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Abstract
Mass spectrometry offers a high-throughput approach to quantifying the proteome associated with a biological
sample and hence has become the primary approach of proteomic analyses. Computation is tightly coupled
to this advanced technological platform as a required component of not only peptide and protein identifica-
tion, but quantification and functional inference, such as protein modifications and interactions. Proteomics
faces several key computational challenges such as identification of proteins and peptides from tandem mass
spectra as well as their quantitation. In addition, the application of proteomics to systems biology
requires understanding the functional proteome, including how the dynamics of the cell change in response
to protein modifications and complex interactions between biomolecules. This review presents an overview
of recently developed methods and their impact on these core computational challenges currently facing
proteomics.
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INTRODUCTION
The explicit goal of proteomics is to identify and

quantify all the proteins present in a cell at a specific

moment. However, this is a significant challenge

because unlike the genome, the proteins present in a

system at any time are dynamic and of varying

complexity. Multiple distinct proteins of differing

function can arise from a single gene due to protein

processing mechanisms such as alternative splicing

or post-translational modifications (PTMs). The

technique of choice for this formidable task has

become mass spectrometry (MS). MS offers both a

high-throughput (HTP) platform as well as the

capability to process complex samples at a global

scale. However, this HTP capability has led to a

computational bottleneck as we struggle to analyze

and interpret these large spectral datasets. In this

briefing, we explore how the current state of

research is tackling the computational challenges

facing MS-based proteomics and the future prospects

of global proteomics.

Understanding the computational needs and

requirements of MS-based proteomics requires an

underlying knowledge of the experimental process.

Here, we describe a typical MS proteomics process

from protein isolation through peptide identification;

for detailed descriptions of the types of mass analyzers

and specific details on characteristics and perfor-

mance refer to Lane [1] and Domon and Aebersold

[2]. The multi-scalar challenges of the MS-based

proteomics process are hinted at in Figure 1—a

typical MS-based proteomics analysis performed in

many laboratories applicable to shotgun proteomics.

As a first step, proteins are extracted from cells and
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cut at defined locations via enzymatic digestions.

Single or multidimensional high performance liquid

chromatography (HPLC) is then used to partially

separate the peptides in the solution. The eluting

peaks consist of populations of peptides, which are

analyzed by a mass spectrometer interfaced with the

HPLC system. The electrospray process nebulizes and

ionizes the peptides into the gas phase and the charged

particles are propelled into the mass spectrom-

eter for analysis. The mass spectrometer scans

the population of ions, measures the mass-to-charge

ratio and proceeds to the second stage in the tandem

process. This step consists of the capture of all

ions in a narrow mass-to-charge range in an ion

trap of the mass spectrometer, where the peptides

are vibrationally excited by collision with inert

gas. The peptides then fragment at labile bonds

and a subsequent mass spectrum is obtained of

the fragments of the peptide—a tandem mass

spectrum (MS/MS), shown in the bottom panel of

Figure 1.

Because peptides tend to fragment into recogniz-

able patterns, the identity of peptides can frequently

be determined from this MS/MS spectrum.

The accuracy of this peptide identification step is

critical to facilitate subsequent analyses. Additionally,

contained in these spectra is information about the

functional properties of peptides, such as PTMs.

Recent years have seen a split in research between

this peptide identification challenge and research

based on these identifications to understand

the dynamics of the system, such as quantitative

differential expression and complex protein

interactions.

THE PEPTIDE ANDPROTEIN
IDENTIFICATIONCHALLENGE
There are two basic approaches that are taken for

peptide identification from MS/MS data: database

search [3–14] and de novo sequencing [15–23]

represented in Figure 2. Database search methods

Figure 1: A typical MS proteomics process from protein isolation through peptide identification. Proteins undergo
enzymatic digestion to fragment theproteins into peptides of size amenable toMS.Thepeptides are then separatedvia
reversephasehighperformance liquid chromatography and subjected toMSçanexample separatedbyMS is shownby
the ovals. A second phase of MS allows capture of the MS/MS spectrum of a single peptide.
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have long been the primary method of peptide

identification. This is largely because proposed

denovomethods have traditionally required a minimal

level of fragmentation and sequence coverage not

realistic for collision induced dissociation (CID)

spectra using available mass spectrometers. Both

database search and de novo methods have seen a

shift in the problems tackled in the literature the past

few years. Database search methods are beginning to

focus on more accurate identification, i.e. methods

to address the large false positive problem introduced

by searching large lists of peptides with generic

fragmentation models and low information content

spectra. De novo methods are focusing on the new

mass spectrometers that have recently entered

the market, such as the Linear Quadrupole ion

Trap–Fourier Transform (LTQ–FT), Quadrupole-

Time-of-Flight (Q-TOF) and Orbitrap, that offer

�2 orders of magnitude boost to the mass resolution

compared to low-precision ion-trap detectors.

