼1

pðiÞ � m̂ðiÞ
n;uns; pðiÞ ¼ n

ðiÞ
str

P3
i¼1n

ðiÞ
str

; (27)

n
ðiÞ
str ¼ N

ðiÞ
C � exp

�

DE
ðiÞ
C

kBT

�

: (28)

Here n
ðiÞ
str is calculated using Boltzmann statistics with N

ðiÞ
C as the effective density of states, and DE

ðiÞ
C the energy

shift for the ith valley, kB and T denote the Boltzmann’s constant and lattice temperature, respectively. One advances

the model (27) representing the mobility tensor as a product of a scalar mobility mL and the scaled inverse mass tensor

and making the inverse mass tensor stress dependent [58]:

m̂
ðiÞ
n;str ¼ mL � m̂�1

ðiÞ ; i ¼ x; y; z; (29)

m̂�1
x ¼

mc

ml

0 0

0
mc

mt

0

0 0
mc

mt

0

B

B

B

B

@

1

C

C

C

C

A

; m̂�1
y ¼

mc

mt

0 0

0
mc

ml

0

0 0
mc

mt

0

B

B

B

B

@

1

C

C

C

C

A

; m̂�1
z ¼

mc

mt

0 0

0
mc

mt

0

0 0
mc

ml

0

B

B

B

B

@

1

C

C

C

C

A

:

(30)

The tensors in (30) are the inverse effective mass tensors with mt and ml denoting the transversal and longitudinal

masses for the ellipsoidal X-valleys in Si, respectively. The tensor is scaled to a dimensionless form by the
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Fig. 3. Modification of the conduction band (upper part) and valence band (lower part) due to biaxial stress. Band structure of unstrained Si is shown

on the left side of the figure. Stress induces the splitting between the equivalent valleys in the conduction band and between the heavy and light hole

bands in the valence band.



conductivity mass, mc:

mc ¼
3

ð2=mtÞ þ ð1=mlÞ
: (31)

Electrons in Si are scattered by phonons and impurities. Due to the later scattering mechanism the electron mobility

depends strongly on the doping concentration. After scattering with phonons an electron may stay within the same

valley or scatter into an equivalent valley (g-type). The after-scattering state can be also located in a non-equivalent

valley ( f-type scattering) [59]. The scalar electron mobility in Si is modeled by Matthiessen’s rule including the effect

of g-type and f-type phonon scattering, and the dependence on the doping concentration NI via the corresponding

relaxation times tequiv; tneqðDEðiÞ
C Þ, and tIðNIÞ as [58]:

mðNI ;DE
ðiÞ
C Þ ¼ e

mcðð1=tequivÞ þ ð1=tneqðDEðiÞ
C ÞÞ þ ð1=tIðNIÞÞÞ

: (32)

Strictly speaking even for independent scattering mechanisms Matthiessen’s rule is exact only, if their relaxation

times have identical dependences on energy or momentum. Deviations fromMatthiessen’s rule are known [4] and may

be large for peculiar scattering mechanisms [60]. However, since the energy dependences for electron–phonon

interaction and the impurity scattering relaxation times are similar smooth functions of energy without sharp

resonances, (32) is a good approximation.

The electron mobility for the ith valley in strained Si can be written as [58]

m̂
ðiÞ
n;strðNI ;DE

ðiÞ
C Þ ¼ b � mL

1þ ðb� 1Þ � hðiÞ þ b � ððmLÞ=ðmLIÞ � 1Þ
� m̂�1

ðiÞ : (33)

where m̂�1
ðiÞ denotes the scaled effective mass tensor for the ith valley given by (30), and h is a known function of T and

DE
ðiÞ
C [58]. The parameter b ¼ f � mt=mc, where f is the mobility enhancement factor, defined as the ratio of the

saturation value of the transversal mobility in the valley i at high values of strain to the unstrained mobilitymL. Eq. (33)

is plugged into (27) to give the total mobility tensor for electrons in strained Si as a function of doping concentration

and strain.

Fig. 4 a and b shows the doping dependence of the in-plane component of the minority and majority electron

mobility components in strained Si for different Ge content in the underlying (001) SiGe substrate. The solid lines

depict the results as obtained from the analytical model (33), while the symbols indicate the Monte Carlo simulation

results. The model reproduces the slight increase in minority electron mobility for high doping concentrations for all

strain levels. The model was recently generalized to describe the electron low-field mobility in Si under arbitrary stress

conditions, including the dependences of the effective masses on shear strain [61].
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Fig. 4. Doping dependence of the in-plane electron mobility in strained Si calculated using (33) for different Ge content in the SiGe (001) substrate:

(a) minority mobility and (b) majority mobility.



In order to validate compact mobility models and calibrate their parameters, results obtained by more

precise methods must be used, which, however, require considerably more computational resources. A feasible

approach to obtain an accurate solution of the Boltzmann transport equation is the Monte Carlo techniques

discussed below.

A compact expression for the hole mobility in strained Si can also be obtained. The valence band consists of three

bands: the heavy and light hole bands and the split-off band. Close to the minimum the band structure is well described

by a six-band k � pHamiltonian [62]. Due to the interband interaction the dispersion relations are warped [63] and may

not be described by the energy-dependent effective mass tensor, which complicates finding a compact expression for

the mobility. At present the low-field hole mobility can be obtained and tabulated from the numerical solution of the

Boltzmann equation obtained by the Monte Carlo technique.

2.3. Monte Carlo methods for transport calculations

Methods based on Monte Carlo techniques are well established for studying transport in semiconductors [64]. The

motion of charge carriers is simulated in the phase space formed by position and momentum. In the presence of

external fields, the carriers which are considered as point-like particles with well-defined momenta and positions move

according to Newton law on classical trajectories. A dispersion relation expressing the carrier energy dependence on

the crystal momentum is determined by the semiconductor’s energy band structure. The free flight of carriers along the

trajectory is interrupted by scattering events which are assumed local in space and instantaneous in time. Scattering is

modeled as a random process. The duration of a free flight, the type of scattering mechanism, and the state after

scattering are selected randomly from given probability distributions characteristic to the microscopic scattering

process. The method of generating sequences of free flights and scattering events appears to be so intuitively

transparent, that it is frequently interpreted as a direct emulation of the physical transport process rather than a

numerical method. The first Monte Carlo algorithms used in device simulations were originally derived from merely

physical considerations, viewing a Monte Carlo simulation as a computer experiment. These algorithms are called

Ensemble single-particle Monte Carlo [65,66] and single-particle Monte Carlo [59,67].

Alternatively, one can formulate the transport equation first and then develop a Monte Carlo algorithm for its

solution [68,69]. Interestingly, when the Boltzmann equation is transformed to an integral equation which is then

iteratively substituted into itself, the iteration series results in the technique calledMonte Carlo Backward, because the

trajectories are followed in reverse direction back in time [68]. The algorithm is useful, if rare events have to be

simulated or the distribution function is needed only in a small phase space domain [70]. A discussion of the relation of

physics-based Monte Carlo methods to numerical Monte Carlo implementations for solving the Boltzmann equation

can be found in [71].

The work of Kurosawa in 1966 [72] is considered to be the first account of an application of the Monte Carlo

method to high-field transport in semiconductors. The following decade has seen considerable improvement of the

method and application to a variety of materials [64]. Early papers deal with GaAs [73] and Ge [74]. In the mid-1970s,

a physical model of Si has been developed, capable of explaining major macroscopic transport characteristics [75,76].

The used band structure models were represented by simple analytical expressions accounting for non-parabolicity

and anisotropicity. With the increase of the carriers’ energy the need for accurate, numerical energy band structure

models arose [77–80]. For electrons in Si, the most thoroughly investigated case, a satisfactory understanding of the

basic scattering mechanisms gives rise to a new ‘‘standard model’’ [81]. With the introduction of strain to enhance the

performance of MOSFETs, however, the need for accurate full-band transport analysis has regained considerable

interest [83,63,84].

We demonstrate the importance of full-band consideration using as an example an analysis of the electron low-field

mobility in strained Si. We apply the simulator VMC [85], which offers simulation algorithms for both bulk

semiconductors and one-dimensional devices with models based either on analytical band structure or on full-band

structure tables. VMC includes a comprehensive set of scattering models for phonons, ionized impurities, alloy

scattering, as well as impact ionization.

A phonon scattering model of Jacoboni and Reggiani [59] is used for theMonte Carlo simulation with the analytical

band structure. The model takes into account long-wavelength acoustic phonons causing intravalley transitions and

three f- and g-type phonons for intervalley transitions. Intravalley scattering from acoustic phonons is treated as elastic

process.
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In the full-band approach, the scattering rates from the state k to the final state k0 are calculated from Fermi’s golden

rule Eq. (3.40) of [59]. The scattering rate is proportional to the square of the coupling constant of the electron–phonon

interaction and to the overlap integral of the Bloch functions. The overlap integrals can in principle be determined

from pseudo-potential calculations. The coupling coefficients for electron–phonon interaction depending on both

initial and final electron state were calculated using a model of rigid pseudo-ions and Harris potentials [82]. It was

demonstrated [86] that the total scattering rate computed with the ab initiomodel in [82] is in good agreement with the

rate obtained within a simplified theory based on a so-called density-of-states Ansatz. The latter approach uses an

approximation of constant matrix elements of electron–phonon interaction and a constant isotropic deformation

potential. In this approximation the scattering rates are proportional to the density of the after-scattering states. While

retaining the low-field transport properties of the analytical band structure model, the full-band approach accounts for

the correct band structure at higher energies and improves the description of hot-electron properties [84].

In the following, ‘‘full-band Monte Carlo’’ refers to the density-of-states Ansatz. Several sets of parameters may be

found in the literature [59,78,58] fitting equally well to the available low-field experimental data. The choice of the

parameter values is not unique and, as it was pointed out in [87], depends on the model used to describe lattice

dynamics and electron–phonon coupling. We favor the phonon scattering model adopted in [84]. Following [88] we

recommend to slightly adjust the original values for the coupling constants for intervalley phonon scattering [59,84] to

achieve a bulk mobility enhancement factor of 70% in biaxially strained Si. The coupling constants for acoustic and

optical intervalley phonons as well as the phonon energies and the selection rules of the important phonon modes are

listed in Table 1.

