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     Scheduling is concerned with allocating limited resources to tasks to optimize certain
objective functions. Due to the popularity of the Total Quality Management concept, on-
time delivery of jobs has become one of the crucial factors for customer satisfaction. Sched-
uling plays an important role in achieving this goal. Recent developments in scheduling
theory have focused on extending the models to include more practical constraints. Further-
more, due to the complexity studies conducted during the last two decades, it is now widely
understood that most practical problems are NP-hard. This is one of the reasons why local
search methods have been studied so extensively during the last decade. In this paper, we
review briefly some of the recent extensions of scheduling theory, the recent developments
in local search techniques and the new developments of scheduling in practice. Particularly,
we survey two recent extensions of theory: scheduling with a 1-job-on-r-machine pattern
and machine scheduling with availability constraints. We also review several local search
techniques, including simulated annealing, tabu search, genetic algorithms and constraint
guided heuristic search. Finally, we study the robotic cell scheduling problem, the auto-
mated guided vehicles scheduling problem, and the hoist scheduling problem.

0. Introduction

Scheduling is concerned with allocating limited resources to tasks to optimize
certain objective functions. Due to the popularity of the Total Quality Management
concept, on-time delivery of jobs has become one of the crucial factors for customer
satisfaction. Scheduling plays an important role in achieving this goal. In the last four
decades, many papers have been published in the scheduling area (for example, see
the work by Graves (1981), Lawler et al. (1993), Herrmann, Lee and Snowdon (1993),
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Morton and Pentico (1993), Blazewicz et al. (1994, 1996), Tanaev, Gordon and
Shafransky (1994), and Tanaev, Sotskov and Strusevich (1994), Baker (1995), Brucker
(1995), and Pinedo (1995)).

In deterministic scheduling models, a set of jobs has to be processed by a set of
machines and certain performance measures have to be optimized. Recent develop-
ments in scheduling theory have focused on extending the models to include more
practical constraints. Furthermore, due to the complexity studies conducted during
the last two decades, it is now widely understood that most practical problems are
NP-hard. This is one of the reasons why local search methods have been studied so
extensively during the last decade.

In this paper, we review briefly some of the recent extensions of scheduling
theory (section 1), the recent developments in local search techniques (section 2) and
the new developments of scheduling in practice (section 3).

To refer to any given problem in a concise way, we follow the notation of Pinedo
(1995). This notation consists of three fields α|β|γ , where α denotes the machine
(resource) configuration, β denotes processing restrictions and constraints, and γ
represents the performance measure to be optimized. In several problems studied in
this paper, we will describe the problem by adding special constraints to the second
field.

1. Recent developments in scheduling theory

The new trend in scheduling theory is to extend results of classical algorithms to
models that are more closely related to real problems. Even though many results may
not be applicable immediately, these new models are at least motivated by industrial
problems and have a greater potential for applications. Along this line, several topics
have been reviewed in the literature (see for example, Baker and Scudder (1990) about
sequencing with earliness and tardiness penalties, Potts and Van Wassenhove (1992)
about integrating scheduling with batching and lot-sizing, Trietsch and Baker (1993)
about lot streaming, Lee and Variraktarakis (1993) about hierarchical scheduling,
Webster and Baker (1995) about scheduling groups of jobs on a single machine and
Hall and Sriskandarajah (1996) about scheduling with blocking and no-wait in proc-
ess).

In this section, we review briefly two other deterministic scheduling areas that
have not received much attention until the last decade. These two areas are (1) sched-
uling with a 1-job-on-r-machine pattern, and (2) machine scheduling with availability
constraints. In (1), jobs may need to be processed simultaneously on several machines
(r is a positive integer) or several jobs can be processed by a single processor simul-
taneously (0 <r ≤ 1), in contrast to classical scheduling where one machine can proc-
ess one job and each job can be processed by one machine at any time (r = 1). In (2),
machines may not be available at all times, due to machine maintenance, or machines
may only be available in given time windows as in applications of computing systems.
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In order to describe the problem more precisely, we introduce the following
notation. There are n jobs to be processed on m machines, and

Jj : job j, j = 1,…,n,

Mi : machine i, i = 1,…,m,

Cj : the completion time for Jj ,

wj : the weight for Jj ,

dj : the due date of  Jj ,

Lj : the lateness of Jj = Cj – dj ,

Lmax : maximum lateness = max{Lj , j = 1,…,n},

Cmax : makespan = max{Cj : j = 1,…,n}.

1.1. Scheduling with 1-job-on-r-machine pattern

In the last four decades, numerous papers have been published in many different
scheduling areas. However, most of the scheduling literature assumes a 1-job-on-1-
machine pattern. Namely, at each point of time a job can be processed on one and
only one machine. With the rapid development of parallel computing systems, such
as diagnosable microprocessor systems (Krawczyk and Kubale (1985)), a job must be
performed on parallel processors in order to detect faults. In such a system, a job may
need to be processed simultaneously by several processors (1-job-on-r-machine
problem, where r is a positive integer). Semiconductor circuit design team workforce
planning, where a modular task can be worked on by an entire team simultaneously,
is also an example. Another example is the berth allocation problem where a large
vessel may occupy several berths for loading andyor unloading (r is a positive integer)
(Lee and Cai (1996)), or several vessels may share one berth (0 <r ≤ 1 and r is a real
number) (Li, Cai and Lee (1996)).

The case where r is a positive integer has been studied extensively over the last
decade. This type of a 1-job-on-r-machine problem has been called a multiprocessor
task system in the literature and will be one of the main topics in this review. There
are two main classes of such scheduling problems. The first one assumes that each
job may require a fixed number of machines working simultaneously, yet the machines
required are not specified (Blazewicz, Drabowski and Weglarz (1986), Du and Leung
(1989), Plehn (1990), and Lee and Cai (1996)). The second class of problems specifi-
cally fixes the set of machines for particular jobs (Kubale (1987), Blazewicz et al.
(1992), Bianco et al. (1993), Hoogeveen, van de Velde and Veltman (1994), Bianco et
al. (1995), Cai, Lee and Li (1996)). Following the notation used by Hoogeveen et al.
(1994), we use nonfix and fix in the second field of α|β|γ  to denote the first and
second classes of problems, respectively. Hence, Pm|nonfix|Cmax denotes an m-
parallel-machine scheduling problem where each job can be processed simultaneously
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by a fixed number of machines with the objective minimizing the makespan. Simi-
larly, P2| fix|∑wj Cj denotes a 2-parallel-machine scheduling problem where each job
can be processed simultaneously by a specific set of machines, and the objective is to
minimize the total weighted completion time. Pm|prmp,nonfix|Cmax denotes the same
problem as Pm|nonfix|Cmax except that preemption of jobs is allowed.

1.1.1. The machine set not fixed
(a) Pm|nonfix|Cmax

Blazewicz, Weglarz and Drabowski (1984) provide polynomial algorithms for
the Pm|prmp,nonfix|Cmax problem with only two types of jobs: one-machine jobs and
two-machine jobs. Blazewicz, Drabowski and Weglarz (1986) extend the results to
the problem with more than two types of jobs. They show that for Pm|nonfix|Cmax,
polynomial algorithms exist only for unit processing times. Note that for each job, r
is a fixed number and r ≤ m. For the Pm|nonfix, pj = 1|Cmax problem, since the total
number of possible combinations of tasks in each unit time interval is fixed (function
of r), the problem can be solved by either linear integer programming or dynamic
programming polynomial in n. They also provide polynomial algorithms for the
Pm|prmp,nonfix|Cmax problem.

Du and Leung (1989) study the problem where a job can be executed by one or
more machines at the same time, and the processing time is a nonincreasing function
of the number of machines used. However, the number of machines is decided before
it is processed, i.e. the number cannot change during its processing. They call their
problem a parallel task system, and note that if a multiprocessor task system is NP-
hard in the strong sense, then the corresponding parallel task system is also NP-hard
in the strong sense. On the other hand, if their parallel task problem can be solved by
a pseudopolynomial algorithm, then the corresponding multiprocessor task problem
is also solvable in pseudopolynomial time. For the nonpreemptive case, they show
that the problem is NP-hard in the strong sense even for two machines in the
case where jobs are subject to precedence constraints. For independent tasks, it is
pseudopolynomially solvable for two and three machine problems. From the fact
that even the special case P2| |Cmax is NP-hard, it follows that P2|nonfix|Cmax

and P3|nonfix|Cmax are also NP-hard in the ordinary sense. They also show that
P5|nonfix|Cmax is NP-hard in the strong sense. The case m = 4, P4|nonfix|Cmax, is an
open question. The preemptive case is NP-hard in the strong sense if the number of
machines is arbitrary and pseudopolynomially solvable if the number of machines is
fixed. They also note that the NP-hardness of P|prmp,nonfix|Cmax remains an open
question even though it is NP-hard in the strong sense for the corresponding parallel
task problem.

Blazewicz et al. (1990) study the problem Pm|nonfix|Cmax on systems consisting
of processors with the same speed, where there are only two types of tasks; one-
processor tasks and two-processor tasks. They provide an O(nm+ n log n) algorithm
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to solve the problem optimally. Later, they provide an algorithm of the same com-
plexity O(nm+ n log n) to solve the same problem, yet on uniform k-processor
systems consisting of k processors with the same speed, with only two types of tasks;
one-processor tasks and k-processor tasks.

(b) Pm|nonfix|∑wjCj

Lee and Cai (1996) show that the problem is strongly NP-hard even with two
machines. Two special cases, (i) wj = w for all j and (ii) pj = p for all  j, are also
studied. For case (i) they show that P2|nonfix|∑Cj is NP-hard and provide a dynamic
programming algorithm to solve the problem in O(nP3s+1), where s is the number of
two-machine jobs and P is the sum of all processing times. Namely, if the number of
two-machine jobs is fixed then the problem is pseudopolynomially solvable and is
NP-hard in the ordinary sense. If the number of two-machine jobs is not fixed, then
whether the problem is strongly NP-hard remains an open question. For the second
case, they provide an O(n log n) algorithm to solve the problem if pj = p for all one-
machine jobs (the processing time of two-machine jobs can still vary). They also
provide a heuristic algorithm that has an error bound of 1 for the Pm|nonfix|∑wj Cj

problem and an error bound of 1y2 for the Pm|nonfix|∑Cj problem.