Reducing the false positives in database
searches
Database search for peptide identification is the

norm in proteomics. In this approach, a database of

potential peptides are acquired from the genome

of the organism under study. The sheer number of

peptide candidates to consider for each spectrum,

shown for various biological samples in Figure 3,

leads to a potentially high number of false identifica-

tions. For each of the multitude of peptides, a model

MS/MS spectrum is generated and compared against

the experimental MS/MS spectrum based on a

scoring metric. Out of this multitude of candidates,

one peptide is identified following the scheme in

Figure 2A. Due to the increasing need for accuracy as

the protein databases are expanded, new algorithms

for scoring an experimental to a model spectrum

have largely focused on accounting for multiple

sources of information derived from the experi-

mental spectrum, such as mass peak intensity and

Figure 2: The two common approaches to peptide identifications. (A) Database search compares an acquired
MS/MS spectrum to a database of model spectra derived from the genome of the organism under study. (B) De novo
sequencing uses the mass differences between ion peaks to infer the peptide sequence directly from the acquired
MS/MS spectrum.
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correlations among ions [24–26]. Beyond the

mathematical form of the scoring metric, every

scoring metric relies on two sources of information

that are inherently important to accurate identifica-

tion, (i) high quality MS/MS experimental spectra

and (ii) properly represented model spectra. Better

methods to represent these two key components

have become a primary topic of interest in

recent years.

It is clear that different technologies offer different

resolutions and that the performance of different

database searching algorithms can be dependent

upon the platform the experiment was run under

[27]. However, by understanding the limitations of

different platforms, new methodologies can be

developed that can manipulate these spectra to

attain optimal performance. One primary considera-

tion is to improve the quality of the identifications by

developing methods to either filter spectra with

insufficient information [28] or to remove low signal

peaks (often referred to as noise, but which are often

less common fragments) and hence improve the

quality of the identifications [29, 30]. A second

consideration is the peptides represented in the

database. A commonly discussed approach to

both reduce the raw size of the database and

remove potential false positives is the generation of

proteotypic peptides: the peptides that are detectable

by a MS-experiment [31–34]. For example, peptides

without ionizable amino acids carry only a minimal

charge on the N terminus, reducing the likelihood of

capturing that peptide by MS and thus the

identification of that peptide in a database search.

These approaches have clear relevance to the

computational challenge of analyzing HTP proteo-

mics data by offering a reduced search space

and additionally are being demonstrated to be

highly relevant beyond identification to quantitative

proteomics [33, 34].

Beyond the peptides represented in the database,

of utmost importance is generating realistic model

spectra from these sequences in light of challenges

such as partial fragmentation. Common models of

spectra either represent the abundance of a series of

peaks due to ion fragments as a set of constant values

[7] or a statistical trained average probability of

appearance [16]. A representative model spectrum

for the constant and probability-based methods for

des-Arg9-bradykinin (PPGFSPFR) is shown in

Figure 4B and 4C, respectively. Recent work has

expanded on the statistical modeling idea by deter-

mining individual probabilities for each ion of an ion

series [4], Figure 4D. Although, the latest fragmenta-

tion models are improved over generic models, no

model spectra or fragmentation models are a close

match to the actual spectrum shown for the peptide in

Figure 4A. Recent work has focused on developing

sequence-specific fragmentation models [35, 36]. This

is important because actual fragmentation patterns

due to CID vary tremendously based on the

dynamical behavior of the peptide, which is depen-

dent on the peptide sequence.