Comparing Monte Carlo simulation results using analytical band and full-band models allows the determination of

the limits of validity of the analytical band model. In Fig. 5, we show simulation results for the electron mobility of

strained Si for the stress directions (100) and (110) as well as predictions from a model based on the linear
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Fig. 5. Simulated bulk mobility of intrinsic Si as a function of strain for stress direction [100] (a) and [110] (b). Mobility is plotted along the stress

direction and along two orthogonal directions from full-band Monte Carlo (solid lines) and analytical band Monte Carlo (dotted lines). Symbols

indicate the change of mobility calculated using the piezoresistance coefficients [89].

Table 1

Modes, coupling constants, phonon energies, and selection rule of inelastic phonon scattering [88]

Mode D (MeV/cm) �hv (meV) Selection rule

Transversal acoustic 47.2 12.1 g

Longitudinal acoustic 75.7 18.5 g

Longitudinal optical 1042.0 62.0 g

Transversal acoustic 34.8 19.0 f

Longitudinal acoustic 232.0 47.4 f

Transversal optical 232.0 58.6 f



piezoresistance coefficients [89]. Mobility is plotted in three directions, one being parallel and two being

perpendicular to stress. In Fig. 5(a), the simulation results from analytical band and full-band Monte Carlo for stress

along [100] are compared and good agreement is obtained. The resulting mobility is anisotropic in the (001) plane

(m½1 0 0� 6¼m½0 1 0�), and can be explained by strain-induced X-valley shifts. Mobility saturates at approximately 1%

strain, regardless of the sign of strain. The saturated mobility values are larger for compressive strain, since in this case

four X-valleys with unfavorable conductivity masses are depopulated.

In Fig. 5(b), simulation results are shown for stress along [110]. For tensile stress along [110], the mobility behavior

is remarkably different from the previous case. First, mobilities along the directions [110], ½1̄ 1 0�, and [001] are

different from each other, with the largest mobility enhancement observed in [110] direction. Furthermore, no clear in-

plane mobility saturation is observed as stress increases. The mobility enhancement for tensile stress is determined by

the effective mass change induced by the shear strain component in the primarily populated valleys along [001]

[90,91].

It can be seen that the results from analytical band and full-bandMonte Carlo agree well up to 0.5% shear strain. At

larger strain levels the band deformation is so pronounced that the energy band description in terms of an effective

mass is no longer accurate, and full-band Monte Carlo simulations must be used even for the calculation of the low-

field mobility.

At present the Monte Carlo method is computationally too expensive to be routinely used in TCAD. Indeed, the

Boltzmann transport equation for N particles has to be solved self-consistently with the Poisson equation on a mesh in

position space. An additional mesh in momentum space is required for numerical integration of the equations of

motion for particles, if the Boltzmann equation is solved by a Monte Carlo technique. The mesh choice is also more

restrictive than for moment-based transport models: while the use of a tetrahedron-based mesh in the momentum space

is efficient [92], the problem of compensating the self-forces caused by the change of the dielectric permittivity at the

Si/SiO2interface is not resolved for unstructured meshes in the position space [93]. It deprives the particle-based

device simulations from using unstructured meshes, which has been crucial for the success of the moment-based

approach.

3. Mixed quantum semi-classical description and quantum corrections in current transport models

The characteristics of modern semiconductor devices are strongly influenced by quantum-mechanical effects.

Therefore, purely classical device simulation is not sufficient to accurately reproduce transport. Size quantization of

carrier motion in the confining potential of an inversion layer is a well understood quantum-mechanical effect in

modern MOSFETs. Because of size quantization, the energy spectrum becomes discrete in the confinement direction,

while it is still continuous in other directions. Thus the three-dimensional energy band structure is partitioned into a set

of two-dimensional quantum subbands. In order to find the subband energy levels and the corresponding wave

functions, the Schrödinger equation has to be solved. Then semi-classical transport is described by a set of Boltzmann

equations for the subband distribution functions. The Boltzmann equations for different subbands are coupled because

of intersubband scattering. This complicates the computation of the mobility. Even more, in inversion layers and

especially in FETs with ultra-thin body (UTB) the subband occupation may be large at high effective fields, and

degeneracy effects due to Pauli exclusion start playing a role.

The Pauli exclusion principle forbids the double occupancy of the same quantum state. Therefore, scattering to an

already occupied state is prohibited. In order to describe transport correctly, degeneracy effects must be carefully taken

into account. We discuss an efficient Monte Carlo algorithm based on the linearized Boltzmann equation including

often ignored degeneracy effects. We demonstrate that in double-gate (DG) UTB FETs degeneracy effects lead to

enhanced intersubband scattering which results in a carrier mobility quantatively different from the non-degenerate

case.

The potential entering the Schrödinger equation depends on the carrier concentration in the inversion layer. By

knowing the wave functions and occupations of the subbands, the carrier concentration in the inversion layer can be

obtained. Therefore, the potential has to be found self-consistently by solving the Schrödinger and the Poisson

equations simultaneously. This procedure is time consuming and should be avoided whenever timely results must be

obtained. One option is to exploit the well-established semi-classical transport models, correcting them in such a way

that they mimic at least the charge distribution of the quantum-mechanical system. An example of efficient quantum

correction to the local density of states recently developed for double-gate FETs is discussed in details.
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The quantum correction to mimic the local density of states close to the interface can also be understood as an

additional quantum potential which has to be added to the classical self-consistent potential in order to describe the

decrease of carrier concentration at the interface correctly. Because this additional quantum potential enters into the

current relations, it opens an opportunity to introduce quantum-mechanical effects into the drift-diffusion and higher

moments transport models.

3.1. Subband Monte Carlo and degeneracy effects

Excellent electrostatic channel control in DG FETs [94] makes these devices perfect candidates for the far-end of

ITRS scaling [1]. Besides size quantization, degeneracy effects are more pronounced in UTB FETs, and their proper

incorporation becomes an important issue for accurate transport calculations. Degeneracy leads to higher occupation

of upper subbands and substantially increases the intersubband scattering.

Different approaches are known to include degeneracy effects into Monte Carlo algorithms. One method is to

compute the occupation numbers self-consistently [95,96]. This approach is applicable not only to low-field mobility

simulations but also for higher driving fields [97]. When the distribution function is close to the equilibrium solution,

the blocking factor can be approximated with the Fermi–Dirac distribution function [78]. A similar technique to

account for degeneracy effects was reported in [98].

We have recently generalized aMonte Carlo algorithm originally developed for three-dimensional simulations [99]

to a quasi-two-dimensional electron gas [100]. A similar method was later used to compute transport in the presence of

a magnetic field [101]. This method incorporates degeneracy effects exactly in the limit of vanishing driving fields and

is valid for arbitrary scattering mechanisms and for general band structure. We demonstrate that in UTB DG FETs

degeneracy effects lead to a qualitatively different mobility behavior than in the classical simulations. Degeneracy

results in higher occupation of upper subbands which substantially increases intersubband scattering in (100) UTBDG

FETs, resulting in a mobility decrease.

In order to obtain the low-field mobility, we compute the response to a small electric field EðtÞ. Generated by this

field a small perturbation d f nðk; tÞ of the equilibrium Fermi–Dirac distribution f 0ðEnðkÞÞ in each quantum subband

satisfies the system of coupled linearized subband equations:

@d f nðk; tÞ
@t

¼ �eEðtÞrk f 0ðEnðkÞÞ þ Qn½d f �; (34)

where Qn is the scattering operator of the linearized Boltzmann equation

Qn½d f � ¼
X

m

Z

dk0

ð2pÞ2
ðLnmðk; k0Þd fmðk; tÞ �Lmnðk0; kÞd f nðk; tÞÞ: (35)

The scattering rates Lmnðk; k0Þ in (35) are related to the rates Smnðk; k0Þ of the original Boltzmann equation via

Lmnðk0; kÞ ¼ ð1� f 0ðEmðk0ÞÞÞSmnðk0; kÞ þ f 0ðEmðk0ÞÞSmnðk; k0Þ; (36)

whereEnðkÞ is the total energy in the n th subband. The equation for the perturbation has a form similar to the Boltzmann

equation,with two important differences: (i) the presence of a source termwhich depends on the small electric field and is

proportional to the derivative of the equilibrium function, and (ii) renormalized scattering rates which enforce the

equilibrium solution of the homogeneous Eq. (34) to be f 0ðEnðkÞÞð1� f 0ðEnðkÞÞÞ, and not f 0ðEnðkÞÞ.
In order to calculate the mobility, a subband Monte Carlo method is used to solve the system (34). Following the

procedure outlined in [99], we assume the time dependence of the driving field to be a set of instantaneous delta-like

pulses:

EðtÞ ¼ E0t
X

i

dðt � tiÞ: (37)

In Eq. (37), t is the average period between the delta-pulses and E0 is the value of the field averaged over a long

simulation time T:

E0 ¼
1

T

Z T

0

dtEðtÞ:
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We compute the current response IiðtÞ produced by an electric field pulse at the moment ti as

Ii ¼ eHðt � tiÞ
X

n

Z

dk

ð2pÞ2
vnd f nðt � tiÞ; (38)

where vn is the velocity in the n th subband, and HðtÞ is the Heaviside function. The instantaneous current density

JðtÞ ¼
P

iIi is calculated as the sum over current densities Ii produced by all pulses i. The current density value

averaged over some long time T is then expressed as

J ¼ 1

T

X

i

Z T

0

dtIiðtÞ:

The low field mobility is defined asmab ¼ Ja=ðenEbÞ, where the direction of the b-axis coincides with the direction of
E0, and n is the carrier concentration. Now the mobility can be easily computed using a single-particle Monte Carlo

technique.

The method can be illustrated as follows. The diffusion tensor Dab is calculated as an integral of the velocity auto-

correlation function [102]

Dab ¼
Z 1

0

dthvaðtÞvbðt þ tÞi; (39)

where angular brackets denote the time averaging over the stochastic dynamics determined by the rates Lmnðk; k0Þ of
the linearized multi-subband Boltzmann scattering integral in case of degenerate statistics.

The mobility tensor m̃ab is related to the diffusion tensor via the Einstein relation for degenerate statistics

m̃ab ¼ eDab

1

n

dn

dEF

; (40)

where EF is the Fermi level.