(c) Pm|nonfix|Lmax

Plehn (1990) studies the problem with release dates, due dates, and preemption
allowed. He uses linear programming to check whether there exists a feasible sched-
ule where each job finishes before its due date. Lee and Cai (1996) show that the
problem Pm|nonfix|Lmax is NP-hard in the strong sense even if m = 2. For the
P2|nonfix|Lmax problem, they show that (i) between any two consecutive two-machine
jobs, one-machine jobs must follow the EDD rule on each machine, and (ii) two-
machine jobs should follow the EDD rule. They provide a dynamic programming
algorithm for solving the problem in O(nP3s+1log P), where s is the number of
two-machine jobs and P is the sum of all processing times. Hence, if the number of
two-machine jobs is fixed, then the problem is NP-hard in the ordinary sense. They
also present an O(n log n) algorithm for the special case P2|nonfix,pj = 1|Lmax, as
well as a heuristic algorithm with an error bound analysis.

1.1.2. The machine set fixed
(a) Pm| fix|Cmax

The general problem Pm| fix|Cmax was studied by Bozoki and Richard (1970).
Even though they were motivated by a manufacturing environment, their results
did not attract attention in the scheduling field until the recent advent of parallel
computing systems. They provide a branch and bound algorithm to solve the problem
optimally.

Krawczyk and Kubale (1985) analyze this problem in their study of diagnosable
microprocessor systems, where a job should be performed in parallel in order to detect
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faults. They address issues on NP-hardness and solution procedures. In particular,
they show that P| fix,pj = 1|Cmax is NP-hard. Kubale (1987) shows that the problem
Pm| fix|Cmax is strongly NP-hard even if there are only 2-machine jobs. Blazewicz
et al. (1992) study a model similar to that of Kubale, except that they consider three
machines in parallel, i.e., the P3| fix|Cmax problem. They show that the problem
is NP-hard in the strong sense. They also present some special cases that are
polynomially solvable, as well as heuristics for the general problem.

Hoogeveen, van de Velde and Veltman (1994) investigate the complexity of
several models with the makespan objective. In particular, they show that P3| fix|Cmax

subject to block-constraints is NP-hard in the ordinary sense, where a block means
that all two-machine jobs of the same type are scheduled consecutively. They provide
a pseudopolynomial algorithm with complexity O(nP) to solve the problem, where P
is the sum of all processing times. They also show that P| fix, pj = 1|Cmax is NP-hard
in the strong sense, while the problem is polynomially solvable if the number of
machines is fixed, i.e., Pm| fix,pj = 1|Cmax. On the other hand, if jobs are released at
different times, then the problem P2| fix, rj|Cmax is NP-hard in the strong sense. Fur-
thermore, if the distinct release dates are fixed, then the problem Pm| fix, rj ,pj = 1|Cmax

can still be solvable in polynomial time. Note that in the special case where pj = 1 for
all j, the maximum possible number of different types of jobs is 2m – 1. Hence, for
such special cases, either dynamic programming, linear integer programming, or a
network representation with a shortest path algorithm can be used to solve the problem
in a time that is polynomial in n. For example, Brucker (1995) solves the problem
Pm| fix, pj = 1,r j|Cmax in O(R2RnR+1), where R ≤ 2m – 1 is the maximum possible
number of different type of jobs. When m is fixed, the algorithm is polynomial.

Recently, Krämer (1995) provided three branch and bound algorithms for solving
the general problem Pm| fix|Cmax with precedence constraints.

(b) Pm| fix|∑wj Cj

Dobson and Karmarkar (1989) provide two integer programming formulations
for the problem Pm| fix|∑wj Cj . They develop Lagrangian relaxation and surrogate
relaxation to provide lower bounds. Heuristic algorithms and computational results
are also provided. For a special case where m = 2, all jobs with unit processing time,
and the same number of jobs to be assigned to machines 1 and 2, a polynomially
optimal solution is also provided. Dobson and Khosla (1995) study the same problem
of minimizing weighted flow times, yet with an additional decision of choosing batch
sizes of the tasks. Both a Lagrangian relaxation and a surrogate relaxation are devel-
oped.

Hoogeveen, van de Velde and Veltman (1994) show that P2| fix|∑Cj is NP-
hard, and state that whether it is NP-hard in the strong sense is still an open
question. They also show that the three problems P2| fix|∑wj Cj , P3| fix|∑Cj , and
P2|chain, fix, pj = 1|∑Cj are all NP-hard in the strong sense. Furthermore, they prove
that P| fix, pj = 1|∑Cj is NP-hard in the strong sense and state that the complexity of

C-Y. Lee et al.y Current trends in deterministic scheduling6



the problem is open if the number of machines is fixed. Recently, Cai, Lee and Li
(1996) showed that P2| fix|∑Cj is actually NP-hard in the strong sense. They also
develop an efficient heuristic for P2| fix|∑wj Cj with a relative error of at most 100%.
For the P2| prmp, fix|∑Cj problem, they provide an O(n log n) algorithm to solve the
problem optimally. Based on an approach similar to the one for Pm| fix,pj = 1,rj|Cmax,
Brucker (1995) shows that Pm| fix,pj = 1,rj|Cj , Pm| fix,pj = 1|∑wj Cj  can be solved
in O(R2RnR+1), where R ≤ 2m – 1. Therefore, Pm| fix,pj = 1|∑Cj  is polynomially solv-
able.

(c) Pm| fix|∑Lmax, Pm| fix|∑Tj , and Pm| fix|∑wj Uj

Based on an approach similar to that for Pm| fix, pj = 1,rj|Cmax, Brucker (1995)
solves the problems Pm| fix, pj = 1|∑Tj and Pm| fix, pj = 1|∑wj Uj , both in O(R2RnR+1)
time, where R ≤ 2m – 1. Note that P2| fix|Lmax can be shown to be NP-hard in the
strong sense by the following argument. Given any instance of the 3-partition prob-
lem (aj , j = 1,…,3k with ∑aj = kB), construct an instance for our problem as follows:
Let the total number of jobs be n = 5k. The first 4k jobs, J1,…,J4k, can be assigned to
any machine and the last k jobs, J4k+1,…,J5k, need to be processed simultaneously by
two machines. Furthermore, their processing times are

pj = aj , j = 1,…,3k,

pj = B, j = 3k + 1,…,4k,

pj = B, j = 4k + 1,…,5k.

The due dates are

dj = 2kB, j = 1,…,3k,

dj = (2( j – 3k) – 1)B, j = 3k + 1,…,4k,

dj = 2(( j – 4k)B, j = 4k + 1,…,5k.

It can be shown easily that there exists a solution for the 3-partition problem if and
only if there exists a solution to our problem with Lmax= 0.

Bianco et al. (1993) provide a polynomial time algorithm based on linear pro-
gramming procedures to solve the Pm| prmp, rj , fix|Lmax and Pm| prmp, rj , set|Lmax

problems, where set means that a job can choose a set of alternatives where each
alternative contains several dedicated machines (i.e., fix is the special case of set when
there is only one alternative for each job). Recently, Bianco et al. (1997) studied the
preemptive deterministic problem with job release-dates and machine available time
windows. They provide low-order polynomial time algorithms for several special
problems with Cmax and Lmax criteria. They also provide linear programming algo-
rithms to solve the general case.

(d) Other problems
Brucker and Krämer (1995, 1996) also discuss some other machine configura-

tions including flow shop, job shop and open shop with the fix characteristic. Since
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most general classical open shop and job shop problems are already NP-hard, it is not
surprising that most problems in the 1-job-on-r-machine pattern are NP-hard except
for some special cases either with constant processing time or with n = k. Motivated
by the application of berth allocation, Li, Cai and Lee (1996) recently studied another
type of problem where r is less than 1, i.e., a job can share a machine with other jobs.
They assume that the job processing times and job sizes are agreeable. Heuristic
algorithms are provided and their worst case performances are analyzed. Other
machine configurations, especially the ones motivated by parallel computing systems,
have been studied by Blazewicz, Drozdowski and Weglarz (1994).

1.2. Machine scheduling with availability constraints

Most papers in the scheduling area assume that machines are always available.
However, in real industry settings this assumption may not be true, i.e. machines may
not always be available. For example, machines may not be available because of
machine breakdown (stochastic) or preventive maintenance (deterministic) during the
scheduling period. In this subsection, we briefly review recent studies of machine
scheduling with availability constraints in the deterministic case.

We assume that machine i is unavailable from sik until tik (0 ≤ sik ≤ tik), where
0 ≤ k ≤ ni , with ni being the number of unavailability periods for machine i during the
planning horizon. Instead of using “unavailability constraints”, some papers state that
“machines are available in time windows”, which is particularly true in computer
systems. Note that in most manufacturing cases, we may have ni ≤ 1 because it is
unlikely that we have more than one preventive maintenance period on the shop floor
during the scheduling horizon. Note also that the special case with si1 = 0 means that
machine i is not available until ti1. This happens, for instance, in the case where the
machine has to complete those unfinished jobs that were scheduled during the previ-
ous planning period.

Two cases are discussed in the literature, resumable and nonresumable. If a job
cannot be finished before the next down period of a machine and the job can continue
after the machine has become available again, it is called resumable. On the other
hand, it is called nonresumable if the job has to restart rather than continue.

In this subsection, we will use r -a in the second field of α |β|γ  to denote
resumable availability constraints. Similarly, nr-a in the β  field denotes nonresumable
availability constraints. Hence, F2|r -a|Cmax denotes the problem of minimizing make-
span in the two-machine flowshop problem with a resumable availability constraint.

Schmidt (1984) studies an n job m parallel machine scheduling problem where
each machine has different availability intervals. The purpose is to construct a feasi-
ble preemptive schedule. He presents an O(n log m) time algorithm to find a feasible
preemptive schedule whenever one exists. Later (Schmidt (1988)) he provides an
O(nm log n) algorithm to solve a generalized problem where jobs may have different
deadlines.
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Adiri et al. (1989) consider the 1|nr-a|∑Cj problem. They study both the
stochastic case where the location and duration of the unavailability periods are
random and the deterministic case where  machine unavailability is known in advance.
For the deterministic case, they show that the problem is NP-hard under the assump-
tion that there is only one unavailability period. Lee and Liman (1992) study the same
problem, and provide a simpler proof of NP-hardness. They also show that the tight
error bound for the SPT heuristic is 2y7.