Given the challenge of predicting realistic model

spectra an alternate approach has centered on the use

of peptide MS/MS spectral libraries. Issues of

sequence-dependent fragmentation can be modeled

from these libraries [37–40], for example Breci et al.
[37] characterizes the relative propensity of proline to

fragment depending its N-terminal neighbor. These

methods have tremendous potential for improving

peptide identification; however, there are several

problems with these approaches. First, given the fact

that free energy contributions to fragmentation are

not additive, the evaluation of the effects of pairs of

amino acids is not sufficient for predicting the frag-

mentation patterns on longer peptides. Second, it is

not possible to build a sufficiently diverse spectral

database. For example, just for a 6-mer there

Figure 3: Average number of peptide candidates gen-
erated without regard to enzyme cleavage specificities
that are tobe considered for amatch to each experimen-
tal spectrum. Using enzyme cleavage specificities can
reduce the number of candidates by approximately one
order of magnitude, while the inclusion of additional
post-translational modifications can increase the candi-
dates combinatorially. The sheer number of candidates
can potentially lead to a large number of false
identifications.
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are 206 unique peptides requiring replicate observa-

tions. Even if these 206 spectra were available, it

would make more sense to use the spectra directly as

model spectra.

An older approach to deal with insufficient

sampling has gained significant momentum in the

past few years—the idea of using of spectral libraries

directly [31, 41–44]. In this approach, previously

identified spectra for specific peptides serve as the

model spectra to which newly acquired spectra are

compared. Replicate spectra for a peptide can be

used to reduce the total number of spectra to a set of

consensus spectra that when combined are a more

robust representation of the fragmentation patterns

[45]. This adds increased confidence to the identi-

fication of newly acquired MS/MS spectra as long as

the original spectra are correctly annotated. Similar to

the identification of proteotypic peptides these

approaches will likely have significant impact in the

future of peptide identification as datasets continue to

grow in size and more accurate identifications are

needed for systems biology application. An important

caveat to this approach, however, is that the original

identifications rely on current peptide identification

methods. Incorrect annotations will be propagated

through the spectral libraries, similar to the phenom-

enon that has occurred in the gene annotation

community. Additionally, the dependence on current

peptide identification algorithms means that peptides

that do not fragment completely are likely to be

underrepresented in the database. Thus, while spectral

libraries hold great promise for increasing peptide

identifications, this approach must be combined with

new methods for scoring peptides if the promise of

spectral libraries is going to come to fruition.

Lastly, another approach that is commonly used

to reduce false positive identifications from database

searches is statistical measures of confidence. One of

the best known applications of this approach is a

statistical discriminant function generated for

SEQUEST and peptide parameters in 2002,

Peptide Prophet [46], and its protein counterpart

Figure 4: (A) Experimental MS/MS spectrum for des-Arg9-bradykinin (PPGFSPFR). (B) Model spectrum similar to
that used by SEQUEST in1994. (C) Model spectrum similar to that used by Danciket al.whichwas developed through
the use of statistical training methods in which the probability of observing a peak at a specific location was learned
from a sequence-averaged training set. (D) Model spectrumwhich expands on themodel used by Dancik by allowing
the probabilities to vary as a function of the location of the fragmenting bond.
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in 2003, Protein Prophet [47], although several

approaches exist at the peptide [46, 48, 49] and

protein [49–53] levels. Surprisingly, few new

methods in this area have been proposed in the

past few years, but the theme of these new papers

focus on using decoy databases (known false

candidates) to quantify false positive rates [49, 52].

These methods are more computationally costly, but

more robust than their predecessors.

Higher accuracy de novo peptide
sequencing
There are many possible cases for which a database

search approach may not be able to identify a peptide

associated with a MS/MS spectrum, such as novel

proteins, mutations, PTMs, sequencing errors and

community-based proteomics (meta-proteomics).

In these cases, attaining the peptide directly from

the MS/MS spectrum is desirable, which is the

realm of de novo peptide sequencing [3, 15–23, 54].

In principle, a MS/MS spectrum contains a set of

ions that can be used to compute the mass of the

peptide and the distance between these ion peaks can

be used to determine peptide composition, as shown

in Figure 2B. However, in reality incomplete

peptide fragmentation and low mass accuracy yield

only partial sequence information. As a consequence,

research on de novo algorithms seemed to lag in the

late 1990s, but recent years have seen a new

resurgence as new mass spectrometers that offer

higher mass accuracy are coming on the market.

Methods that do not require statistical training

may in principle more easily accommodate mecha-

nisms for specifying mass accuracy levels in the

search. Many de novo methods fall into this category.