In order to compute the mobility, we accumulate three temporary estimators t, wb, and nab during the Monte Carlo

simulations:

(i) initialize t ¼ 0, wb ¼ 0, nab ¼ 0, and start the particle trajectory with the stochastic dynamics determined by the

scattering rates Lmnðk; k0Þ from (36) of the linearized multi-subband Boltzmann equations;

(ii) before each scattering event update nab;wb, and t:

t ¼ t þ tð jÞ
1� f ðEð jÞÞ;

wb ¼ wb þ vbð jÞtð jÞ;
nab ¼ nab þ tð jÞvað jÞwbð jÞ;

(iii) when t is sufficiently large, compute the mobility tensor as

m̃ab ¼ e

kBT

nab

t
;

where vað jÞ denotes the a-component of the velocity, Eð jÞ is the particle energy, f ðEÞ is the Fermi–Dirac

function, and tð jÞ is the time of jth free flight. The convergence of the method is improved by resetting wb ¼ 0

each time a velocity randomizing scattering event occurs.

We demonstrate the importance of degeneracy effects by evaluating the low-field mobility in inversion layers and in

UTB FETs. The phonon-limited mobility in inversion layers shows a different behavior, if the Pauli exclusion

principle is taken into account [98]. However, if surface roughness scattering is included, the relative difference

decreases, and the universal mobility curve can be reproduced equally well using both degenerate and non-degenerate

statistics, as shown in Fig. 6.

In UTB FETs degeneracy effects are expected to be more pronounced. We consider a 3 nm thick (100) UTB FET.

The non-degenerate statistics is assured by using the rates Smnðk0; kÞ of the original Boltzmann equation in the Monte
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Carlo algorithm described above. Results of mobility calculations for single-gate (SG) and DG structures, with and

without degeneracy effects taken into account in the Monte Carlo simulations are summarized in Fig. 7. Mobility in a

DG FET is plotted as function of the carrier concentration per channel, or NDG=2. When degeneracy effects are

neglected, the DG mobility is superior to the SG mobility. This is in agreement with the volume inversion hypothesis

[104]. According to the volume inversion concept, the inversion layers located at the opposite interfaces of a thick DG

structure start intersecting, when the Si body thickness shrinks. A charge maximum is formed in the middle of the UTB

DG structure, yielding a larger distance between carriers and Si–SiO2 interfaces. This should eventually result in a
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Fig. 7. Mobility in 3 nm thick (100) SG (circles) and DG (squares) structures computed with Boltzmann (open symbols) and Fermi–Dirac (filled

symbols) statistics.

Fig. 6. The effective mobility of a Si inversion layer at (100) interface computed with Boltzmann (open symbols) and Fermi–Dirac (filled symbols)

statistics reproduces well the universal mobility curve [103](circles). The phonon-limited mobility for degenerate and non-degenerate statistics is

also shown.



substantial decrease of surface roughness scattering in UTB DG structures. Therefore, a higher mobility is expected in

DG structures compared to their SG analogs for similar body thicknesses. Mobility behavior consistent with this

concept was recently reported experimentally for (110) UTB FETs [105]. With degeneracy effects included, Fig. 7

predicts a qualitatively different mobility behavior in the (100) DG structure, which becomes lower than in the SG

structure at high carrier concentrations, in agreement with experimental data [106,105].

The difference between the mobility values for degenerate and non-degenerate statistics shown in Fig. 7 looks

surprising. Indeed, at high carrier concentrations the principal scattering mechanism limiting the low-field mobility is

elastic surface roughness scattering. For elastic scattering the forward and inverse scattering rates are equal:

Selmnðk0; kÞ ¼ Selnmðk; k0Þ, so that the Pauli blocking factor cancels out from the equations for the elastic scattering rates

(36), and degeneracy effects seem to be irrelevant. This is not correct, however, since the Pauli blocking factor is also

present in the inelastic electron–phonon part of the total scattering integral and ensures the equilibrium solution to be

the Fermi–Dirac distribution function.

In case of Fermi–Dirac statistics, the Fermi level in a DG FET is higher than in a SG FET, due to a twice as high

carrier concentration for the same gate voltage [100]. This results in a higher occupation of upper subbands. To study

the influence of the occupation of primed subbands on the mobility lowering in (100) DG FETs we apply a biaxial

stress of 1.6 GPa. This level of stress provides an additional splitting between the primed and unprimed subbands,

which is high enough to depopulate the primed ladder completely. Results of the mobility simulation in 3 nm DG and

SG structures, with biaxial stress applied, are shown in Fig. 8 together with the results for the unstrained structure.

Both mobilities in strained and unstrained structures are similar in the whole range of concentrations. The inset

displays the population of primed subbands in a 3 nm DG structure, showing that the primed ladder in a strained FET

is practically depopulated. Since the mobilities of strained and unstrained UTB FETs are almost equivalent for both

SG and DG structures, it then follows that the higher occupation of primed subbands is not the reason for the mobility

lowering in (100) DG UTB structures.

Another consequence of the twice as high carrier concentration in a DGUTB FET is the higher occupation of upper

unprimed subbands. When the carrier energy is above the bottom E1 of the next unprimed subband, and intensive

elastic intersubband scattering occurs. A step-like increase in the density of after-scattering states results in a sharp

increase of scattering rates.

To demonstrate the importance of intersubband scattering for mobility calculations, we artificially switch off any

scattering between unprimed subbands. We consider degenerate statistics. Results of the mobility calculations for a
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Fig. 8. Mobility in (100) 3 nm thick DG (squares) and SG (circles) structures computed with (open symbols) and without (filled symbols) in-plane

biaxial stress of 1.6 GPa. Inset: Occupation of primed subbands in relaxed (filled symbols) and biaxially stressed (open symbols) DG structure.



3 nm thick UTB structure with and without intersubband scattering are shown in Fig. 9. Without intersubband

scattering the DG FET mobility is higher than the corresponding SG mobility, in analogy to non-degenerate results. It

confirms our finding that as soon as the additional intersubband scattering channel becomes activated, the mobility in

the DG FET sinks below the mobility in the SG FET. Degeneracy effects, therefore, play a significant role in

compensating the volume inversion-induced mobility enhancement in (1 0 0) DG structures. They lead to a

significant occupation of higher subbands in the unprimed ladder, which results in increased intersubband scattering

and mobility lowering.

3.2. Quantum correction to the density of states

Although the transport description within the subband approach is based on the Boltzmann equation and is,

therefore, semi-classical, finding the correct subband structure requires a self-consistent solution of the Poisson and

the Schrödinger equations. Schrödinger–Poisson solvers, which deliver a self-consistent solution of a quantum-

mechanically calculated carrier concentration and the electrostatic potential, provide accurate results for the carrier

concentration within one-dimensional slices perpendicular to the interface. However, since the evaluation of the

quantum-mechanical electron density is computationally very demanding, the application of Schrödinger–Poisson

solvers may not be always practical.

Due to quantum confinement, which affects the local density of states, the carrier concentration near the gate oxide

decreases. Purely classical device simulation without adequate quantum corrections is no longer sufficient to provide

proper results, for example, the correct capacitance–voltage characteristics of MOS structures, since it predicts an

exponential increase of the carrier concentration towards the gate oxide interface. To avoid the self-consistent solution

of the Schrödinger equation, the classical semiconductor equations must be adapted to account for the quantum-

mechanical decrease of the carrier concentration near the interface.

Various quantum correction models are available [107–111]. Some of these are based on empirical fits with

numerous parameters [108,109]. In other models, the convergence [107] is strongly affected by the dependence on the

electrical field. Somemodels [110] have to be re-calibrated for each particular device. A comprehensive comparison of

these models was recently performed in [112].

Themodels discussed in literature are designed to describe a single inversion layer, and they are only of limited use for

DG MOSFETs with UTB. Recently an accurate quantum correction model which is suitable for extremely scaled DG
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Fig. 9. Mobility in 3 nm thick (100) structures, computed with and without (inset) intersubband scattering. The higher carrier concentration in a

UTB DG structure (squares) at the same gate voltage pushes the Fermi-level up and opens additional intersubband scattering channels between

unprimed subbands. It decreases the mobility in (100) UTB DG FETs below its SG values (diamonds) at high carrier concentrations.



MOSFET devices was developed [113]. This quantum correction model is intrinsically using the eigenstates that are

formed in the Si film. A model confinement potential makes it possible to tabulate eigenenergies and expansion coeffi-

cients of thewave functions. It enables efficient simulation of DGMOSFET devices scaled to the decananometer regime.

The classical carrier concentration for a three-dimensional electron gas rises towards the semiconductor–oxide

interface, while the physically correct quantum-mechanical carrier concentration strongly decreases towards the

interface. The classically derived concentration can be adjusted to be equal to the quantum-mechanical one [114] by

introducing the quantum correction potential jcorr as

ncl;corr ¼ NCexp �Ec � qjcorr � E f

kBT

� �

;

nqm ¼ NC1

X

n

jCnðxÞj2exp �En � E f

kBT

� �

;

ncl;corr ¼ nqm:

(41)

Here, NC and NC1 denote the effective density of states for the classical and the quantum-mechanical carrier

concentration, respectively, jcorr describes the quantum correction potential, Ec the conduction band edge energy, and

E f the Fermi energy.

This approach requires the knowledge of the energy levels En and the wave functions CnðxÞ of the quantized states.
In order to find jcorr, the above equations must be solved self-consistently with the Poisson equation. The quantum

correction allows to use the drift-diffusion transport model and find the potential profile, concentration, and currents in

biased devices. An example of the potential profile in a DG structure with 25 nm gate length [115] is shown in Fig. 10.

To avoid the computationally expensive solution of the Schrödinger equation, one can tabulate the solutions for a

parabolic shaped approximation of the conduction band edge [113]

EcðxÞ ¼ Emax � a

�

d

2
� x

�2

:

Input parameters are the film thickness d and the curvature a. The wave functions are expanded as

CnðxÞ ¼
X

k

jn;k

ffiffiffi

2

d

r

sin

�

p

d
kx

�

:

V. Sverdlov et al. /Materials Science and Engineering R 58 (2008) 228–270248

Fig. 10. Sketch of a 25 nm gate length double-gate MOSFET structure simulated byMINIMOS-NT. The contour plot shows the potential profile of the

conduction band in the channel at the drain-source bias of 0.3 V and gate voltage 0.0 V.