Lee (1991) studies the parallel machine problem to minimize makespan and
machines may not be available at time zero. Thus, there is at most one unavailability
period for each machine and this happens at the beginning of the time horizon. He
shows that the classical Longest Processing Time (LPT) algorithm has a tight error
bound 1y2, and provides a modified LPT algorithm with error bound equal to 1y3.

Kaspi and Montreuil (1988) and Liman (1991) show that, when there is at most
one unavailability period for each machine and the unavailability period happens at
the beginning of the time horizon, the Shortest Processing Time (SPT) algorithm is
an optimal policy for the parallel identical machines problem to minimize total com-
pletion time. Lee and Liman (1993) study the two machine in parallel scheduling
problem of minimizing the total completion time where one machine is available all
the time and the other machine is available from time zero up to a fixed point in time.
They prove that the problem is NP-hard and use dynamic programming to solve it.

Mosheiov (1994) studies the same problem under the condition that machine i
is available in the time window [xi, yi], where 0≤ xi < yi . He shows that SPT is
asymptotically optimal for the m machines in parallel problem.

Lee (1996b) studies F2|r -a|Cmax and F2|nr-a|Cmax problems with the assump-
tion that at least one machine is always available. Hence, he considers two cases, with
an unavailability constraint imposed on machines 1 and 2, respectively. The notation
F2|r -a(Mi )|Cmax is used to denote F2|r -a|Cmax when an availability constraint is
imposed on machine i. In each case, he proves that the problem is NP-hard and pro-
poses a pseudopolynomial dynamic programming algorithm to solve the problem
optimally. He also provides two O(n log n) heuristic algorithms. The first heuristic is
used to solve the problem F2|r -a(M1)|Cmax and has a worst-case error bound of 1y2.
The second heuristic is for the problem F2|r -a(M2)|Cmax and has a worst-case error
bound of 1y3.

Lee (1996a) also studies the problem considering different performance meas-
ures (makespan, total weighted completion time, tardiness, and number of tardy jobs)
for single machine and parallel machines problems. For resumable problems, he shows
that SPT solves 1|r -a|∑Cj and EDD solves 1|r -a|Lmax optimally. Furthermore, Moore
and Hodgson’s algorithm can be modified to solve the 1|r -a|∑Uj problem. However,
1|r -a|∑wj Cj is NP-hard and he provides a dynamic programming approach to solve
the problem and an heuristic approach with an error bound analysis. Since the clas-
sical problem Pm| |Cmax is NP-hard, problem Pm|r -a|Cmax is also NP-hard. He then
analyzes the worst case performance of the LPT algorithm. He notes that after sorting
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the jobs in nonincreasing order of their processing times, there is a performance dif-
ference between “assigning a job to the minimum loaded machine, calling it LPT1”,
and “assigning a job to the machine such that the finishing time of that job is mini-
mized, calling it LPT2” (these two rules result in the same sequence in the classical
problem Pm| |Cmax). He shows that the error bound of LPT1 can be arbitrary large,
while CLPT2yC* ≤ 2, where CLPT2 is the makespan under LPT2, and C*  is the optimal
makespan. For nonresumable problems, he shows that even 1|nr-a|Cmax is NP-
hard and hence other problems such as 1|nr-a|Lmax and 1|nr-a|∑Uj are NP-hard.
He develops a pseudopolynomial dynamic programming framework for solving
P2|nr-a|∑wj Cj to optimality and heuristic approaches for most problems. In particu-
lar, he shows that CLSyC* ≤ m and CLPT2yC* ≤ (m + 1)y2, where CLS is the makespan
obtained by List Scheduling and CLPT2 and C*  are defined above. Note that the
preemptive case, Pm| prmp, r -a|Cmax, can be solved in O(n + m log m) (Schmidt
(1984)).

As mentioned in subsection 1.1.2, Bianco et al. (1997) study the scheduling
problem that combines the machine availability constraint (time windows) with the
1-job-on-r-machine pattern. They study the preemption case with Cmax and Lmax as
optimization criteria (see the paper in this volume for a detailed discussion).

2. Recent developments in search algorithms

Many scheduling problems are so complex that they cannot be formulated easily
as mathematical programs (e.g. integer programs, disjunctive programs). The fact that
they are not easy to formulate makes it difficult to apply classical techniques such as
branch and bound or dynamic programming. These problems often do not have to be
solved in real time.

With the advent of fast and inexpensive computing power, researchers have
begun to experiment during the last decade with search techniques that are easier to
implement than the classical operations research techniques. A distinction can be
made between two types of search techniques, namely neighbourhood search tech-
niques (frequently used by operations researchers and industrial engineers) and
constraint-guided heuristic search techniques (often used by computer scientists and
artificial intelligence experts).

The neighbourhood search techniques are based on the concept of local
improvement. Given an existing solution of the problem at hand, a (typically minor)
modification is made in order to obtain a different (usually better) solution. The
programming effort required to implement such a technique often is fairly modest;
the structural knowledge needed with regard to the problem is significantly less than
the knowledge required for a mathematical programming approach.

In the seventies, researchers started to apply neighbourhood search techniques
in scheduling problems. Very early experiments showed that if random swaps were
applied to a reasonably good solution, then the payoff is minimal (taking into account
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the computation time involved). The neighbourhood search techniques subsequently
developed are therefore considerably more sophisticated than random swaps. An early
example of a neighbourhood search technique is the k-opt approach designed by
Lin and Kernighan (1972) for the Travelling Salesman Problem (TSP). The TSP is
equivalent to a single machine problem with sequence-dependent setup times and the
makespan as objective; this scheduling problem has in the literature been referred to
as the 1|sjk|Cmax problem, where sjk denotes the setup time incurred between Jj and
Jk. The subsequent research in neighbourhood search has focused mainly on three
techniques, namely simulated annealing, tabu search, and genetic algorithms.

The scheduling applications have included a variety of machine environments
(see Lee, Bhaskaran and Pinedo (1992), Morton and Ramnath (1995), and Pinedo
(1995)). The objective most often considered has been the makespan. Of the three
methods, tabu-search has been applied most often to scheduling problems. However,
lately researchers have started focusing on genetic algorithms as well; these efforts
are often in conjunction with the design of learning mechanisms.

Constraint-guided heuristic search techniques are completely different from
neighbourhood search techniques. Constraint-guided heuristic search techniques do
not attempt to find optimal schedules; they merely seek to find a good feasible
schedule. The problem is basically formulated through a list of rules or constraints
that the schedule has to satisfy. In contrast to neighbourhood search, constraint-guided
heuristic search focuses on partial solutions and attempts to extend these partial
solutions until a complete solution is obtained that is feasible. Constraint-guided
heuristic search techniques are often based on measurements of flexibility and con-
straining factors. In the beginning of the search an attempt is made to satisfy the more
stringent constraints; the less stringent constraints are left for the final part of the
search process. Many techniques have been developed for managing the constraints
and speeding up the search.

Constraint-guided heuristic search techniques have been implemented in a
number of scheduling systems, which often have been implemented in programming
languages that are specifically designed for this type of search, such as PROLOG. These
scheduling systems are often classified as expert systems.

The remaining part of this section is organized as follows. In the first subsection
we discuss the general concepts of neighbourhood search. In the second we describe
in more detail simulated annealing, tabu search and their applications. In the third
subsection we consider genetic algorithms and in the fourth we describe constraint
guided heuristic search.

2.1. General concepts in neighbourhood search

The design of the different neighbourhood search techniques tends to be similar
in many respects. One can compare the various neighbourhood search techniques
based on the following four design criteria.
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(1) The mapping of the data in a format suitable for the algorithm.

(2) The neighbourhood design.

(3) The search process within the neighbourhood.

(4) The acceptance-rejection criterion.

With regard to the first point, the description of a schedule has to be both concise
and unambiguous. For some problems, a concise description can at times be difficult.
For example, in a genetic algorithm a nonpremptive schedule is usually represented
by a chromosome, which is basically a series of decimal digits. Such a chromosome
is often partitioned into subchromosomes, with each subchromosome representing the
sequence of the operations on a particular machine. The entire chromosome specifies
the complete job shop schedule (see, for example, Della Croce, Tadei and Volta
(1995)). This representation is concise and at times referred to as the natural repre-
sentation; it does not leave any room for ambiguities. However, consider now a variant
of the problem with preemption allowed. The representation of a schedule now
becomes significantly more complicated since the processing of an operation on a
machine may be interrupted a number of times. A larger amount of information has
to be carried in the chromosome, and even the length of the chromosomes is no longer
fixed.

The neighbourhood design specifies the set of all the neighbours of a given
solution. The neighbourhood design usually requires some knowledge of the prob-
lem. The knowledge required centers mainly on those aspects of the schedule that
have the greatest impact on the objective. Some neighbourhood designs are very
simple, e.g., in a single machine scheduling problem, the neighbourhood of any given
schedule can consist of all schedules that can be obtained through a (not necessarily
adjacent) pairwise swap. In an even simpler design, the neighbourhoods consist of all
schedules which can be obtained via an insertion (i.e., a job is taken from somewhere
in the schedule and inserted somewhere else). Of course, there are also much more
complicated neighbourhood designs. For example, in the job shop scheduling problem
Jm||Cmax, the makespan is determined by the length of a critical path. If a neighbour-
ing schedule is the same with respect to the sequence of operations on the critical
path, then the value of the objective cannot be lower. It is therefore advantageous to
have in a neighbouring schedule some operations on the critical path sequenced
differently (see Matsuo, Suh and Sullivan (1988) and van Laarhoven, Aarts and
Lenstra (1992)). For job shops with other objectives, e.g., the total weighted tardiness
(Jm||∑wj Tj ), even more complicated neighbourhoods have been designed. One such
neighbourhood is based on a cluster of operations to be processed on various machines
and subject to extensive delays; the neighbourhood is then determined by changes in
the sequences of these operations (see Pinedo and Singer (1995)).