A few de novo methods such as SHERENGA [16]

are exceptions in that they use statistical training.

However, it may be the case that even reuse of

derived information from training using differing

mass accuracy parameters provides more accurate

identifications than non-trained approaches. There

are three primary approaches to performing de novo
sequencing [55–58]. The first is graph theory which

defines peaks as vertices and mass differences relate to

edges. This is the traditional approach dating back to

the start of de novo sequencing [55]. Graph methods

are attractive because ideally they allow the user to

identify the correct path simply by tracing a full

pathway through the network [15, 16, 22]. Less

effort has been placed on these methods compared

to database searches in recent years [18], although

Yan et al. [59] report an interesting application that

uses graph theory to separate b and y ions in MS/MS

spectra. Newer approaches for denovo sequencing are
focusing on either optimization or sub-sequence

matches augmented with sequence analysis.

Determining the correct sequence of amino acids

for a peptide from MS/MS spectral data can be stated

as a more general optimization problem where the

objective is to match an experimental spectrum with

the amino acid sequence most likely to produce

it without necessarily having to revert to a graph-

theoretical framework. Several optimization routines

and fitness functions have been proposed [17, 18, 20].

Heredia-Langer et al. [20] propose a genetic

algorithm that functions on spectral features that

are often not captured in deterministic solution

approaches. More recent work by Frank et al. [18]
focus on the gain that can be attained from the high

precision mass spectrometers FT-ICR, Q-TOF and

Orbitrap. Likely pure de novo methods of the future

will focus on these high mass accuracy machines.

Like the graph-theory methods, optimization

approaches still have one primary caveat; they often

return incomplete sequence information. Mann and

Wilm initially addressed this problem well before

proteomics became as high throughput as it is today

by following a de novo identification with a search of

the protein database using the peptide tag [60].

A recent surge in research has focused on coupling

traditional de novo sequencing with sequence com-

parison methods [61–64]. One common approach,

such as that by Wielsch et al. [65], use a tool known

as MS BLAST [66] to match marginal quality

MS/MS spectra. Although mass resolution is

improving in the field of proteomics which increases

the efficiency of pure de novo and optimization

methods, it is likely that the incomplete nature of the

information in MS/MS spectra will make sequence

comparison a standard companion tool to com-

plement de novo sequencing and optimization.

Comparison of the discovered subsequences to

protein databases also adds the benefit of extrapolat-

ing the peptide information to the protein level.

In the foreseeable future it is unlikely that de novo
peptide sequencing will become the common

approach to peptide identification. Database methods

are generally more computationally friendly than

de novo methods and offer a constrained space under

which the protein identification problem is more

easily tackled. However, de novo methods do

potentially offer more flexibility. This capability
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will become more important as samples become

more complex, such as in environmental samples and

meta-proteomics in which the relevant genomes are

unknown or not fully sequenced [67].

PROTEIN QUANTIFICATION
The quantification of proteins in a sample has

primarily been addressed using two approaches,

isotopic labeling (ICAT, ITRAQ, SILAC, 18O- or

15N-labeling) approaches [63, 67–75] and label-free

methods [76–78]. The primary limitation of proteo-

mic labeling techniques is cost and a restriction on

the number of conditions that can be compared

based on the number of available isotopes. However,

the demonstrated reproducibility of the method has

continued to foster new computational methods

development [68, 79, 80]. For example, Pan et al.
[81, 82] have developed a profile likelihood algo-

rithm that yields a point estimate and associated

confidence for abundance that is more accurate than

averages of peptide abundance ratios. As a result of

the cost and added labor of the labeling approaches

there has been a growing interest in label-free

methods for quantification which are showing a

surprising ability for reproducibility as well [76, 78].

Quantitative proteomics on isotopic labeled

samples has a much longer history than nonlabeled

methods [83, 84]. Traditional approaches have

focused on the correlation between the datasets

using statistical modeling methods such as regression.

With the recent surge in higher resolution mass

spectrometers and new labeling techniques, similar to

de novo sequencing, new algorithms are being

proposed that take advantage of these new techno-

logical advances [85–88]. For example Andreev et al.
[85] use MS peak intensity measured from FT MS

enhanced by a novel scoring algorithm based on

15N-labeling. Lin et al. [87] approaches focus on

newer labeling methods such as iTRAQ using

statistical models integrated with data-filtering

thresholds.