Hence, the offset of the energy levels en and the expansion coefficients of the wave functions jn;k can be found by

interpolation of tabulated values. This allows an estimation of the correction potential jcorr so that the corrected

classical carrier concentration is consistent with the rigorous Schrödinger–Poisson solution

exp

�

� qjcorr

kBT

�

¼ exp

�

� aðd=2� xÞ2
kBT

�

X

m

NC1;m

NC

X

n

jCm;nðxÞj2exp
�

� em;n � E f

kBT

�

: (42)

Here, m denotes the summation index over the different valley sorts (three for Si) [116].

The model was implemented in the general purpose device simulator MINIMOS-NT [23]. The Schrödinger–Poisson

simulator VSP [117] was used to derive the reference quantum-mechanical (QM) curves. The applied iteration scheme

of an initial classical simulation followed by a single quantum correction step and a final classical simulation with

corrected bandedges delivers results close to a complete self-consistent simulation.

Fig. 11 shows the electron concentration at different bias points for DGMOSFETs with 5 nm film thickness. Good

agreement between the QM and the corrected classical curves (DGTab) is achieved.

The inversion charge and the gate capacitance shown in Fig. 12 demonstrate excellent agreement between DGTab

and QM curves for a wide range of gate voltages and relevant film thicknesses. Since the derived inversion charge is

based on the accurate carrier concentration, no further fitting parameters are needed.

This model accurately reproduces both the carrier concentration distribution and gate capacitance characteristics as

well as the total inversion charge even for extremely scaled DGMOSFET devices. Due to its computational efficiency,

the model is well suited for TCAD.

An example of the calculated current–voltage characteristics of a double-gate MOSFETwith a Si film thickness of

20 nm, with and without the quantum correction to the density of states, is shown in Fig. 13. Purely classical

simulations overestimate the current in the entire range of the drain voltage.

3.3. Quantum correction potential, density gradient, and quantum hydrodynamics

The quantum correction to the local density of states can also be interpreted as an addition of a quantum correction

potential [118] to the classical potential. Eq. (42) defines such a potential for double-gate structures. In fact, the
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Fig. 11. The classical, the quantum-mechanical, and the corrected classical electron concentration in a double gate MOSFET structure with 5 nm Si

film thickness. Gate voltages of 0.5, 0.7, and 1.5 V were applied. The DGTab quantum-corrected curves show outstanding agreement with quantum-

mechanically derived curves for all applied gate voltages.



appearance of the quantum potential can be easily illustrated, if one just substitutes thewave function in complex polar

representation

cðr; tÞ ¼ Aðr; tÞexp ðifðr; tÞÞ: (43)

into the Schrödinger equation. Introducing the density nðr; tÞ ¼ A2ðr; tÞ, the velocity v ¼ �hrfðr; tÞ=m, and the current
j ¼ Nv, one obtains the following system of equations [119]:

@nðr; tÞ
@t

þr½nðr; tÞv� ¼ 0; (44)
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Fig. 12. The resulting gate capacitance as a function of the gate voltage for DG MOSFETs with film thicknesses of 5 and 10 nm, respectively. The

DGTab quantum-corrected curves show very good agreement with quantum-mechanically derived curves for both film thicknesses.

Fig. 13. Output characteristics of a double-gate MOSFET with a Si film thickness of 20 nm. The current is overestimated by a purely classical

simulation because of the overestimated gate capacitance.



@v

@t
¼ v2

2m
þ Vðr; tÞ þ VQCðr; tÞ: (45)

Here, the additional quantum correction potential VQCðr; tÞ is given by the following expression:

VQCðr; tÞ ¼ � �h2

2m

D
ffiffiffi

n
p
ffiffiffi

n
p : (46)

A similar expression for the effective quantum correction potential can be obtained from the quantum-mechanical

theory based on the evolution of the moments for the Wigner function [120]:

VQCðr; tÞ ¼ � �h2

3mr
Dln n; (47)

where r is the parameter, taking values between r ¼ 1 in the quantum limit with only a single subband filled and r ¼ 3

in case of many subbands filled.

The concept of quantum correction potentials opens the way for using particle-based Monte Carlo methods to

investigate transport in systems with strong size quantization. Therefore, the full power of three-dimensional full-band

Monte Carlo methods which include accurate band-structure and scattering processes to obtain transport

characteristics in inversion layers and SOI structures can be applied [8,121]. Recently, mobility of stressed Si/SiGe

inversion layers was investigated [122–124]. Interestingly, due to a concentration decrease at the interface, the surface

roughness scattering is underestimated, which requires special corrections [125]. Due to statistical noise in the second

derivative of the carrier concentration, smooth approximations for the quantum correction potential are used in

practice. The popular form of the effective potential introduced by Ferry [118] relates it to the self-consistent potential

via an integral smoothing relation with a Gaussian kernel. Using this quantum correction potential, transport

characteristics in ultra-thin body structures with short channels were recently investigated and compared against

analytical predictions [126].

The form of the quantum potential (47) is commonly referred to as the density gradient correction and is extensively

used in quantum hydrodynamic calculations [127–130]. The expression for the current density including the quantum

correction reads [131]:

J ¼ qm

�

nEþ kT

q
rnþ nm

�h2

2r
r
�

D
ffiffiffi

n
p
ffiffiffi

n
p

��

: (48)

Substitution of the current relation (48) into the continuity Eq. (2) results in a differential equation of the fourth

order for the carrier concentration n. Such an equation needs two boundary conditions. If one considers the interface

between the semiconductor and the dielectric, the first boundary condition is on the normal derivative of the

concentration requiring the normal current component to be zero at the interface. The second boundary condition is

obtained by setting the carrier concentration to zero at the interface. Thus, the quantum drift-diffusion theory based on

(48) supplemented with the corresponding boundary conditions automatically reproduces the concentration decrease

at the interface, mimicking the quantum-mechanical behavior.

For numerical transport calculations it is more convenient to avoid the discretization of the fourth order

equation and to include the quantum potential correction term into a generalized electro-chemical potential [131].

After a careful calibration of the resulting density gradient model the transport calculations including the

source-drain tunneling in ultra-scaled MOSFETs are possible [131]. For detailed analyses of quantum

hydrodynamic models see [132]. The density-gradient theory has become popular as a physically justified

approximate treatment of quantum effects well suited for engineering applications. It has also been applied to

tunneling in metal–insulator–metal structures [128]. The application of the density-gradient theory to investigate

the tunneling currents is less studied, probably due to the fact that direct quantum-mechanical methods provide a

more accurate description of tunneling currents. Recently, a generalization of the density-gradient treatment to

describe elastic multi-dimensional tunneling was reported [133]. Although these results are promising, there are

indications that the density-gradient method possesses some limitations [134]. Additional studies are required in

order to check whether the density-gradient theory describes tunneling correctly in all practically relevant

situations.
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4. Transport at nanoscale

As device sizes become comparable to the electron wavelength, quantum effects start playing a significant role. At

the same time scattering with phonons, impurities, and surface roughness is still strong and cannot be neglected. At

this point full quantum transport formalisms, which consistently describe quantum-coherent propagation and

dissipative scattering processes, must be employed.

Established techniques used to address dissipative quantum transport can be classified according to the state

functions they are based upon: non-equilibrium Green’s functions, the density matrix, and the Wigner function. All

three approaches are based on fundamental equations of motion and are equivalent at the most general level of formal

description of a dissipative quantum system. The resulting system of integral–differential equations for the Green’s

function Gðr1; r2; t1; t2Þ, or the density matrix rðr1; r2; t1; t2Þ, or the Wigner function f ðr; p;v; tÞ are in many cases

too complex to allow for a direct numerical solution. Each function depends on two vector and two scalar arguments.

For example, the Green’s function Gðr1; r2; t1; t2Þ in the coordinate representation depends on two position arguments

r1; r2 and two time arguments t1; t2. For a numerical solution, each argument of the Green’s function needs to be

discretized. In the case of a three-dimensional system (d ¼ 3), the total number of unknowns to be evaluated would be

N tot ¼ ðNx � Ny � Nz � N tÞ2. Assuming 100 grid points for each argument this results in the astronomical number

N tot ¼ 1016. Even in the two-dimensional case, d ¼ 2, the number of unknowns is still very large, N tot ¼ 1010,

resulting in prohibitively large memory requirements. Approximations and simplifications must obviously be

incorporated in order to make the problem numerically tractable. It is mainly these simplifying assumptions that make

the differences between the approaches.

Although there are evidences that transport in MOSFETs with sub-10 nm channel length is still governed by

scattering, we begin our consideration with a purely coherent carrier propagation in order to highlight the importance

of quantum-mechanical effects in transport direction in short channel devices.

4.1. Ballistic transport and tunneling

AMOSFET utilizing ballistic transport was first suggested and studied by Natori [135]. It consists of a thin Si film

connected to two reservoirs. One or two gate electrodes are adjusted close to the side film interfaces (Fig. 10). The gate

electrodes are electrically separated from the Si film by a dielectric material. In order to reduce scattering in the

channel the Si film is not doped.

The occupation of left- or right-propagating transversal modes is determined by the chemical potential of the left

and the right reservoir, respectively. In equilibrium, the chemical potentials of both reservoirs are equal, the currents

through the left- and right-propagating modes are equal in value and opposite in sign. Due to this compensation, the

total current in equilibrium is zero. The source-drain voltage shifts the chemical potential and creates a disbalance in

occupation between the left- and right-propagating modes. The number of propagating modes is controlled by the

potential in the Si film, which is determined by the gate voltage. This picture is valid as long as there is no

(back)scattering in the Si channel. We note that, except for the filling of propagating modes in accordance with the

reservoirs’ Fermi–Dirac distribution, one does not need quantummechanics to describe the ballistic transport [136]. If

it were possible to fabricate long channels without scattering, the ballistic MOSFET could be perfectly described

within the semi-classical theory.