Given all the schedules in the neighbourhood, a search has to be conducted that
leads to the next schedule in the search process. A simple way is to select schedules
in the neighbourhood at random, evaluate these schedules and decide which one to
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accept. However, it may pay to do a more organized search and somehow first select
the schedules that appear most promising. For example, consider swaps of jobs that
affect the objective the most (e.g., jobs with a large weight that are very tardy when
the total weighted tardiness has to be minimized).

The acceptance-rejection criterion is closely related with the neighbourhood
search process. Whenever a schedule within the neighbourhood is selected, a decision
has to be made whether or not to accept the schedule. It is only at this point that
simulated annealing and tabu search are different from one another. The acceptance-
rejection technique of simulated annealing is a probabilistic process, while the
acceptance-rejection technique of tabu search is a deterministic process. Both tech-
niques need settings of parameters that affect the search process significantly (the
so-called cooling parameter in simulated annealing and the length of the tabu list in
tabu search).

Genetic algorithms, as a search process, are in one important aspect different
from simulated annealing and tabu search. The result of each iterative step is a
number of different schedules and all are carried over to the next step (in simulated
annealing and tabu search, only a single schedule is transferred from one iteration to
the next). This diversification scheme is an important characteristic of genetic algo-
rithms. In genetic algorithms, the neighbourhood concept is therefore not based on a
single schedule, but rather on a set of schedules. A new schedule can be constructed
by combining different parts from different schedules within the set. The design of
the neighbourhood of the given set of schedules is based on techniques that are some-
what different from those used in simulated annealing and tabu search.

For a comprehensive overview of the many aspects of neighborhood search, see
the survey paper by Vaessens, Aarts and Lenstra (1996).

2.2. Simulated annealing and tabu search

Simulated annealing and tabu search have become very popular over the last
decade. Of these two methods, simulated annealing was the first one to appear (see
Kirckpatrick, Gelatt and Vecchi (1983)). However, even though tabu search appeared
later (see Glover (1989, 1990), Barnes and Laguna (1993), Glover, Taillard and de
Werra (1993), and Barnes, Laguna and Glover (1995)), it is currently more widely
used than simulated annealing in production scheduling. Since the two techniques
have many characteristics in common, they are discussed here in parallel. The neigh-
bourhood design as well as the search pattern within a neighbourhood can be the same
for the two techniques.

The difference between simulated annealing and tabu search lies in the acceptance-
rejection criterion.

The acceptance-rejection technique in simulated annealing functions according
to the following probabilistic process. If at iteration k the process is at schedule Sk

and the neighbouring schedule S is considered a candidate to move to, then schedule
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S is accepted as the next one if the objective value under S, say G(S), is less (better)
than the objective value under Sk, say G(Sk). However, if the objective value under S
is larger (worse) than under Sk, then S may still be accepted as the next schedule.
Schedule S is then accepted with probability

and rejected with probability 1 –P(Sk, S). The parameters β1 ≥ β2 ≥ … ≥ 0 are control
parameters, often referred to as cooling parameters. Frequently, the parameter βk is
chosen to be α k, where α is a constant slightly smaller than 1.

In contrast to the acceptance-rejection technique in simulated annealing, the one
in tabu search functions according to a deterministic process. The search process
keeps track of a so-called tabu list with a fixed number of entries. This number often
lies between 5 and 15. Every time the search performs a mutation in order to go from
one schedule to a neighbouring schedule, the reverse mutation is placed at the top of
the tabu list. All other entries on the list are pushed down one position and the entry
at the bottom is deleted. The reason for keeping such a tabu list is based on the fact
that it is not desirable to allow the search in a subsequent move to return to a schedule
already considered. Since the most basic form of tabu search is a deterministic
process, there is always the danger of cycling. The cycling phenomenon depends very
much on the length of the tabu list. If the length of the tabu list is too small, say 2 or
3, the process may have a high likelihood of cycling. If the length of the list is chosen
too large, then the freedom of the search process is curtailed and the process may be
less likely to find good solutions.

The first applications of simulated annealing and tabu search focused on Trav-
elling Salesman type problems. The neighbourhood design chosen for the TSP is often
based on the 2-opt or k-opt method introduced by Lin and Kernighan (1972).

Simulated annealing has been used subsequently for job shop scheduling prob-
lems with the makespan objective, i.e., Jm||Cmax, by Matsuo, Suh and Sullivan (1987).
They design a neighbourhood based on pairwise interchanges of operations on the
critical path and operations close to the critical path. Their interchanges are called
Multi-Step Look-Ahead and Multi-Step Look-Back interchanges.

Tabu search has been used for single machine, parallel machine, flow shop, flex-
ible flow shop and job shop problems with objectives that include the makespan, the
total weighted completion time, as well as the total weighted tardiness. Crauwels,
Potts and Van Wassenhove (1997) apply tabu search on the single machine with
the total weighted completion time as objective, i.e., 1||∑wj Cj . Laguna, Barnes and
Glover (1991,1993) consider single machine problems with sequence dependent setup
times, namely 1|sjk|∑wj Cj and 1|sjk|∑Tj . Barnes and Laguna (1992) and Barnes,
Laguna and Glover (1995) consider the parallel machine problem with the total
weighted completion time as objective, i.e., Pm||∑wj Cj . For  this problem, it is known
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that the jobs assigned to any given machine have to be scheduled in decreasing order
of the weight divided by the processing time. The problem therefore reduces to the
optimal partition of the n jobs over the m machines. Adenso-Dias (1992) and Nowicki
and Smutnicki (1994) apply tabu search on the flow shop problem. Dell’Amico and
Trubian (1993), Nowicki and Smutnicki (1993), Taillard (1994), and Dauzère-Pérès
and Paulli (1997) apply tabu search on the job shop scheduling problem with the
makespan as objective, i.e., Jm||Cmax. Hurink, Jurisch and Thole (1994) apply tabu
search on a job shop problem with multi-purpose machines.

Several mechanisms have been devised in the literature to improve the overall
efficiency of tabu search (see Hubscher and Glover (1994), Laguna and Glover (1993),
Laguna and Gonzalez-Velarde (1991), and Reeves (1993)). A number of hybrid
approaches, combining simulated annealing with tabu search, have been developed
also.

2.3. Genetic algorithms

A genetic algorithm typically embodies a search process that simulates a natural
evolutionary process. The technique was first suggested by Holland (1973,1975). At
the end of each iteration there is a population of feasible solutions. This population is
referred to as a generation. Each solution is referred to as an individual and in the
subsequent iteration, the next generation of individuals is selected. The least fit indi-
viduals of the previous generation die off and the fittest individuals are allowed to
reproduce. Individuals are referred to as chromosomes. A chromosome may consist
of subchromosomes. Each subchromosome may represent the schedule of operations
on a given machine.

A number of different mutations or transformations can be done on the different
individuals in the population. One can take a promising individual in the population
and perform a mutation that is in a way equivalent to an interchange or insertion in
a (sub)sequence of the jobs or operations. Or, one can consider two individuals in the
population and create a new individual by combining one part of one chromosome
with another part of the other chromosome. Such an operator is in the literature at
times referred to as a recombination operator or a cross-over.

One can make an argument that tabu search and simulated annealing are special
forms of genetic algorithms with the number of individuals in each generation equal
to one. The fact that genetic algorithms keep track of multiple solutions at each
iteration may make them more powerful (but at the same time slower) than simulated
annealing and tabu search.

The first applications of genetic algortihms on combinatorial problems focused
on the Travelling Salesman Problem. However, during the last five years several
researchers have applied genetic algorithms to scheduling problems, in particular the
job shop problem Jm||Cmax (see Lawton (1992), Della Croce, Taddei and Volta (1992),
Bean (1994), Bierwirth (1995), and Herrmann, Lee and Hinchman (1995)). Lee,
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Piramuthu and Tsai (1995) combine the application of a genetic algorithm to a job
shop with machine learning. For an extensive treatise focusing on genetic algorithms
and machine learning, see Pesch (1994).

Recently, there have been a number of applications and implementations of
genetic algorithms in the real world. Bean (1994) develops a very sophisticated form
of a genetic algorithm for a scheduling problem in the automotive industry which he
implemented on a MASPAR computer. Bean concludes from his research that his
specialized genetic algorithm is suitable for real-time scheduling. Mayrand, Lefrancois,
Kettani and Jobin (1995) develop a genetic algorithm for a scheduling problem that
occurs in rolling mills in the aluminum industry. They showed that when the problems
are small, their approach leads to near optimal solutions (within 1%). Herrmann, Lee
and Hinchman (1995) use a genetic algorithm to develop a global job shop scheduler
for semiconductor manufacturing test operations. They report that the system was
successfully implemented in a semiconductor test facility and improved the on-time
delivery rating significantly.

2.4.  Constraint-guided heuristic search

As stated before, constraint-guided heuristic search is completely different from
neighbourhood search. The development of constraint-guided heuristic search tech-
niques has taken place independently from the development of neighbourhood search
techniques.

In the early eighties, with the popularization of artificial intelligence techniques
and languages (e.g., PROLOG), many rule-based scheduling systems were developed.
The developments during this period were spearheaded by research groups at Carnegie-
Mellon University and resulted in the development of the ISIS and OPIS scheduling
systems (see Smith, Muscettola, Matthys and Ow (1990) and Smith (1992)). Since
the scheduling constraints were often incorporated into a system as rules, the neces-
sity arose for the development of constraint management techniques as well as of
constraint-guided heuristic search techniques.

The search techniques that came out of this research did not focus on finding
optimal schedules, they merely focused on finding feasible schedules. Actually, an
objective function was often not even defined. The problem was basically formulated
through a list of rules or constraints that the schedule has to satisfy. As stated before,
a constraint-guided heuristic search focuses on partial solutions and attempts to extend
these partial solutions until a complete solution is obtained that is feasible. These
techniques are often based on measurements of flexibility and constraining factors,
i.e., in the beginning of the search an attempt is made to satisfy the most severe
constraints first. The least severe constraints are left for the final part of the search
process. For an overview of constraint-based scheduling strategies, see Amiri and
Smith (1992) and Cheng and Smith (1997).