The use of label-free proteomics for quantifica-

tion is relatively new and hence the methods being

developed in this area have a different flavor

[34, 89–91]. Some of the most interesting work is

related to understanding the underlying structure of

the data. Callister et al. [90] address the issue of

systematic bias related to relative quantification and

identify linear regression normalization as one of the

most robust normalization procedures to address

this issue. Tang et al. [34] demonstrate that the

concept of peptide detectability is highly relevant to

quantification, specifically that there is a correlation

between the quantity of a protein and the likelihood

of its constituent peptides to be identified by MS. In

addition, in place of direct measurements of peptide

or protein abundance, attempts have been made to

use proxies such as the number of spectra that can be

assigned to a given peptide [92, 93]. Methods that

allow for the direct quantitation will be important to

the future of label-free proteomics, as well as being

highly relevant to the isotopic labeling strategies.

THE FUNCTIONALPROTEOMEç
POST-TRANSLATIONAL
MODIFICATIONS
Modified proteins are abundant in living systems and

are known to have profound biological implications.

The covalent modification of amino acid residues

that are the result of a PTM fit naturally with MS

because the cleavage fragment can be identified by

characteristic mass shifts. For example, one of the

most common PTMs, phosphorylation on serine or

threonine, yields a mass increase of 80 units in the

molecular weights of the intact unmodified peptide

and its expected fragments and a 98 and 49 neutral

mass unit losses from key peaks in the MS/MS

spectrum of the modified peptide. However, PTMs

are numerous, complex and typically involve either

proteolytic cleavage or the addition of a modifying

group to one or more amino acids. Despite the mass-

modifying properties of PTMs that make them

amenable to identification by MS, both the shear

number and the biological complexity [94, 95]

continue to make PTM identification a challenge.

A large amount of effort is required to build an

accurate model of a single PTM, as evidenced by

many review articles regarding the MS of phospho-

rylation [96–99].

The most obvious strategy for PTM is known as

spectral alignment and was first introduced by Yates

et al. in 1995 [100]: augment the search database of

model spectra to contain all common modifications.

The combinatorics of evaluating all modifications

quickly grows to a computationally intractable

problem for most standard MS laboratories.

Subsequent work focused on reducing this search

space by deriving potential peptides for modification

based on a first pass protein identification step

[101–104]. This can still be highly computationally
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challenging and is dependent upon the accuracy of

the first step of protein identification. Recent

research involving spectral alignment have focused

on removing the known modifications component

from the search and improved scoring methods.

Hansen et al. [105] search identified peptides

against the experimental spectra to compute mass

differences. They use these mass differences, in

conjunction with a statistical model, to identify the

localization of the modification. In a more general-

ized manner Tsur et al. [106] demonstrate a local

alignment procedure that increases comparative

speed and does not require preexisting knowledge

of PTMs. A frequency histogram of mass differences

is used to determine present modifications.

Alternatively, Havilio and Wool [107] use a fast-

Fourier transform to look for mass offsets in a rapid,

unrestricted manner. These approaches are very

promising as they tie in nicely with database

searching algorithms.

An alternative approach to alleviate this computa-

tional problem is to match the MS/MS spectra to the

database without a parent ion mass tolerance [104,

108]. The problem with this approach traditionally is

that such leniency in the matching step creates

a significant false positive problem. The most recent

work in this area uses de novo sequencing to build

a target peptide sequence without reference to a

database [109–111]. For example, the most current

OpenSea approach of Searle et al. [110] uses a

heuristic branch-and-bound technique to compare

the de novo prediction to identify homologous

sequences from a database. Another algorithm,

SPIDER of Han et al. [111], compares the de novo
sequence to the protein database. In both cases, these

algorithms are highly dependent on accurate de novo
interpretations. As de novo predictions improve these

methods will become more attractive.

Only in the past few years have attempts been

taken to integrate these two methods [112–114].

The MODi approach developed by Kim et al. [113]
includes peak selection, tag discovery (de novo),
database search, tag chain extension and finally

PTM identification and is available as a web server.

Overall the proteomics community has only begun

to address this challenge of identification of PTMs in

a routine and robust manner. These new methods

are a step in the right direction, more computation-

ally friendly and integrating more sources of

information. This area of research is likely

to remain a hot topic in the years to come.