For ballistic transport the channel must be shorter than the mean free path. In Si at room temperature, the mean free

path is only a few nanometers. With the Si channel scaled down, the wavelength of electrons in the channel gets

comparable with the channel length. Due to gate electrode scaling the conduction band profile along the channel is no

longer flat and starts bending considerably, thus forming a potential barrier between the gates. This potential barrierVðxÞ
along the channel canbewell approximated by a parabolaV ðxÞ ¼ Vm � mlv

2ðx� x0Þ2=2 close to itsmaximumat x ¼ x0.

The characteristic curvature of the potential v increases with the channel length Lc decreased approximately as [94]

v2 / Vm

mlL2c
: (49)

For large curvatures, quantum-mechanical tunneling of electrons under the barrier maximum becomes possible. The

total current through the channel is determined by the sum of currents from all propagating modes, and the

contribution from the modes tunneling under the barrier may still be negligible.
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In order to estimate the curvature v beyond which transport is becoming determined by quantum-mechanical

tunneling, we use the Kemble formula for the transmission coefficient close to the maximum of the potential (49),

following [94]:

TðEÞ ¼
�

1þ exp

�

2p
Vm � E

�hv

���1

: (50)

When electrons are injected according to the Fermi–Dirac distribution

f 0ðEÞ ¼
�

1þ exp

�

Vm � E

kBT

���1

; (51)

the current is determined by carriers with E�Vm flying above the potential maximum, if �hv=2p � kBT . In this case,

transport can be computed semi-classically. At the opposite limit �hv=2p� kBT , the current must be computed

quantum-mechanically, since the main contribution is due to carriers with E � Vm tunneling under the barrier. For

typical parameters of Si and Vm ¼ 50 meV the channel length beyond which tunneling becomes important is around

10 nm.

Due to the absence of scattering in the channel and excellent channel control, the double-gate ballistic MOSFET

can be considered as an ultimate MOSFET. In order to describe transport accurately, we assume (100) orientation of

the Si channel at the Si/SiO2 interface. As already discussed, a self-consistent solution of the two- or three-dimensional

Schrödinger equation together with the Poisson equation represents a significant computational challenge, cf. [137].

Because of the strong lateral confinement in z direction due to the channel thickness t ¼ 2 nm, only the first subband

with the heavy mass mi is populated with carriers which participate in transport for moderately high drain-source

voltages. The wave function can then be written in the following approximate form:

Cðx; y; zÞ ¼ cðxÞeiky
ffiffiffi

2

t

r

cos

�

pz

t

�

: (52)

This approximation simplifies the calculations and reduces the computational effort significantly [115,138–140]. The

effective Schrödinger equation for the function cðxÞ along the channel has the usual form Hc ¼ Ec, with the

Hamiltonian H

H ¼ � �h2d2

d2x
þ 2

t

Z t

0

dzcos

�

pz

t

�

eVðx; zÞ; (53)

where the potential Vðx; zÞ is found from the Poisson equation. The Schrödinger equation must be supplemented with

the boundary conditions. To describe an open system, one uses the standard boundary conditions corresponding to

plane propagating waves in electrodes far from the channel. The Schrödinger equation can be solved numerically

[141] or using the WKB approximation [7]. The solution of the Schrödinger equation with open boundary conditions

can also be achieved by means of the quantum transmitting boundary method [142,143]. An established alternative

framework for these calculations is the non-equilibrium Green’s function method [144] in its reduced coherent

version. It is conveniently used for one-dimensional studies of resonant tunneling diodes or carbon nanotubes.

Simulators accounting for a full two-dimensional solution of the open-boundary Schrödinger equation have been

reported and applied to the simulation of 10 nm double-gate MOSFETs [137,145].

It may appear that in the quantum-ballistic case the determination of the full wave function as a solution of the

Schrödinger equation is not necessary and the knowledge of the transmission coefficient is enough for the current

calculations. In the contact block reduction method [146], for example, the transmission function is fully determined

by the reduced contact part of the full Green’s function. However, the carrier concentration determines the electrostatic

potential in the device via the Poisson equation. Since the carrier concentration is proportional to the square of the

wave function, the accurate determination of the transmission coefficient and the current requires a self-consistent

solution of the Schrödinger and Poisson equation simultaneously within the whole device.

A Schrödinger–Poisson solver [117] with open boundary conditions can be used to find the wave functions self-

consistently. As a result, the transmission function through the channel for each propagating mode is found. The total

current is obtained by summing up the contributions from all modes propagating in forward direction from source to
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drain and in backward direction from drain to source. In an UTB FET when only a single subband is occupied, the

current as function of a source-drain voltage V is [135]

JðVÞ ¼ e

ffiffiffiffiffiffiffiffiffi

2mT
p

p3=2�h2

Z

dETðEÞ
�

F�1=2

�

ms � E

kBT

�

� F�1=2

�

ms � E � eV

kBT

��

; (54)

where F�1=2ðxÞ is the Fermi–Dirac integral of the order�1/2. The structure of (54) is quite transparent. The two terms

in the brackets correspond to supply functions from the source and from the drain electrode. Their difference,

multiplied by the transmission function TðEÞ, gives the current through the device.

Fig. 14 shows output characteristics of a transistor with tox ¼ 1:5 nm, t ¼ 2 nm, for several values of gate voltage

[7]. Two sets of IV s are presented corresponding to the gate lengths of 5 and 10 nm. For 10 nm channel length IV

characteristics are very similar to the characteristics of the ideal transistor, see Fig. 14(a), with a perfect saturation,

suggesting an almost vanishing drain-induced barrier lowering effect (DIBL). The 10 nm transistor is, therefore, very

close to the ideal double-gate ballistic transistor, described in [135]. With the decreased gate length the current

saturation becomes less pronounced. The reason for this degradation is two-fold: tunneling under the barrier formed by

the potential in the channel and drain-induced barrier lowering. The characteristics are acceptable for L ¼ 5 nm, see

Fig. 14(b), while for L ¼ 2:5 nm the saturation practically vanishes. The output characteristics simulated for an ultra-

thin body double-gate MOSFETwith a gate length L as short as 5 nm shows that even such a small device possesses an

Ion=Ioff ratio sufficient for logic applications and displays a reasonable short-channel effect and acceptable DIBL, a

conclusion recently reached from more detailed atomistic calculations [147]. It should be noted that the sensitivity to

small MOSFET dimension variations, the control of doping as well as the whole manufacturing process development

represent significant challenges for multi-gate MOSFETs with a gate length below 10 nm.

We note that the above consideration based on carriers’ coherent tunneling through the dielectric potential barrier

can be applied to study leakage currents [29]. The current expression has exactly the form of (54), if the difference of

Fermi–Dirac integrals is replaced by the corresponding Tsu–Esaki supply function [148]. In case of computing

leakage currents from the inversion layers the boundary condition to the Schrödinger equation must describe slowly

decaying quasi-bound channel states. It can conveniently be achieved by introducing a complex coordinate stretching

[149]. This technique allows the artificial absorbing layer to be applied at the interface. This perfectly matched layer

method is elegant, numerically stable, and efficient for calculating lifetimes of quasi-bound states.

In the discussion above, the contacts to the device were modeled only via the supply functions and were assumed

ideal. The ideal contact is assumed to be in equilibrium characterized by a value of the chemical potential. The role of

the contact is two-fold. First, an ideal contact should supply enough incoming carriers with a Fermi–Dirac equilibrium

distribution into the device region. The distribution should be shifted at a velocity corresponding to the current in order

to avoid a pile-up of charged carriers at the contacts [150,151]. Second, an ideal contact must absorb all the carriers

coming out of the device.
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Fig. 14. Output characteristics of a DG FETwith 2 nm Si body and 1.5 nm Si dioxide thickness. (a) Gate length 10 nm and (b) gate length 5 nm.

With the gate length decreased, the current saturation is less pronounced.



The concept of an ideal contact allows to consider a device isolated from the surrounding. The definition of an ideal

contact may, therefore, depend on the device under consideration. A three-dimensional reservoir of electrons is a good

model of an ideal contact to a Si-on-insulator FET [136]: the large mismatch of the phase spaces of a three-

dimensional contact and a quasi-two-dimensional Si film makes the probability of outcoming carrier to scatter back to

the active region extremely small. At the same time, the role of reservoirs is to supply enough electrons into transversal

modes propagating through the constriction [152]. The model was recently shown to be valid even in the case of an

abrupt connection between a Si film and a three-dimensional semi-space of the contact. By means of direct numerical

simulations [153] it was demonstrated that the transport characteristics of a Si film abruptly connected to large

reservoirs and of the same Si film with the boundary conditions corresponding to ideal contacts (injection with an

equilibrium distribution and ideal absorption) are equivalent at room temperature.

In the light of this discussion, elevated contacts to SOI FETs can be considered as ideal. At the same time, the

heavily doped extensions of the same thickness as the Si film cannot be treated as ideal contacts because of the

substantial reflection of carriers back to the channel [154]. In the case of ballistic transport in the channel and elastic

scattering in the extensions the total resistance of the system consists, up to a small correction, of the two Ohmic

resistances of the source and drain extensions and of the Landauer resistance of the ballistic channel connected to the

extensions in series [154]. However, the Landauer resistance of the channel connected to the extensions is not equal to

the resistance of the channel between the two ideal contacts, because the resistance of the channel depends on the type

of the contact used. Indeed, in the ideal ballistic MOSFET [135] the gate voltage fixes the carrier concentration in the

channel, which is the sum of the concentrations of injected and reflected electrons. The current through the device is,

however, the difference between the currents of injected and reflected carriers. Therefore, for the same gate voltage and

the same source-drain voltage the contacts with different reflection properties would lead to different currents and

contact-dependent resistances of the channel.

One should stress that only elastic scattering was assumed in the consideration above. Since the total energy

(potential plus kinetic) of the carriers is conserved in this case, the resistance of the channel depends on the number of

reflected hot-carriers with energies much higher than the characteristic energy of equilibrium carriers in the drain.