Frequently, it is not possible to find a feasible schedule and one or more con-
straints may have to be violated in the schedule. If this is the case, it is advantageous
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to make a distinction between soft constraints and hard constraints. If a feasible sched-
ule is not found with the original set of constraints, then one or more of the soft con-
straints are relaxed and the system tries again to find a feasible schedule (see Cheng
and Smith (1997)). A fair amount of research has been done on constraint relaxation
techniques.

Another area of research within this field is constraint propagation techniques.
Often, having to satisfy two constraints may make it necessary to satisfy a third, not
listed, constraint as well. Constraint propagation is very important in the search
process. Listing all the additional “implied” constraints as early as possible speeds up
the search process considerably. Suppose the system has constructed a partial schedule
by assigning a number of operations to machines. This partial schedule, together with
the original set of constraints, imposes additional constraints on the operations
remaining to be scheduled. It is advantageous, whenever a job has been assigned to
a machine (i.e., whenever a partial schedule has been extended), to generate all addi-
tional constraints the remaining jobs have to satisfy.

Also, before the time-consuming search for a feasible schedule starts and when-
ever additional, implied, constraints are generated, it is advantageous to do consist-
ency checking. That is, it has to be verified if a feasible schedule actually exists. If
two constraints are not consistent, it is advantageous to find this out early in the search
process and do the appropriate backtracking. If there are inconsistencies, they have to
be dealt with in an efficient way. A significant amount of research has been done on
consistency checking. Dealing with inconsistencies is often referred to as conflict
resolution. Conflict resolution techniques may be based on the distinction between
hard constraints and soft constraints. However, it may be that a fair amount of infor-
mation has to be fed into the system with regard to the possible constraint relaxations.

For a survey of the various constraint-guided heuristic search techniques, see
Amiri and Smith (1992). For an overview of the implementation of these techniques,
see Smith (1992) and Noronha and Sarma (1991). For a simple example of a con-
straint-based search technique, see Pinedo (1995).

3. Recent developments in scheduling practice

A number of emerging new applications of scheduling have gained significant
attention of researchers and practitioners during recent years. Examples of these
emerging areas are flexible-resource scheduling (Daniels and Mazzola (1993,1994),
Ozdamar and Ulusoy (1995), Daniels, Hoopes and Mazzola (1996, 1997), Alidaee
and Ahmadian (1997), Alidaee and Kochenberger (1997), and Armstrong, Gu and
Lei (1997a,1997b)), scheduling variable-speed machines (Trick (1994)), scheduling
with finite capacity input and output buffers (Hall, Posner and Potts (1993, 1994,
1997), Nawijn, Kern and Bass (1994)), scheduling of machine and material handling
operations (Egbelu (1987), Matsuo, Shang and Sullivan (1991), Hall, Kamoun and
Sriskandarajah (1993), Lei, Armstrong and Gu (1993,1995), Blazewicz, Drozdowski
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and Weglarz (1994), Hall, Kamoun and Wan (1994), and Crama (1995)), and inte-
grating scheduling with batching and lot-sizing (Potts and Van Wassenhove (1992)).

To limit the length of this survey, we confine our scope to the recent work in
machine scheduling with material handling operations. This area differs from classical
machine scheduling in the sense that two types of resources are now involved:
machines and material handling transporters. Either resource could become a bottle-
neck if not properly scheduled. Transportation operations that move jobs between
machines are non-instantaneous, and the transportation duration depends on the
sequence in which material movement is executed.

It is known that in any manufacturing system, material handling is expensive.
Material handling can take a significant portion, at times as high as 80%, of the total
cost (Tompkins and White (1984)). Attempts to reduce this cost have tremendously
increased the need for new and effective methodologies for the scheduling of machine
and material handling operations. To meet this need, the following issues must be
addressed simultaneously:

(a) Sequencing that specifies the order in which jobs are processed at machining
centers;

(b) Scheduling that makes time-phased routing and dispatching of transporters for
job pick-up and delivery; and

(c) Facility layout and flowpath design that makes efficient operations possible.

Due to the combinatorial nature of the problems, finding an optimal solution
that addresses all these issues at the same time is very difficult. Most studies reported
in the literature consider at most two of these issues. In this section, we shall review
recent work on the first two issues. To deal with these issues, we need to expand the
notation α|β|γ  to α(K)|β|γ , where K denotes the number of transporters in a system.
In addition, we use J to denote the total number of job types, n the total number of
jobs to be processed, nmps the number of jobs in a minimal part set (MPS), Πmin the
objective of minimizing the production cycle time of an MPS in a repetitive process,
tw a manufacturing environment where the starting time of each material handling
operation must be confined within a time window, and nwt the constraint that jobs are
not allowed to wait in process.

A general model to review this work can be formulated as follows. We are given
a set of n jobs to be processed, and m machining centers. All jobs are ready at the
time zero (i.e., we do not consider dynamic arrivals), each with its own route and
processing specifications. The deliveries of jobs between machining centers are
performed by K, K ≥ 1, identical transporters. These transporters travel on a shared
network where traffic collisions must be avoided. All the operations by the transport-
ers, including loading, unloading and moving jobs between machining centers, are
non-instantaneous and non-preemptive. Neither a machine nor a transporter can hold
more than one job at any time. The problem is to find a simultaneous feasible schedule
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for job sequencing and time-phased dispatching and routing of transporters so that a
given objective is optimized. Recent work related to this model can be divided into:

(1) Robotic cell scheduling;

(2) Scheduling of Automated Guided Vehicles (AGVs); and

(3) Cyclic scheduling of hoists subject to time-window constraints.

These types of problems differ mainly in the structure of their constraints. Among
these, the robotic cell scheduling problem has the fewest constraints, and is also the
one for which most analytical results are available. In most related studies, the cell is
of a flowline type with several flexible machines and a single material handling robot.
The size of in-process buffers is either zero or finite. This makes the sequence of robot
moves and the order in which jobs are introduced into the cell determine, to a great
extent, the cell performance (e.g., the resulting makespan and machine utilization).
The main concern of robotic cell scheduling is to identify the optimal job input
sequence and the robot operation sequence with respect to certain objective functions.
On the other hand, AGV scheduling typically deals with an automated job shop with
non-zero buffers at machining centers and multiple AGVs traveling on a shared
network. A major constraint that must be satisfied by any AGV schedule is to avoid
traffic collisions of AGVs during their operations. The AGV scheduling problem is
mainly concerned with how to schedule the moves of AGVs in a traffic network so
that traffic collisions are eliminated and the risk of machine blocking (i.e., machine
deadlock) is minimized. Among the three, the problem of cyclic scheduling of hoists
with time window constraints is perhaps the most restrictive. It typically deals with
the scheduling of multiple hoists in a flexible flowshop. The most distinct feature of
the hoist scheduling problem is that the job processing time at each machine is strictly
limited by a lower and an upper bound (i.e., the time window or tw constraints). This
means that any hoist schedule that causes a hoist not to pick up a job within the time
window is infeasible. In addition, the hoist scheduling problem is also subject to the
nwt and collision-free constraints.  The general versions of these problems are all NP-
hard in the strong sense. Most of these, especially those encountered in real systems,
are so complicated that they preclude a formal mathematical formulation.

The main purpose of this section is not to make a complete coverage of all the
work published on these topics, but rather to review some of the recent developments
in approaches for the related scheduling problems.

3.1. The robotic cell scheduling problem

The problem of robotic cell scheduling typically arises in cellular manufacturing
systems consisting of a series of cells. Each cell is equipped with a single material
handling robot and several flexible machines that produce MPSs repetitively. To
reduce the holding cost, buffers between machines are limited (either zero or finite
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size). This makes the cell performance (e.g., makespan, machine utilization, or tardi-
ness) depend, to a great extent, on the sequence of robot moves and the order in which
jobs are loaded into the cell. One common objective considered in the literature is to
minimize the steady-state cycle time, or Fm(1)|J > 1|Πmin. An extensive review of
the work in this area up to 1991 can be found in Sethi et al. (1992). Here, we will
cover mainly the results developed after 1992.

3.1.1. The no-buffer case
A major stream of work in this area considers the case with no buffer between

machines. Under this assumption, several elegant polynomial algorithms are avail-
able for 2-machine cells (m = 2). Sethi et al. (1992) find a strong polynomial
procedure that generates the optimal job sequence for F2(1)|J > 1|Πmin, assuming
that a fixed one-unit cycle is used (a one-unit cycle is a particular sequence of robot
moves in which each machine is loaded and unloaded exactly once per cycle). This
result is achieved by showing that the problem of finding the optimal job input
sequence can be reduced to a solvable case of the traveling salesman problem. They
also show that for any given m-machine cell, there are only m! one-unit cycles. Hall,
Posner and Potts (1993,1994) and Hall, Kamoun and Wan (1994) further extend the
results by Sethi et al. (1992). They indicate that the optimal cycle time is not neces-
sarily attained by repeating the same one-unit cycle, even when m = 2. When m = 2,
there are a total of two one-unit cycles, S1 and S2, and therefore four combination
cycles based on S1 and S2 for each job to be processed. They then introduce an O(n4

mps)
algorithm, MinCycle, that jointly optimizes the robot moves and job sequence (Hall,
Kamoun and Sriskandarajah (1996a)). This polynomial algorithm finds the optimal
schedule by evaluating alternative cycle combinations and their associated optimal
job sequences. To handle the instances with large number of jobs effectively, Hall,
Kamoun and Sriskandarajah (1996b) also introduce a simple but effective heuristic,
QuickCycle. This heuristic differs from MinCycle as it considers only a subset of
(promising) candidate combinations of cycles. Empirical results show that this
Quick-Cycle routinely generates solutions very close to optimal while the required
number of computation steps is bounded by O(n2

mps).
With respect to F2(1)|J > 1|Cmax, Kise, Shioyama and Ibaraki (1991) propose

an O(n3) procedure that solves the problem based on the known Gilmore and Gomory
algorithm (Gilmore and Gomory (1964)). For the same problem, however, if the trans-
portation time between machines is job dependent (Stern and Vitner (1990)), then the
problem is equivalent to an asymmetric traveling salesman problem and is NP-hard
in the strong sense (Ganesharajah, Hall and Sriskandarajah (1995)).