Reaching the goal of identification of all PTMs in

a sample will be essential to map the proteome to

meaningful function.

COMPLEX SYSTEM
DYNAMICSçPROTEIN
INTERACTIONS
MS-based proteomics analyses follow one of two

paradigms, shotgun proteomics in which the goal

is to analyze the entire expressed proteome of a

cell population at a time [115, 116], or targeted

proteomics in which the goal is to cover a specific

protein-related phenomena in depth. The latter has a

long history starting with the first applications of

mass spectrometry to proteins. In contrast, shotgun

proteomics has been a recent and fastly growing

approach that has been catalyzed by the combination

of the rapid pace of genome sequencing, break-

throughs in mass spectrometry technology develop-

ment and the application of large-scale computing

for data analysis. In this section, we briefly discuss

some of the issues regarding the targeted proteomics

analysis of protein–protein interactions, which is

focused both on specific protein interactions yet is

relatively high-throughput [117–119].

One of the greatest challenges in analyzing high-

throughput protein interaction data is the determi-

nation of which interactions are present because they

are true in vivo interactions, and which are present as

an artifact of the experimental protocol. Artifactual

interactions are present for a number of reasons. First,

the process of lysing the cell destroys the compart-

mentalization that is in part responsible for the

specificity of biological interactions. A common

assumption in large scale tandem affinity purifications

is that the protein complex survives the experimental

process intact [117, 118]. This assumption depends

not only on the severity of the assay conditions, but

also on the thermodynamic half-life of the complex

itself. This problem is complicated by differences in

the technical details of individual isolation proce-

dures and by the fact that not all proteins are equally

detected by each experimental protocol. A typical

approach taken to eliminate nonspecific interactors is

to remove prey proteins that show up in more than a

few percent, typically �3%, of the affinity assays.

This approach makes sense but ultimately needs to

be implemented within an objective statistical

procedure; otherwise the results are obtained in an

ad hoc manner that may not be reproducible.
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Toward this goal, several different statistical

approaches have recently been introduced that

attempt to derive a confidence statistic for the

likelihood of a given protein interaction pair being

‘real’. In previous years these approaches were focused

on assessing a variety of independent data with the

idea that nonspecific or noisy interactions would drop

out. Gerstein and colleagues [120, 121] have shown

the value of combining data from multiple isolation

approaches to derive an overall confidence value for

the assignment of a protein to a complex. Gilchrist

et al. [122] have developed a statistical framework for

combining different types of proteomics data based

on the assumption that nonspecific interactions are

likely to be technology-specific (i.e. dependent on

the isolation technique being used). Bader et al. [123]
have shown that it is possible to define a quantitative

confidence measure based entirely on screening

statistics and network topology.

However, recent research suggests that instead of

combining data from multiple low confidence

sources it is possible to implement more focused

statistical analysis in addition to advanced experi-

mental designs that provide reliable information on

protein interactions. For years protein interactions

have been carefully characterized by small scale

studies using technologies such as surface plasmon

resonance and fluorescence resonance to obtain

information on binding affinities. It may be that

some of the concepts used in these small-scale studies

can be scaled up for use in high-throughput

proteomics. For example, Rinner et al. [124] recently
reported the use of dilution studies to provide

enough dynamic range in order to differentiate

nonspecific interactions from specific interaction.

Sufficient dynamic range is important because

nonspecific interactions typically result from high

abundance of the prey protein in solution compared

to specific interactions, which tend to have lower

prey abundance in solution and lower dissociation

constants. Toward this goal, Sharp et al. [125]

have recently developed a statistical assessment of

protein interactions based on replicate measurements

that can in principle discriminate between specific

and nonspecific interactions. The combined use of

more sophisticated experimental designs and statis-

tical analyses should lead to the confident determina-

tion of protein interactions without the need to

combine multiple sources of data.

Ideally, we would like to know what the essential

proteins are that encode a given biological capability.