Inelastic scattering with optical phonons and electron–electron scattering in the heavily doped drain will thermalize

the hot-carriers in the drain and reduce their reflection into the channel. In Si, it suffices for a carrier to experience a

single inelastic scattering event to lose an energy of 2kbT (see Table 1). Since the characteristic energy in the channel is

of the order of kbT , this carrier will not have enough energy to return back to the channel [155]. Because of

‘‘Brownian-like’’ motion due to frequent elastic scattering, the characteristic distance between the two inelastic

scatterings is proportional to the geometric average l ¼
ffiffiffiffiffiffiffiffiffi

lellin
p

of the elastic lel and inelastic lin mean free paths in the

contacts, which would be about 10 nm in heavily doped Si. If the active region of the device is shorter than l, a part of

the contact regions of length lmust be considered together with the device. The trade-off is, of course, the opportunity

to set up simplified completely absorbing boundary conditions corresponding to ideal contacts at the expense of an

increased simulation domain.

The device properties are independent from the contact properties only if the carriers in the simulation domain have no

correlation with those in the contact reservoirs. A purely classical correlation length l between two inelastic scattering

events in the contacts was identified above. The second important length is the coherence length lcoh in the reservoirs.

Interestingly, lcoh coincides with l when elastic scattering is dominated by scattering with ionized impurities in heavily

doped Si, because scattering with impurities preserves the coherence, while electron–phonon scattering destroys it. At

finite temperature at equilibrium, however, the coherence length obtained from the thermal equilibrium density matrix

[156] is proportional to lcoh ¼ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=m
p

, wherem is the effectivemass. It is usually assumed that the contacts represent

waveguideswith a flat bottom, so that planewaves are good asymptotic eigenstates [157]. If the ideal boundary conditions

are set at a distance L ¼ max ðl; lcohÞ inside the contact regions form the device, the role of the contacts is to inject a

(shifted) equilibrium distribution into the plane wave states incident to the device and to absorb the outcoming waves.

This is exactly the idea behind the boundary conditions for the Wigner function [156] or the so-called U-scheme [158].

Although the boundary conditions for the Pauli master equation [150,151,159] discussed in the end of this section look

differently, it was argued [151] that, if they are set at a distance further than the coherence length inside the contacts,

injections into the planewave states or the scattering states should be equivalent. Formulation of the boundary conditions

too close to the active device region may result in a non-physical behavior of the solution [159,160]. Finally, the contact

self-energy [161] discussed in the next section describes a decay of theGreen’s function of an isolated system because of

the coupling of the system to the modes propagating in equilibrium reservoirs.
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The transport models described so far are either based on the assumption of semi-classical or pure quantum-

mechanical ballistic transport. The former modeling approach has proven to be adequate to describe transport in

previous generations of microelectronic devices. The latter one may be used for transport description, when the carrier

coherence length is larger than the device size. Recent studies show that even for devices with a channel length as short

as 15 nm scattering will still play a significant role [8] and, therefore, determine the current, in accordance with

estimations of the mean-free path in MOSFET structures [162]. The crossover from diffusive to ballistic transport in Si

nanowire transistors occurs at approximately 2 nm [9], a much shorter distance than previously anticipated. An

adequate transport model for ultra-scaled MOSFETs must, therefore, account for quantum-mechanical and dissipative

effects simultaneously.

4.2. Non-equilibrium Green’s function approach to scattering

The non-equilibrium Green’s function method addresses the quantum transport problem in the most consistent and

complete way. However, the method is computationally complex and, with a few exceptions [163–165], usually

applied to one-dimensional problems [144] and for a restricted set of scattering mechanisms [166] only. Scattering

requires the knowledge of the corresponding self-energies and thus complicates computations significantly [166]. The

carbon nanotube (CNT) FETwhich is widely considered to be a potential alternative to the conventional MOSFET in

the far future, represents a good examplewhere the non-equilibriumGreen’s functionmethod provides accurate results

and is successfully used. CNTs can be considered as a graphite sheet which has been wrapped into a tube. The way the

graphite sheet is wrapped is represented by a pair of indices ðn;mÞ called the chiral vector. The integers n andm denote

the number of basis vectors along two directions in the honeycomb crystal lattice of graphite (Fig. 15).

CNTs with n� m ¼ 3 are metals, otherwise they are semiconductors [167]. Semiconducting CNTs can be used as

channels for transistors [168], whereas metallic CNTs can serve as interconnect wires [169]. The fabrication of CNT

based devices with Schottky type [170] and Ohmic [171] contacts for holes has been reported.

Due to the relatively small number of atoms in short CNTs, the non-equilibrium Green’s functions can even be

solved at an atomistic level by using pz orbitals of carbon atoms as the basis. Calculations of current through electronic

devices based on the non-equilibrium Green’s function formalism (NEGF) was first described in a series of papers in

the early 1970s [172–175]. The NEGF technique has widely been used to study quantum transport of electrons and

holes in a variety of materials and devices, such as III–V resonant tunneling diodes [144,176–183], electron

waveguides [184], Si tunneling diodes [185,186], ultra-scaled Si MOSFETs [163,166,187], CNTs [188–203], metal

wires [204,205], and organic molecules [206–212].

Green’s function methods provide a powerful technique to evaluate the properties of a many-body system both in

thermodynamic equilibrium and non-equilibrium situations. The single-particle Green’s function of a system allows

evaluation of carrier density and current. The many-particle information about interactions is cast into self-energies.

The perturbative solution of the equations for the Green’s functions and self-energies is the key technique to evaluate

the properties of an interacting system in external fields.
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Fig. 15. Indices ðn;mÞ defining the chiral vector r. A graphite sheet is cut along the dotted lines and wrapped along r to form a (3,2) CNT.



Four types of Green’s functions can be defined as the non-equilibrium statistical ensemble averages of the single

particle correlation operator [213]:

G> ðr; t; r0; t0Þ ¼ �i�h�1hĉðr; tÞĉyðr0; t0Þi;
G< ðr; t; r0; t0Þ ¼ þi�h�1hĉyðr0; t0Þĉðr; tÞi;
GRðr; t; r0; t0Þ ¼ uðt � t0Þ½G> ðr; t; r0; t0Þ � G< ðr; t; r0; t0Þ�;
GAðr; t; r0; t0Þ ¼ uðt0 � tÞ½G< ðr; t; r0; t0Þ � G> ðr; t; r0; t0Þ�;

(55)

where uðtÞ is the unit step function, and ĉ
yðr; tÞ and ĉðr; tÞ are the field operators creating or destroying a particle at

point ðr; tÞ in space–time, respectively. Only three of the Green’s functions are independent.

Under steady-state conditions the equation of motion for the Green’s functions can be written as [161]:

½E � HðrÞ�GRðr; r0;EÞ �
Z

dr1S
Rðr; r1;EÞGRðr1; r0;EÞ ¼ dðr� r0Þ; (56)

G6 ðr; r0;EÞ ¼
Z

dr1

Z

dr2G
Rðr; r1;EÞS6 ðr1; r2;EÞ½GRðr2; r0;EÞ�

y
; (57)

where H is the one-particle Hamiltonian, and SR, S< , and S> are the retarded, lesser, and greater self-energies,

respectively. The total self-energy contains contributions due to the coupling of the device to the contacts and other

interactions, such as electron–phonon interaction, S ¼ Sc þSel-ph. The self-energies due to the coupling of the

device to the contacts are only non-zero at the boundaries [161]

SR
c ðEÞ ¼ tgct

y; (58)

S<
c ðEÞ ¼ �2iIm½SR

c � f cðEÞ (59)

S>
c ðEÞ ¼ þ2iIm½SR

c �ð1� f cðEÞÞ; (60)

where t is the coupling matrix between the device and the contact, gc is the surface Green’s function [161], and f cðEÞ
is the Fermi–Dirac distribution function at the contact c. Within the self-consistent Born approximation, the self-

energies for the electron–phonon interaction are

S<
el-phðr; r0;EÞ ¼

X

j

Z

dq

ð2pÞ3
eiq:ðr�r0ÞDq; j

�

nq; j þ
1

2
� 1

2

�

G< ðr; r0;E � �hvq; jÞ; (61)

S>
el-phðr; r0;EÞ ¼

X

j

Z

dq

ð2pÞ3
eiq:ðr�r0ÞDq; j

�

nq; j þ
1

2
� 1

2

�

G> ðr; r0;E	 �hvq; jÞ; (62)

SR
el-phðr; r0;EÞ ¼ � i

2
G el-phðr; r0;EÞ þ P

Z

dE0

2p

G el-phðr; r0;E0Þ
E � E0 : (63)

�hvq; j denotes the phonon energy of branch j at the wave-vector q, nq; j is the average phonon occupation number,

Dq; j is the electron–phonon interaction strength, G el-ph 
 iðS>
el-ph �S<

el-phÞ defines the broadening, and P
R

represents the principal part of the integration. The imaginary part of the retarded self-energy broadens the density

of states, whereas the real part shifts it. The plus and minus signs in Eq. (61) and Eq. (62) denote the phonon

emission and absorption processes, respectively. Assuming that the environment stays in thermal equilibrium, nq; j
is given by

nq; j ¼
1

expð�hvq; j=kBTÞ � 1
: (64)

These equations must be solved self-consistently with the Poisson equation [214]. If the radius of a CNT is larger

than the distance between two carbon atoms, the charge density can be assumed to be distributed uniformly over the

surface of the CNT [215]. The self-consistent Born approximation for the self-energy is an extremely time consuming

but necessary step, because it guarantees the current continuity. The convergence of the self-consistent iteration is a
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critical issue where fine resonances at some energies have to be resolved accurately [215,216]. For that purpose an

adaptive method for selecting the energy grid is essential [216].

For numerical solutions it is convenient to transform the equations for the Green’s function in the eigen-mode

representation [217]. The introduction of CNT subbands makes the equations for the Green’s function one-

dimensional, which results in a significant reduction of computational time [199,202]. The one-dimensional equation

of motion for the Green’s functions, Eqs. (56) and (57), are solved for GR;n and G6 ;n for each subband n using a

recursive Green’s function algorithm [163]. Coupling to reservoirs [161,199,203,207] is described by the contact self-

energies Eq. (58).

The carrier concentration at a node l of the spatial grid and the current density at the edge between the nodes l and

lþ 1 are given by

nl ¼ �4i
X

n

Z

dE

2p
G

< ;n
l;l ðEÞ; (65)

jl;lþ1 ¼
4q

�h

X

n

Z

dE

2p
2RefG< ;n

l;lþ1ðEÞtnlþ1;lg (66)

where the factor 4 is due to the spin and band degeneracy. In Fig. 16 simulated output characteristics of a CNT-FET

with Ohmic contacts [218] are compared to experimental data [219], showing good agreement.