However, both Fm(1)|J > 1|Cmax and Fm(1)|J > 1|Πmin, even with no buffer and
a fixed one-unit cycle, are NP-hard when m ≥ 3. A formal proof of this together with
several interesting results are presented in Hall, Kamoun and Wan (1994). For the
three-machine cell (m = 3) case, they show that the optimal job sequence can be found
by an efficient algorithm in four of the six available cycles. In the other two cycles,
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the job sequencing problem becomes intractable. For these difficult problems, they
then develop heuristics based on the Gilmore and Gomery algorithm. In general,
Sriskandarajah, Hall and Kamoun (1994) show that the job sequencing problem is
polynomial solvable for 2m – 2 of the m! available cycles and unary NP-hard for the
remaining cycles, for any m ≥ 2.

On the other hand, if we restrict ourselves to the cases of either Fm(1)|J = 1|Cmax

or Fm(1)|J = 1|Πmin, that is, all jobs are identical and thus the job sequencing problem
vanishes, then the problem becomes polynomial solvable. Sethi et al. (1992) propose
a simple decision rule that finds the optimal schedule for robot moves when there
are only three machines (m = 3) in the system. Crama and Klundert (1994) further
extend this result and prove that the robotic cell scheduling problem with identical
jobs and an arbitrary large m can be solved in a time that is strongly polynomial in m.
This result is achieved by showing that the set of pyramidal permutations necessarily
contains an optimal solution of the problem. Based on this observation, they then
propose an efficient dynamic programming approach that solves the special case
optimally in O(m3) time.

3.1.2. The finite buffer case
The robotic cell scheduling problem with finite, but non-zero, input and output

buffers at machine centers and zero transportation times is known to be NP-hard.
King, Hodgson and Chafee (1993) consider the 2-machine scheduling problem,
F2(1)|J > 1|Cmax, where each machine has a finite input buffer, but no output buffer
(i.e., a machine becomes blocked if a completed job is not removed). They assume a
fixed job input sequence, and then determine the sequence of robot moves that mini-
mizes the makespan by using a branch-and-bound procedure. This procedure solves a
large number of longest-path subproblems during the search. Also assuming that the
input sequence of a given set of jobs is fixed, Jeng, Lin and Wen (1993) propose a
branch-and-bound procedure to find the optimal schedule of robot moves in a robotic
cell with multiple parallel machines. The objective is to minimize the total flow time,
or ∑Cj . To speed up the search, a heuristic based on the SPT rule is used to derive an
initial sequence and an upper bound for the search.

3.1.3. Related research
There are several interesting studies closely related to this area. Matsuo, Shang

and Sullivan (1991) study the problem of scheduling a single transporter (crane) in a
flexible automated flowshop. The objective is to maximize the production rate sub-
ject to job flowtime limit. They show that, if there is only a single product being
produced, then cyclic schedules provide a near-optimal solution with a relative error
that is asymptotically zero when the number of cycles approaches infinity. For the
general case with parallel identical machines and multiple products, they find that if
the job input sequence is fixed, then a schedule that minimizes the cycle time can be
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derived in O(nmpsJ + J3). This schedule is derived by solving an associated maximum
cost circular network flow problem. Heuristics for constructing job sequences are also
proposed. Rao and Jackson (1993) consider cyclic schedules for re-entrant flowshops
in which transportation delays are fixed and robots are modeled as regular machines.

A special case of robotic cell scheduling occurs when all machines are identical
and working in parallel. A thorough analysis of the complexity of the various associ-
ated scheduling problems, with respect to different objectives (e.g., Cmax, Lmax, ∑Tj ,
etc.), is given in Hall, Potts and Sriskandarajah (1994).

3.2. Scheduling of automated guided vehicles (AGVs)

The AGV scheduling problem typically occurs in the process of flexible manu-
facturing. Such a flexible manufacturing system (FMS) usually consists of numerically
controlled machining centers, each with limited input and output buffers, inter-
connected by a material flow network. It can be viewed as an automated job shop, or
Jm(K)|J > 1|γ, with non-instantaneous material delivery, and is capable of process-
ing a wide variety of different jobs of small lot sizes to meet specific customer needs.
During the manufacturing process, AGVs circulate on a network of guidepaths
connecting machine centers, and transport tools and jobs among the centers. Because
of the level of sophistication and complexity of an FMS, any improper dispatching of
AGVs will necessarily lead to congestion, collision, and lengthy delays in manufac-
turing processes (Sinriech and Tanchoco (1992), Riopel and Langevin (1991), Bozer
and Srinivasan (1991)).

AGV flowpaths that are commonly used in practice include: the unidirectional
(→) and the bi-directional (↔) flowpath. In general, bi-directional networks often
result in a higher control and implementation cost, but have a greater potential to
improve productivity, require fewer AGVs, and reduce AGV travel time. There are
also two kinds of commonly used network configurations: a single-loop and a
multi-loop network. With a single-loop configuration, all machines are accessible via
the loop, and the avoidance of AGV collisions is relatively easy to address. Conse-
quently, most analytical studies that find optimal solutions to the special cases of the
AGV scheduling problem assume the single-loop layout. With a multi-loop network,
AGV collision and the risk of machine blocking (which occurs when the output
buffer of a machine is full) become major concerns in scheduling, especially on a
bi-directional network. For a more detailed coverage, classification and operational
issues of AGV systems, we refer to the work of Egbelu and Roy (1988), Chu, Egbelu
and Wu (1995), and Ganesharajah, Hall and Sriskandarajah (1995).

3.2.1. Analytical approaches to AGV scheduling
Most analytical approaches that guarantee the optimal AGV schedule with

respect to certain objective functions are limited to special cases.
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Undirected flowpath case
With the assumption of unidirectional flowpath, Blazewicz et al. (1991) show

that, if the deadlines of deliveries to machines are fixed, then the existence of a
feasible schedule with a given fleet size on a single-loop network can be determined
in O(n log(n)), where n is the total number of delivery operations to be performed.
With a similar application background, Blazewicz et al. (1994) study the problem of
AGV scheduling on a two-loop network with a common stretch on which AGVs can
switch between loops to obtain higher routing flexibility. They analyze conditions for
collision-free routing and then propose an efficient dynamic programming approach
to search for a feasible schedule with a fixed delivery plan (i.e., with fixed deadlines
for deliveries at each machine). The proposed approach is based on a transformation
of the original problem to a scheduling problem on parallel processors with deadlines
where each job has only one of two distinct processing times. Their proposed
approach is also able to generate a schedule that minimizes the maximum tardiness
when no feasible delivery plan exists with the given fleet size.

Jaikumar and Solomon (1992) consider an AGV system on a unidirectional net-
work modeled from a real system. They assume that each loop has a safety zone so
that AGV interference can be eliminated, and that all jobs are returned to a central
warehouse between successive machining steps. They then solve the minimum fleet
size and AGV scheduling problem by identifying the minimum number of paths that
cover all the nodes on an associated acyclic time-space network. The minimum number
of paths is found by solving a related maximal flow problem implied by Dilworth’s
theorem (Shapiro (1979)). The resulting algorithm is strongly polynomial.

Ganesharajah, Hall and Sriskandarajah (1996) study objectives of minimizing
cycle time, fleet size and AGV utilization under three different AGV dispatching
policies. They distinguish polynomially solvable sequencing problems, based on the
policy, from others that are NP-hard. The relative performance of the policies with
respect to the three objectives is discussed.

Many results developed for the robotic cell scheduling problems can be applied
to the cases with single loop and zero buffer. For example, when m = 2, then the
resulting F2(1)|J > 1|Cmax  AGV scheduling problem can be solved in strongly poly-
nomial time by applying the Gilmore and Gomory algorithm (Kise, Shioyama and
Ibaraki (1991)). A related study and algorithm can be found in Agnetis, Pacciarelli
and Rossi (1994).

Bi-directional flowpath case
Several analytical approaches also consider the cases with a bi-directional net-

work. Kim and Tanchoco (1991) propose a strongly polynomial procedure to find
the minimum-delay path for sending an AGV from a source location to a particular
machine center without disrupting the scheduled moves of other AGVs. The proce-
dure has a complexity of O(K4m2), where K is the fleet size and m is the number of
nodes (which can be either a machining center or a pick up station) on the network.
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The procedure is developed based on Dijkstra’s algorithm. Krishnamurthy, Batta
and Karwan (1993) propose a column generation based heuristic approach for bi-
directional AGV dispatching. The master problem consists of the makespan and
vehicle interference constraints, and contains columns that are routes iteratively
generated for each vehicle. The subproblems are constrained shortest path problems,
with time-dependent costs on the edges.

Langevin, Lauzon and Riopel (1994) propose a dynamic programming approach
to solve the two-AGV scheduling problem with an objective of minimizing the
makespan. For each task to be scheduled, a vehicle is selected based on the makespan
criterion, and an associated shortest-path problem is solved to design the route of that
vehicle. If a new route results in conflicts, then one route is fixed while the other is
modified by using the time-window constrained shortest-path algorithm by Desrochers
and Soumis (1988). With a similar objective function, a heuristic scheduling algo-
rithm is discussed in the work by Blair, Charnsethikul and Vasques (1987).

3.2.2. Heuristic rules for AGV and machine scheduling
Due to the combinatorial nature of AGV scheduling in general FMS settings, a

major focus of researchers in this area has been the design of effective heuristics.
Most heuristic rules prioritize either machines to be served by an AGV or the

AGVs to serve a machine, with respect to a given objective function. A seminal work
in this area is Egbelu and Tanchoco (1984). Related surveys can be found in Kusiak
and Cyrus (1985), Cheng (1987), Co and Tanchoco (1991), Ganesharajah, Hall and
Sriskandarajah (1995), and Klein and Kim (1996). Recent studies in this area extend
simple scheduling rules to easy-to-use dispatching algorithms (for example, see
Egbelu (1987), Slomp, Gaalman and Nawijn (1988)), and to methods for generating
machine and AGV schedules simultaneously (Bilge and Ulusoy (1995)).