However, at this point in our current understanding

of complex systems this question can only be

answered experimentally. Mathematical analysis of

protein interaction networks alone cannot define

protein complexes or signaling networks unless these

analyses are coupled with specific follow-on func-

tional experiments. For example, Scholten etal. [126]
present a thoughtful local model analysis of protein

interactions in which they use maximally complete

subgraphs to estimate a complex. A maximally

complete subgraph is defined as a graph which is

the maximal graph that includes all pair-wise

interactions. However, it is likely that the full

complement of proteins required to encode many

biological capabilities will not be represented by

maximally complete subgraphs. For example, in the

T4 phage DNA polymerase system the protein

complex consists of the core polymerase, a clamp

protein, and accessory loading proteins, which can

assemble onto DNA through multiple kinetic path-

ways [127]. However, the thermodynamics of the

pair-wise protein–protein interactions are not simply

additive, with the result being that a preferred

assembly order may exist [128]. This would imply

that the biological capability encoded by this system

may not be a maximally complete subgraph as

determined by affinity purifications. However, it

may be possible through the use of bioinformatics to

relieve the strong assumption of maximally complete

subgraphs.

Starting from the acknowledgment that mathe-

matics alone cannot currently define a biological
complex, we can set the more modest goal of using

mathematically defined entities to further understand,

perhaps decompose, a biological capability. In addi-

tion, each mathematically defined entity can be used

to formulate the hypothesis to be tested experimen-

tally that the entity represents a biological capability.

This is consistent with the conclusion reached by

Scholten et al. [126], ‘Local modeling provides a

platform for explicit hypothesis development regard-

ing functional annotation and pathway activity.’

Toward this goal, then we should ultimately seek to

link biological experiments to network analysis of

protein interactions in a biologically-principled

manner.

PROTEOMICS STANDARDS
Proteomics standards is an interesting topic in

proteomics because it really requires a commitment
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from both the experimental and computational

communities. The need for guidelines in supple-

mentary information that should accompany results

remains a debate; however, no researcher will debate

that a minimum of information to reproduce the

results is necessary. In regards to experimental data an

editorial by Carr et al. [129] nicely lays out the

challenges in implementing such requirements.

A working group of the Proteomics Standards

Initiative (PSI) [130] of the Human Proteome

Organization have been working on a platform

called MIAPE [131, 132] to capture proteomics

experimental meta-data. In a similar vein as the

microarray MIAME platform, MIAPE requires that

the minimum information necessary to reproduce

a proteomics experiment is captured. Adoption is

slow but MIAPE, or something similar, will likely

become a requirement of journals in the near future.

On the computational side, the Institute of Systems

Biology pioneered a generic XML representation of

MS data called mzXML [133, 134]. On a similar track

PSI has also been developing a generic XML based

language for representing MS data and the results

of computational analyses called mzData and

analysisXML [132]. A recent article by Cottingham

[135] states that these two standards are currently

working on merging. Whatever the final standards

will be, the need is becoming pressing and a

foreseeable adoption of a single standard will

happen as it is likely that journals and funding

agencies will make these compliances a requirement.

CONCLUSIONSAND FUTURE
DIRECTIONS
The next few years will be an exciting time in

proteomics. As researchers are realizing the systems

level biological information that HTP proteomics

offers the computational challenges for proteomics

will continue to grow. The data sets are becoming

larger either due to sample size or available mass

analyzers, generating easily tens to hundreds of

thousands or more spectra; the computational load

on peptide identification and downstream biological

inferences, such as protein interactions becomes

restrictive. An even larger challenge has presented

itself recently as Lo et al. [136] demonstrated the

biological relevance of proteomics on community

samples. As more complex samples are analyzed the

resources required for analysis are enormous as there

is a potential for millions of proteins.

With this in mind, there will likely be two trends

in MS-based proteomics, (i) system level analyses

of well characterized organisms and (ii) meta-

proteomics of complex and large samples with little

annotation. For the first scenario it will be ultimately

important to improve model spectra for more

accurate peptide identification and characterization

of PTMs. This will undoubtedly improve any

downstream inferences of complex interactions

between proteins. The second scenario of meta-

proteomics is likely to take off in a similar manner as

meta-genomics [137–141]. The simple analysis task

will likely require either significant reduced database

representations, such as those proposed by proteo-

typic peptides or spectral libraries, or enhanced

sequence analysis de novo sequencing strategies that

better handle partial fragmentation. Searching this

data to ultimately identify community-based meta-

bolic activity would offer new and exciting biolog-

ical information to the world of ecology. All in all,

this is an extremely exciting time in proteomics as

the limits of the technology are still unknown and so

much is still left to be discovered.
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