In the case of ballistic transport the current is independent of the device length, but in the presence of scattering it

decreases with the CNT length increased. The self-energy due to electron–phonon interaction comprises the

contributions of elastic and inelastic scattering mechanisms, Sn
e-ph ¼ Sn

el þSn
inel. By definition the particle energy is

conserved for elastic scattering. For inelastic scattering, the after-scattering energy is different from its initial value.

The energy difference is carried away by a scattering mediator, e.g. by a phonon. For optical phonons the frequency

dependence vq on the wave vector q is weak and it has a finite value v0 as q! 0, therefore, carrier scattering with

optical phonons is inelastic. Inelastic interaction of carriers with optical phonons is usually considered local [179]. In

this case, the self-energies can be written as

S
< ;n
inel ðEÞ ¼

X

j

Dinel; j

�

nBð�hv jÞ þ
1

2
� 1

2

�

G< ;nðE � �hv jÞ; (67)

S
> ;n
inel ðEÞ ¼

X

j

Dinel; j

�

nBð�hv jÞ þ
1

2
� 1

2

�

G> ;nðE	 �hv jÞ: (68)
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The electron–phonon interaction strength is given by

Dinel; j ¼
�hjMOP

j j2

2nmcv j

; (69)

where mc is the mass of a carbon atom.

For acoustic phonons vq; j ¼ v jq is proportional to q. Therefore, the acoustic phonon energy at small q is negligible

compared to the carrier energy, and carrier scattering with acoustic phonons is frequently considered elastic. The

corresponding self-energies for acoustic phonon interaction are

S
6 ;n
el ðEÞ ¼ Dn

elG
6 ;nðEÞ; (70)

Del; j ¼
kBT jMAP

j j2

2nmcy j

: (71)

The electron–phonon coupling strength and the phonon energy depend on the chirality and the diameter of the CNT.

The calculation of these parameters is found in [220,221].

Fig. 17 shows the ballisticity as a function of the electron–phonon coupling strength [222]. The ballisticity is

defined as ISc=IBl, the ratio of the on-current in the presence of electron–phonon interaction to the current in the

ballistic case [223]. With increasing electron–phonon coupling strength the self-energy increases. Elastic scattering

conserves the energy of carriers, but the current decreases due to elastic back-scattering of carriers.

4.3. Dissipative transport: density matrix and Wigner function approach

Alternative approaches which can handle both quantum-mechanical and dissipative scattering effects are based on

the reduced density matrix [150,151,224] and on the Wigner function [156,225,226]. The evolution for the reduced

electron density matrix is described by a quantum Liouville equation. It is obtained from the equation of motion for the

total density matrix by tracing out the degrees of freedom of the environment. To simplify the equation, the limit of

weak interaction between the device and the environment is applied. Memory effects can be neglected, if one is

interested in system evolution for times larger than the reservoir correlation time [227]. This coarse-graining in time
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Fig. 17. Ballisticity parameter as function of electron–phonon coupling strength for a CNTof 50 nm length. The ballisticity is defined as the ratio of

the on-current in the presence of electron–phonon interaction to the current in the ballistic case ISc=IBl. Results for both elastic and inelastic

scattering with different phonon energies are shown. VG ¼ VD ¼ 1 V.



results in a simplified, Markovian description, when the future dynamics of the system is determined by its current

state and is independent from the past. The resulting quantum Liouville equation for the reduced density matrix is of

Lindblad form and describes the quantum evolution of a system with loss [228]. The Lindblad form guarantees

positive definiteness, normalization, and hermiticity of the reduced density matrix.

Coupling to contacts introduces carrier exchange between device and reservoirs. The difference between the

electrochemical potentials of the reservoirs causes current flow through the device. In the approach developed by

Fischetti, based on the Pauli master equation, this coupling is introduced in a phenomenological manner [150,151].

Assuming a flat potential profile within each reservoir, electron wave functions are plane waves with well-defined

momentum. All electron states may be separated in two distinct groups, representing electrons traveling towards and

away from the device, respectively. The role of each reservoir is to supply the incident wave functions with occupation

determined by the equilibrium distribution in the reservoir. Therefore, the basis to analyze the dynamics of the reduced

density matrix is formed by the scattering states incoming from each reservoir. These scattering states are obtained by

a numerical solution of the Schrödinger equation subject to open boundary conditions. Without dissipation in the

system, i.e., when the evolution is governed by the system Hamiltonian, the density matrix is diagonal in the basis of

the scattering states. Occupation of each scattering state is determined by the equilibrium distribution within the

reservoirs. Once the occupations of scattering states are known, the quantum-ballistic current is readily determined. In

the presence of weak dissipation, when the device length is shorter than the phase coherence length, the state

occupations are found from a solution of the Pauli master equation, which contains only diagonal elements of the

density matrix [150,151]. Carrier density and current density are calculated from the occupations of the scattering

states. The Pauli master equation and the Poisson equation are solved repeatedly in a self-consistent iteration loop. In

this way, subband quantization and rapid potential variations in the transport direction are taken into account self-

consistently. The eigenfunctions are used to compute transition rates among the corresponding states. Application of

the Pauli master equation is restricted to stationary systems, since in the non-stationary case current continuity would

be violated [156].

An interesting solution free from the above mentioned shortcoming, which also allows to circumvent the issue of

phenomenological coupling of the device to the reservoirs, was recently suggested by Gebauer and Car [229,230].

They suggest to impose periodic boundary conditions upon the non-perturbed system. A constant electric field is

introduced into the system through a vector-potential term, which linearly depends on time. The master equation is

solved in two steps. First, the Hamiltonian dynamics of the density matrix is evaluated for a certain time-step t. During

this time evolution the vector potential grows linearly with time. It can be scaled out from the Hamiltonian by means of

a gauge transformation [231] at the expense of an additional phase factor in the wave function. The time-step at which

the gauge transformation is performed is chosen such that the phase added to the wave function satisfies the periodic

boundary condition. In the second step, the change of the density matrix due to the Lindblad scattering operator is

evaluated. This procedure is repeated until a steady state is achieved. Since the eigenfunctions of the periodic system

do not carry any current, the current in the Gebauer and Car formulation is due to off-diagonal elements. This approach

can also be used to describe transients. The only limitation is that the time scale is much larger than the reservoir

coherence time, a condition arising from coarse graining. It has been shown that in addition to the usual Hamiltonian

current component a dissipative current component due to interaction with the environment appears. The total current

is then conserved also for transients.

Another approach capable of handling both quantum-coherent propagation and dissipative scattering effects is

based on the Wigner function. The Wigner function is defined as the density matrix in a mixed coordinate/momentum

representation [225,226]. A practically used approximation to incorporate realistic scattering processes into the

Wigner equation is to utilize a properly adapted Boltzmann scattering operator [232]. In this way, well-established

scattering models already calibrated within semi-classical transport approaches can be employed in quantum transport

calculations. The inclusion of dissipation through the Boltzmann scattering operator, although intuitively appealing,

raises some concerns about the validity of such a procedure. The Boltzmann scattering operator is semi-classical by its

nature, and represents a good approximation for sufficiently smooth device potentials.

To account for scattering more rigorously, spectral information has to be included into the Wigner function,

resulting in an energy-dependence in addition to the momentum dependence [213]. An alternative approach to

construct quantum-mechanical extensions of the semi-classical electron–phonon scattering operator has been reported

in [233,234]. These quantum collision operators satisfy a quantum H-theorem and relax systems towards quantum

equilibria.
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The kinetic equation for the Wigner function is similar to the semi-classical Boltzmann equation, except for a non-

local potential term. In the case of a slowly varying potential this non-local term reduces to the local classical force

term, and the semi-classical description given by the Boltzmann equation is obtained from the Wigner equation. This

semi-classical limit of the Wigner transport equation allows to link seamlessly a semi-classical description of the

extended contact regions with the quantum description of the active region of a device using the same formalism [232].

Reports on finite difference solutions of the one-particle Wigner equation for device applications were given by

Ravaioli [235], Kluksdahl [236], and coworkers, and date back to the mid-1980s. Frensley [237–239] was the first who

introduced boundary conditions on the Wigner function to model open quantum systems. Later, self-consistency was

added to the Wigner equation solvers [240,241]. Main and Haddad included a reduced Boltzmann scattering operator

in transient Wigner function-based simulations [242]. Research on finite difference methods for the Wigner equation

culminated in 1990 when review articles of Frensley [156] and Buot and Jensen [243] appeared. In 2002,

implementations of Monte Carlo methods for solving the Wigner device equation have been reported [244,245]. With

the finite difference method scattering was restricted to the relaxation time approximation and the momentum space to

one dimension.

The Monte Carlo method allows scattering processes to be included on a more detailed level, e.g., through the

Boltzmann scattering operator, assuming a three-dimensional momentum-space [246,247]. Realistic scattering

processes can be easily embedded into theWigner equation via Boltzmann-like scattering integrals, which turns out to

be a good approximation. The Wigner function approach reduces to a semi-classical transport description in contacts

providing an important advantage of a seamless treatment between classical and quantum-mechanical regions in

device simulations [232].

The Wigner function is given by the density matrix in mixed representation [225,226] defined by the Wigner–Weyl

transform

fwðr; k; tÞ ¼
Z

r

�

rþ s

2
; r� s

2
; t

�

exp ð�ık � sÞ ds:

The kinetic equation for the Wigner function is similar to the Boltzmann equation:
�

@

@t
þ v � rr

�

fw ¼
Z

Vwðr; k0 � kÞ fwðk0; r; tÞdk0 þ
�

@ fw

@t

�

coll

: (72)

The Wigner potential entering into the non-local operator in the right-hand side is defined as

Vwðr; kÞ ¼
1

ı�h ð2pÞ3
Z

�

V

�

r� s

2

�

� V

�

rþ s

2

��

exp

�

� ik � s
�

ds: (73)

In case of slowly varying potentials the difference term in the right-hand side of (73) can be developed into the

series. Keeping the first non-vanishing terms, one rewrites (73) as

Vwðr; k0 � kÞ ¼ � 1

�hð2pÞ3
rrVðrÞ

@

@k

Z

exp

�

� iðk0 � kÞ � s
�

ds: (74)

After substituting (74) into (72) the term with the non-local potential reduces to the classical force term. Following

[248], one can introduce a spectral decomposition of the potential profile VðxÞ into a slowly varying, classical

component and a rapidly changing component treated quantum-mechanically.