In general, AGV dispatching rules can be classified into either work center-
initiated rules or vehicle-initiated rules. With a work center-initiated rule, a work
center selects an AGV for a delivery operation whenever it finishes an operation. With
a vehicle-initiated rule, an AGV selects a pick up when it becomes idle. Egbelu and
Tanchoco (1984) show that in a busy system, the vehicle-initiated rules are more
effective than the work center-initiated rules. The vehicle-initiated rules can be further
classified into pull-based and push-based. With a pull-based dispatching policy, a
vehicle selects a work center with the highest need for job replenishment. Then, a job
from the set of candidate jobs which can be sent to that work center is selected. With
a push-based policy, a vehicle first selects a job to move and then a work center to
which the job should be sent.

Taghaboni and Tanchoco (1988) propose a heuristic procedure to plan conflict-
free vehicle routes. Each time a vehicle is selected to make a delivery, all pre-
established routes for other vehicles are fixed, and a feasible route for the selected
AGV is designed. The intersection conflict is solved on a first-come-first-serve basis.
Sabuncuoglu and Hommertzheim (1989, 1992b) test various machine and AGV
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scheduling rules against different scheduling criteria via simulation experiments.
Sabuncuoglu and Hommertzheim (1992a) also propose a hierarchical approach for
real-time on-line AGV scheduling problems. The proposed algorithm uses the infor-
mation concerning job status to schedule one AGV at a time whenever a scheduling
decision is needed or the status of the system is changed. The idea behind their
approach is that a job should not be moved if it will have to wait for the next machine
on its route. Yim and Linn (1993) use a Petri net based simulation model to investi-
gate the effect of different dispatching rules on the FMS performance. The evaluation
results show that there is no significant difference in terms of output rate between
push and pull based policies when an FMS system is busy. Bilge and Ulusoy (1995)
propose an iterative heuristic procedure to find a feasible schedule for both machine
and AGV operations. At each iteration, a new machine schedule is constructed, which
is then used to define the time windows for AGV trips.

There is also an emerging line of work on AGV scheduling via artificial intelli-
gence and expert systems techniques. A review of this new line of work can be found
in Kusiak (1989). Chung and Fischer (1995) propose an approach based on a Hopfield
neural network with simulated annealing. The resulting procedure finds the shortest
flow path for an AGV system on a specified routing structure and is able to avoid
potential collisions between AGVs.

3.3. The hoist scheduling problem

The hoist scheduling problem can be considered as a special class of Jm(K)
|J > 1|Πmin problems with tw and nwt constraints. Its most distinctive feature is that
the job processing time at each machine is not fixed, but a decision variable whose
value must be selected from a given range. In the literature, this is called the interval
processing time. This interval processing time makes most of the results discussed
in sections 3.1 and 3.2 inapplicable. Hoist scheduling problems are often found in
electroplating and chemical industries. In the United States, there are more than 4,000
electroplating manufacturers that produce various industrial connectors, printed circuit
boards, and switches used in telecommunications hardware.

A typical electroplating line consists of a large number of chemical tanks
(machines) in which jobs are submerged. Each job is a barrel carrying identical parts
to be plated. Different job types may require a different route and treatment process.
Because of the nature of the chemical process, the processing time (i.e., submerging
duration) at each tank must be strictly controlled within given lower and upper bounds
(i.e., the interval processing time or tw constraints). To reduce the damage of oxidi-
zation, it is also required that a job, after being removed from a tank, must be directly
sent to the next tank on its route and then submerged so that the time exposed to air
is minimized. This is referred to as the nwt constraints.

Material handling transporters used in such a process are typically computer-
programmed hoists, moving along a shared track. To perform a material handling
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operation, the assigned hoist will travel to the processing tank, wait if necessary, lift
the job up at the scheduled starting time, travel to the next tank on the route and then
drop the job into the chemicals there. After that, the hoist is available for another
scheduled operation. Due to the size of the job, both a tank and a hoist can hold only
one job at a time. Therefore, any schedule that causes either jobs to be “jammed-up”
in the same tank or multiple jobs to compete for the same hoist at the same time is not
acceptable (i.e., infeasible). Also, due to the single-track constraint, any schedule that
requires two or more hoists to cross each other to perform their assignments (i.e., the
traffic collision) must be eliminated. A common objective of hoist scheduling in
practice is to minimize the cycle time of a repetitive process for producing a given
MPS.

3.3.1. Fm(K)|J = 1, nwt, tw|Πmin

When all the jobs are identical (i.e., each MPS consists of a single job), the entire
manufacturing process becomes a cyclic no-wait flowline. This special case typically
occurs in the mass production of a single product such as computer disks.

Even when K = 1, the problem Fm(1)|J = 1, nwt, tw|Πmin has been proved to be
NP-hard in the strong sense (Lei and Wang (1989)). An early analytical approach to
this problem is reported by Phillips and Unger (1976), who formulate and then solve
the problem as a mixed integer program. Shapiro and Nuttle (1988) propose a branch-
and-bound procedure that solves a large number of LP subproblems. They then report
the optimal schedules for five industry benchmark problems (Shapiro (1987)). Arm-
strong, Gu and Lei (1991,1994) also propose a branch-and-bound procedure. Instead
of solving LP subproblems at each node on the search tree, they solve relaxations of
LPs. The procedure is able to approach the optimal schedule quickly in terms of the
same set of benchmark problems. Different bounding schemes are also discussed in
Levner and Ptuskin (1989), Mikhalevich, Beletsky and Monastyrev (1989), Hertz,
Mottet and Rochat (1993), Song, Zabinsky and Storch (1993), Lei and Wang (1994),
Armstrong, Gu and Lei (1995), and Chu and Proth (1996). A recent work on Fm(1)
|J = 1, nwt, tw|Πmin, by Chen, Chu and Proth (1995), is also based on branch and
bound. They transform the subproblems encountered during the search process into
so-called “cycle time evaluation problems on bi-valued graphs”, and then propose a
polynomial algorithm for solving each of these subproblems. Another recent branch-
and-bound procedure for solving Fm(1)|J = 1, nwt, tw|Πmin can be found in Ng (1996).

A special case of Fm(1)|J = 1, nwt, tw|Πmin occurs when the job processing time
in each tank is fixed. This special case is shown by Levner and Kats (1995) to be
solvable in O(m3log(m)) time. Another special case of Fm(1)|J = 1, nwt, tw|Πmin

occurs when the unit-cycle is fixed (i.e., the sequence of hoist operations to be per-
formed in each cycle is fixed). In this case, Lei (1993a) shows that the optimal integer
schedule that minimizes the cycle time can be derived in O(m2log(m) log(B)),  where
the parameter B stands for the interval between a lower and upper bound on Πmin.
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When multiple transporters are involved (K > 1), the scheduling process becomes
more complicated due to the additional single-track or collision-free constraints. Even
a formal mathematical programming formulation for this case is difficult to construct
since an explicit expression of the single-track constraints depends on the traffic
regulation rules in use. Known approaches for this problem are all heuristic-based.
Lei and Wang (1990) propose a local optimization approach for the Fm(2)|J = 1, nwt,
tw|Πmin problem. The idea behind this approach is to partition a given line into two
non-overlapping zones. Each transporter is then assigned exclusively to a particular
zone. Since the movements of each transporter are confined to its own territory, traffic
collisions are eliminated. The optimal partition that leads to the minimum system
cycle time (i.e., the minimum cycle time that is feasible for both transporters) is then
searched for. Manier, Varnier and Baptiste (1994) further generalize this zoned
approach to allow single-transporter zones to overlap to accommodate the need for a
bi-directional job flow. A set of inequalities that eliminate transporter collisions in
overlap sections of zones are developed for the scheduling purpose. This extended
approach, however, does not guarantee an optimal solution.

One special case of multiple-hoist scheduling occurs when job processing times
are fixed and the single-track constraint is relaxed, or Fm(K)|J = 1, nwt|Πmin. In this
case, Lei (1993b) shows that, for any given fleet size, the optimal hoist schedule that
minimizes the cycle time can be found by a pseudopolynomial algorithm that solves
a sequence of associated assignment problems.

3.3.2. Fm(K)|J > 1, nwt, tw|Πmin

The computational effort required to solve Fm(K)|J > 1, nwt, tw|Πmin increases
tremendously even in the case of K = 1, due to the need for both job sequencing and
hoist scheduling. Given an MPS of nmps jobs, each requiring processing in m tanks,
the total number of candidate cyclic schedules is O(Knmpsmnmps! (nmpsm)!). This esti-
mation is based on nmps! candidate job sequences, nmps· m! candidate (unit) hoist
cycles, and Knmpsm candidate assignments of hoists to delivery operations.

All available approaches to this problem are based on either heuristic dispatching
rules or expert systems. Representative work using expert systems for the scheduling
of hoist movements can be found in Yih (1990), and Yih and Thesen (1991).

To summarize the algorithmic studies on these transporter scheduling problems,
tables 2 and 3 in the Appendix present the main results in these areas.

4. Conclusion

In this survey, we have attempted to review some of the recent developments in
the theory, the heuristic search methods, and the practice of deterministic scheduling.

In terms of new results in scheduling theory, we have briefly reviewed the sched-
uling literature with the 1-job-on-r-machine pattern, primarily in the parallel machine
environment with r being a positive integer. As discussed in section 1, changing r
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from 1 to a positive integer usually increases the complexity of most problems. Note
that there is no clear relationship between the complexity of the nonfix and the fix
models. However, both fix and nonfix models are actually special cases of the set
model where, as mentioned before, set means that a job can choose a set of alterna-
tives where each alternative contains several dedicated machines. Hence, a set
problem is NP-hard if either the corresponding fix problem or nonfix problem is NP-
hard. Very little work has been done on set problems.

Most of the nonpreemptive problems discussed are NP-hard in the strong sense.
Hence, heuristic algorithms are of interest. For the preemptive problems, most poly-
nomial algorithms are based on linear integer programming techniques. Special cases
with pj = 1 have also been studied extensively. In either nonfix or fix models, if we
assume pj = 1, then the maximum possible number of job types that can fit on m
machines in each unit time interval is a function of m. Hence, for the problem with
fixed m, it is a fixed number. Thus, we can use linear integer programming, dynamic
programming, or network representations with shortest-path algorithms to solve most
problems optimally with complexity that is polynomial in n.

Several open questions were mentioned in section 1. Since most problems are
NP-hard, either branch-and-bound techniques, dynamic programming, or heuristic
algorithms with an error bound analysis are of interest. Due to a lack of research
concerning these approaches, this is a research direction of interest. The nonpre-
emptive case with different job release times and different machine available time
windows is an area for future research.