VðrÞ ¼ VclðrÞ þ VqmðrÞ: (75)

This separation of the total potential into a smooth classical and a small quantum-mechanical contribution can

improve the stability of a numerical solution method. The quantum-mechanical contribution may be moved into the

right-hand side of the transport equation. Considered as a perturbation, the quantum-mechanical term can be

interpreted as a quantum scattering integral. It allows to treat quantum effects on equal footing with classical

scattering:
�

@

@t
þ v � rr �

qrrVclðrÞ
�h

� rk

�

fw ¼
Z

Vqmðr; k0 � kÞ fwðk0; r; tÞdk0 þ
�

@ fw

@t

�

coll

: (76)
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By applying the method of moments to Eq. (76), the quantum drift-diffusion or quantum hydrodynamic models can

be derived [249]. These models are more convenient for the implementation in TCAD device simulators than a

Schrödinger–Poisson solver which strongly depends on non-local quantities. However, it was reported that, while the

carrier concentration in the inversion layer of a MOSFET is reproduced correctly, the method fails to account properly

for tunneling currents [134].

The Wigner function formalism treats scattering and quantum-mechanical effects on equal footing through the

corresponding scattering integrals. By analogy to theMonte Carlo methods used for the Boltzmann transport equation,

it is tempting to solve the quantumWigner transport Eq. (76) by means of the Monte Carlo technique. Such a program

was recently realized in [115,250–252]. However, since the kernel of the quantum scattering operator is not positively

defined, the numerical weight of the particle trajectory increases rapidly, and the numerical stability of the trajectory-

based Monte Carlo algorithm becomes a critical issue. A multiple trajectories method was suggested [232] to

overcome this difficulty. In the algorithm developed the problem of a growing statistical weight of a single trajectory is

addressed by creating an increasing number of trajectories with constant weights, which may assume positive and

negative values. Being formally equivalent to the former method, the algorithm allows the annihilation of particles

with similar statistical properties, introducing a possibility to control the number of trajectories.

This method was recently applied to double-gate MOSFETs [115]. In the coherent mode, where scattering is turned

off, a comparison to conventional Schrödinger solvers can be performed. In order to estimate the tunneling component

of the current the Wigner Monte Carlo simulations were carried out for a MOSFETwith a gate length of 10 nm, and a

good agreement between the two approaches was found.

The carrier concentration must be used to update the potential in the device by solving the Poisson equation. A

superimposed iteration loop makes the Wigner–Poisson solver self-consistent. An example of self-consistent

potentials for n–i–n Si structures with an intrinsic region of lengthW ranging from 20 to 2.5 nm, as calculated with the

Wigner Monte Carlo method and the classical Monte Carlo method is shown in Fig. 18. The doping profile is assumed

to increase gradually from the intrinsic channel to the highly doped contacts over the same distance W. Phonon and

Coulomb scattering were included. As expected, for longW the classical and quantum-mechanical calculations yield

similar results for the self-consistent potential. ForW ¼ 2:5 nm an extra space charge due to electrons tunneling under

the barrier becomes important, which results in a potential barrier increase. Despite of the potential barrier increase,

the current in self-consistentWigner simulations is approximately 20% higher compared to its classical value found by

a self-consistent solution of the Boltzmann and the Poisson equations.
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Fig. 18. Self-consistent potential profiles calculated for n–i–n structures withWigner (solid lines) and Boltzmann (dashed lines) transport equations.

For long n–i–n structures the results are similar. For short n–i–n structures the additional charge due to tunneling electrons results in a higher potential

barrier.



Relative differences between IWIG and the current IBALL computed for a ‘‘ballistic’’ devicewith scattering inside the

intrinsic and transition regions turned off is shown in Fig. 19. ForW ¼ 2:5 nm the relative differences in current due to

quantum effects and scattering in the barrier are still of the order of 25% and cannot be neglected.

TheWigner Monte Carlo method gives accurate results not only for single-barrier devices, but it can also be applied

to purely quantum-mechanical systems such as resonant tunneling diodes [232]. A typical output characteristic of a

GaAs resonant tunneling diode is shown in Fig. 20. Scattering with polar optical phonons as well as Coulomb
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Fig. 20. Typical IV curve of a resonant tunneling diode, calculated self-consistently (solid line), contrasted against a not self-consistent

characteristics. Charge accumulation before the potential barrier as well as a higher charge density inside the RTD between the potential barriers

are responsible for the significant shift of the IV resonance peak, thus demonstrating the importance of space–charge effects.

Fig. 19. Relative difference between currents calculated with the Wigner and Boltzmann Monte Carlo methods (diamonds) and calculated with the

Wigner Monte Carlo method for n–i–n structures, with and without scattering in the intrinsic region.



scattering in the contacts is considered. A region of negative differential resistance common to transport via a resonant

level is clearly visible after the resonance peak at 250 mV applied voltage. A self-consistent solution of the Wigner

transport and Poisson equation is mandatory for the correct determination of the resonance position due to charge

accumulation at the cathode side of the resonant tunneling diode. Before the barrier, an accumulation layer forms,

depending on the applied voltage, as seen in Fig. 21. This results in a voltage shift of the resonance peak of the IV

characteristics shown in Fig. 20. A typical distribution of the concentration in resonance condition and off-resonance is

presented in Fig. 21. The amount of charge localized in the potential well is much higher at resonance. This leads to a

potential barrier increase and also contributes to the shift of the resonance peak. This example demonstrates the

importance of quantum-mechanical effects for the simulation of properties of ultra-scaled devices. It also shows that

space charge effects are of crucial importance for the accurate prediction of output characteristics of single- and

double-barrier devices.

5. Conclusion and trends

Transport modeling for TCAD applications has grown into a mature field of research, software development, and

applications. Models of different complexity, precision and accuracy are offered and implemented in various

commercial and academic TCAD tools. Starting with the drift-diffusion model and higher moments models, a

complete hierarchy of transport models for semiconductor device simulation has been gradually constructed.

Depending on parameter values and device scales, either a semi-classical or a quantum-mechanical transport

description has to be adopted. Monte Carlo techniques are used to obtain solutions of the Boltzmann transport equation

with arbitrary scattering mechanisms and general band structure. These methods require significant CPU resources

and are relatively rarely used for industrial TCAD applications, when timely, but perhaps less accurate, results are of

primary importance. Monte Carlo solvers are, however, indispensable for calibration of the parameters of higher order

moment models. With quantum corrections carefully added, full-band Monte Carlo methods can provide accurate

results in ultra-scaled devices with strong size quantizations, although the use of the subbandMonte Carlo in ultra-thin

body FETs is a must to include intersubband scattering correctly.

With the channel length of MOSFETs in the decananometer region, the development of conceptually new devices

and architectures is becoming increasingly important. New nanoelectronic structures, utilizing carbon nanotubes,

nanowires, and molecules are considered to be the most prominent candidates for the post-CMOS era. Nanoelectronic

devices are expected to complement and substitute some of the current CMOS functions. New physical principles for
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Fig. 21. Normalized electron concentration off-resonance (solid line) and at resonance (dashed line) in RTD.



carrier propagation must be considered by transport models for nanodevices. Indeed, at this small device size the

geometrical spread of the carrier wave packet cannot be ignored, as this spread approaches the device size. Thus, the

complete information about carrier dynamics inside the device including the phase of the wave function is needed.

Although many particles with different energies and phases are injected into a device, the phases of an individual

carrier may not average out completely if the potential in transport direction is changing rapidly. A full quantum-

mechanical description is needed, when the curvature of the potential close to its maximum is so big that tunneling

under the potential barrier contributes significantly to the current.

When the channel length is smaller than the coherence length current transport inside the device becomes quasi-

ballistic. The coherence length is limited by scattering with phonons and is only a few nanometers in modern

MOSFETs operating at room temperature. Therefore, transport in 10 nm long devices is still not ballistic. However, if

the potential changes rapidly enough on the scale of the carrier wavelength, a quantum-mechanical description of

electron motion between two scattering events must be adopted. The interplay between coherent propagation and

scattering determines transport in advanced nanodevices. Methods for dissipative quantum transport are based on the

non-equilibrium Green’s function formalism, the Liouville/von-Neumann equation for the density matrix, and the

kinetic equation for the Wigner function. All the numerical methods for quantum transport are time consuming, and

highly accurate simulations of emerging nanoscale devices represent an outstanding modeling and computational

challenge. Development of new efficient numerical algorithms as well as a comprehensive comparison between

different quantum-mechanical models describing dissipative transport in open systems is mandatory and currently on

the research agenda.

In modern microelectronic devices quantum effects are usually dominant in a small active region connected to

relatively large, heavily doped contact areas where the carrier dynamics is essentially classical. Modern TCAD

simulators must be able to incorporate both semi-classical and (dissipative) quantum-mechanical modeling

approaches within the same body. It is, therefore, necessary to have an accurate, multiscale simulation techniquewhich

is also able to bridge the gap between semi-classical and quantum-mechanical simulations.

With shrinking device dimensions, the demand for full three-dimensional accurate solvers for the coupled

transport/Poisson equations [24,165,253] and atomistic based simulations [254,255] has grown significantly. With the

advances in computer architectures, increased computational power and memory capabilities, state-of-the art

software, development of fast numerical algorithms and conceptually new generic simulation platforms a fundamental

breakthrough in speed, reliability, and accuracy of multiscale three-dimensional TCAD simulation tools is anticipated.

This allows careful design of the macroscopic transport properties of emerging nanoelectronic and molecular devices

based on their atomistic electronic structure.
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[108] C. Jungemann, C.D. Nguyen, B. Neinhüs, S. Decker, B. Meinerzhagen, Proc. Intl. Conf. Modeling and Simulation of Microsystems, 2001,

458–461.

[109] C.D. Nguyen, C. Jungemann, B. Meinerzhagen, Proc. Nanotechnol. 3 (2005) 33–36.
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