We have also reviewed briefly deterministic machine scheduling with availability
constraints. The literature so far has focused on both the resumable and the non-
resumable case. It will be of interest to consider a semi-resumable case where some
extra setup time may be required when a job restarts. Extension of the existing models
to more complicated job shop and open shop problems is also an interesting research
direction. Furthermore, combining machine availability constraints with human resource
constraints is another area of study.

In section 2, we presented a fairly complete review of the various search
algorithms developed for scheduling during the past decade. These new developments
can be classified into neighbourhood search techniques and constraint-guided heuristic
search techniques. The former intends to make local improvement of an existing
solution, while the latter merely has as goal to find a good feasible solution. In terms
of neighbourhood search techniques, we have reviewed the three most commonly used
approaches, namely simulated annealing, tabu search, and genetic algorithms.

A number of comparative studies have been conducted to compare these methods
with one another and with other more classical mathematical programming type of
approaches. There are several important parameters that have to be compared. The
most important one is  the quality of the solution, i.e., which approach leads to a better
answer. Another important aspect is the amount of CPU time that is required to arrive
at an acceptable solution. Also, a ratio of these two factors could be of interest. A
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third characteristic on which an approach can be judged is the development time or the
implementation time. Neighbourhood search approaches usually need less develop-
ment time than the more classical mathematical programming approaches.

It has to be kept in mind that there are a number of issues that affect the out-
come of each comparative study, namely

• the initial solution,

• the setting of parameters,

• the language and manner in which the procedure is coded,

• the platform on which the study is conducted.

Della Croce, Taddei and Volta (1992) make a comparison of various techniques,
including the Shifting Bottleneck technique (see Adams, Balas and Zawack (1988)),
tabu search and genetic algorithms. In their comparison, genetic algorithms appear to
be the least effective technique among the three neighbourhood search techniques.
According to the latest computational studies by Aarts, Van Laarhoven and Lenstra
(1994) and Morton and Ramnath (1995), tabu search is the most efficient one of the
neighbourhood search techniques. Studies comparing neighbourhood search tech-
niques with constraint-guided heuristic search techniques have not yet been conducted.

In section 3, we discussed scheduling applications. There have been a large
number of new applications of scheduling in practice; only the area of scheduling of
material handling transporters is reviewed here. The three types of transporter sched-
uling problems (robot, hoist and AGVs) being reviewed share similarities in many
aspects. For example, the single-AGV scheduling problem defined on a single-loop
layout with no buffer is identical to the single-robot robotic cell scheduling problem.
Also, the single-hoist scheduling problem with numerical processing times can be
viewed as a special version of the robotic cell scheduling problem, and the multiple-
hoist problem can be considered as a special class of AGV scheduling problems. This
means that results developed for one may benefit the other.

One important line of work, from a practical point of view, which has not yet
received enough attention is the development of effective approaches that address
machine and transporter scheduling, as well as facility layout problems in an integrated
manner. By machine scheduling, we refer to time-phased scheduling of machine
operations, which includes the job sequencing. Clearly, the performance of a system
depends on how these issues are addressed and how the operations of machines and
transporters are coordinated. While deriving a “global optimal” solution to address
all these issues may not be practical, “easy-to-use” heuristic algorithms that will
terminate the search within a reasonable time without sacrificing too much in the
solution quality is of great interest. With the advances in computing hardware (speed
and memory), more and more real scheduling systems can afford a search for the best
solution within a reasonably large subspace. Yet, not enough analytical results that
guide this type of search have been reported for the scheduling problems reviewed in
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section 3. The methodologies reviewed in section 2 of this survey would benefit this
purpose.

Another important area is transporter scheduling with dynamic job arrivals. A
number of researchers have focussed on this type of scheduling problem. Scheduling
in a dynamic environment is more difficult as we can not foresee future jobs. There
are many questions waiting to be addressed, e.g., where is the optimal home position
of a transporter after a delivery? How to coordinate the machine and material handling
operations to minimize the machine, transporter, and job waiting time? How to con-
struct collision-free schedules when jobs arrive dynamically? Several studies on these
issues can be found in the work by Bartholdi and Platzman (1989), Kim and Tanchoco
(1991), Egbelu (1993), Chang and Egbelu (1995), and Ozdamar and Ulusoy (1995).

Table  1

Summary of complexity classification of 1-job-on-r-machine problems.
P: Polynomial; NP: NP-hard in the ordinary sense;
NP!: NP-hard in the strong sense, and R ≤ 2m – 1;

NP(?): NP-hard yet open question for the strong sense.

Problem Complexity Reference

P2ynonfixyCmax NP Du and Leung (1989)
P3ynonfixyCmax NP Du and Leung (1989)
P4ynonfixyCmax NP(?) Du and Leung (1989)
P5ynonfixyCmax NP! Du and Leung (1989)
Pmynonfix, pj = 1yCmax O(n) Blazewicz et al. (1986)
Pmyprmp, nonfixyCmax P Blazewicz et al. (1986)
P2ynonfixy∑wj Cj NP! Lee and Cai (1996)
P2ynonfix, pj = 1y∑wj Cj O(n log n) Lee and Cai (1996)
P2ynonfixyLmax NP!  Lee and Cai (1996)
P2yfixyCmax O(n) trivial
P3yfixyCmax NP! Blazewicz et al. (1992)
P2yfix, rj yCmax NP! Hoogeveen et al. (1994)
Pmyfix, rj , pj = 1yCmax O(R2RnR+1) Brucker (1995)
Pmyprmp, fixyCmax P Hoogeveen et al. (1994)
Pyfix, pj = 1yCmax NP! Hoogeveen et al. (1994)
P2yfixy∑Cj NP! Cai et al. (1996)
P2yprmp, fixy∑Cj O(n log n) Cai et al. (1996)
Pmyfix, rj, pj = 1y∑Cj O(R2RnR+1) Brucker (1995)
Pmyfix, pj = 1y∑wj Cj O(R2RnR+1) Brucker (1995)
Pyfix, pj = 1y∑Cj NP! Hoogeveen et al. (1994)
P2ychain, fix, pj = 1y∑Cj NP! Hoogeveen (1994)
P2yfixyLmax NP! Section 1.1.2
Pmyfix, pj = 1y∑Tj O(R2RnR+1) Brucker (1995)
Pmyfix, pj = 1y∑wj Uj O(R2RnR+1) Brucker (1995)

Appendix
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Table 2

Problem classification, complexity and analytical approaches to the
transporter scheduling problems with zero in-process buffers.

Problem Complexity Approaches References

F2(1)|J > 1|Cmax O(n3) Based on Gilmore and Kise, Shioyama and
Gomory algorithm Ibaraki (1991)

F2(1)|J > 1|Cmax NP! Ganesharajah, Hall and
with job dependent Sriskandarajah (1995)
transportation time

F2(1)|J > 1|Πmin O(n3) Based on Gilmore and Sethi et al. (1992)
Gomory algorithm

Fm(1)|J > 1|Πmin NP! Heuristics based on Hall, Kamoun and
Gilmore and Gomory Wan (1994)

algorithm

Fm(1)|J = 1|Πmin O(m3) Dynamic Programming Crama and Klundert (1994)

Fm(1)|J = 1, nwt|Πmin with O(m3log(m)) Interval cutting Levner and Kats (1996)
numerical processing times

Fm(1)|J = 1, nwt, tw|Πmin NP! Branch and Bound Shapiro and Nuttle (1988)
Levner and Ptuskin(1989)
Mikhalevich et al. (1989)
Song et al. (1993)
Hertz et al. (1993)
Armstrong et al. (1994)
Lei and Wang (1994)
Chen, Chu and Proth (1995)
Ng (1996)

Fm(1)|J = 1, nwt, tw|Πmin O(m2log(m) log(D)) Binary search Lei (1993a)
with cycle fixed where D is a data-

dependent parameter

Fm(2)|J = 1, nwt, tw|Πmin NP! Local optimization based Lei and Wang (1991)
on zoned partition

Fm(K)|J = 1, nwt|Πmin Open Pseudopolynomial Lei (1993b)
with numerical processing algorithm
times and relaxed single-track
constraint
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Table 3

Known heuristic rules for multiple transporter scheduling.
(* Denotes rules that perform competitively under certain conditionsyobjectives.)

(Transporter-status based)
Nearest transporter* Egbelu and Tanchoco (1984)

Mahadevan and Narendran (1990)
Klein and Kim (1996)

Farthest transporter Egbelu and Tanchoco (1984)
Longest idle transporter Egbelu and Tanchoco (1984)
Most idleyleast utilized transporter Cheng (1987)

Single-attribute Mahadevan and Narendran (1990)
rules First available transporter* Cheng (1987)

Mahadevan and Narendran (1990)
Least idle transporter Cheng (1987)
Shortest travel time Egbelu and Tanchoco (1984)
Longest travel time Egbelu and Tanchoco (1984)

(Machine-status based)
Maximum queue size* Klein and Kim (1996)

Russell and Tanchoco (1984)
Minimum remaining outgoing queue space Egbelu and Tanchoco (1984)
Longest waiting job* Russell and Tanchoco (1984)

Klein and Kim (1996)
Longest waiting time since the last job arrival Yim and Linn (1993)
Maximum remaining incoming queue space Yim and Linn (1993)

Additive weighting factor* Hodgson et al. (1987)
(choose the alternative with the maximum Klein and Kim (1996)
weighted sum of attribute values)

Fuzzy multi-attribute decision method Klein and Kim (1996)
(choose the alternative with the highest
outcome under fuzzy ratings)

Modified additive weighting factor* Klein and Kim (1996)
Multiple-attribute (same as the Additive Weighting Factor, except
rules that normalized attribute values are now used)

Max-Max method Klein and Kim (1996)
(choose the alternative whose maximum
objective value is the maximum of all)

Multi levelymodule hierarchy scheduling model* Akturk and Yilmaz (1996)
(choose the alternative based on the informa-Sabuncuoglu and Hommertzheim (1992)
tion of shop, cell, machines and transporters)

Longest waiting job and minimum remaining Yim and Linn (1993)
outgoing queue space
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