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Abstract

Background: Chitin and chitosan are natural biopolymers found in shell of crustaceans, exoskeletons of insects and

mollusks, as well as in the cell walls of fungi. These biopolymers have versatile applications in various fields such as

biomedical, food industry, and agriculture. These applications are back to their biocompatibility, biodegradability,

strong antibacterial effect, and non-toxicity.

Outcomes: The fungal biopolymers have many features that made them more advantageous than those biopolymers

from seafood waste origin. Chitin and chitosan are not components of cell wall in all fungal species. The fungal classes

of Basidiomycetes, Ascomycetes, Zygomycetes, and Deuteromycetes are known to contain chitin and chitosan in their

cell walls. The amounts and characters of fungal biopolymers are affected by many factors so they should be optimized

before increasing the scale of production. The statistical design of experiments is the most recent and advanced

approach for optimization of various factors with more reliable results.

Conclusion: Although extensively studied, further studies concerning fungal chitin and chitosan should be conducted in

order to be sure of safety for human use.
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Introduction

Worldwide, there are approximately 140 × 106 tons of

synthetic polymers produced, annually. However, these

synthetic polymers are somewhat stable and their bio-

degradation is limited. This necessitates the need for

biodegradable polymers that are compatible with the

ecosystem. Among these biopolymers, chitin and chito-

san have attracted the attention of both scientists and

industry men due to their numerous potential applica-

tions in biomedicine, agriculture, paper making, food in-

dustry, and textile industry (Akila 2014). The wider

applications of chitin and chitosan are not only due to

their abundance but also due to their non-toxicity and

biodegradability (Islam et al. 2017).

Historically, chitin, a naturally abundant mucopolysac-

charide, was first isolated by Braconnot (1811) from the

cell walls of mushrooms where it was named “fungine.”

In 1823, fungine was renamed as chitin by Odier (Odier

1823), almost three decades before the isolation of cellu-

lose (Knorr 1984). Chitin follows cellulose in terms of

abundance with annual biosynthesis of 100 billion tons

(Tharanathan and Kittur 2003). Chitin is a main compo-

nent in the shell wastes of crustaceans and also found in

exoskeletons of insects and mollusks and in the cell

walls of some fungi (Bhuiyan et al. 2013; Yeul and

Rayalu 2013).

Chitosan was first discovered in 1859 by Rouget

(Novak et al. 2003). After its discovery to present, it has

become a source of numerous studies due to its versatile

biological, chemical, and physical properties and wide

range of applications (Bhuiyan et al. 2013). Although it

has been found in some types of fungi, chitosan is,

mostly, obtained from chitin deacetylation.

Initially, chitin and chitosan were obtained from the

shell wastes of shrimps and crabs. However, their discov-

ery in the fungal cell walls opened up the horizon for

more research and biotechnological applications due to

the absence of allergenic substances and less waste pro-

duction (Chien et al. 2016). Moreover, fungal chitin and

chitosan would offer non-seasonable and stable sources

of raw material and consistent characters of the product.

The aim of the present review is to concentrate on the

current and most recent researches on chitin and
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chitosan biosynthesis with a special focus on their fungal

sources and factors affecting productivity as well as their

biotechnological applications in various fields. Further-

more, this review is going to enlighten the most recent

approach used for simulation and optimization of the

various variables in a certain bioprocess.

Chitin and chitosan

Definitions and chemical structures

Chitin, a natural mucobiopolymer, is a hard, white, in-

elastic, and nitrogenous compound, composed of ran-

domly distributed N-acetyl-D-glucosamine (N-GlcNAc)

monomers (Islam et al. 2017). Following cellulose, chitin

is considered as the second most abundant biopolymer

on earth, with annual biosynthesis of more than 100 bil-

lion tons (Tharanathan and Kittur 2003). In nature, chi-

tin polysaccharide is, enzymatically, synthesized by the

transfer of a glycosyl of N-GlcNAc from uridinedipho-

sphate-N-acetyl-D-glucosamine to chitodextrin acceptor

(Sitanggang et al. 2012).

Chitosan is a linear biopolymer of β-(1-4)-linked-D--

glucosamine (GlcN) units. Chitosan results from the

deacetylation of chitin which is, almost, never complete

and it still contains acetamide groups to some extent

(Islam et al. 2017).

For both chitin and chitosan, their chemical structure

is similar to that of cellulose, which consists of a poly-

mer of several hundred units of β-(1-4) linked D-glucose

(Bhuiyan et al. 2014). In chitin and chitosan, the hy-

droxyl group at position C-2 of cellulose has been re-

placed by an acetamide group (Fig. 1). Unlike cellulose,

the nitrogen content of chitin and chitosan is 5–8%

which makes them suitable for typical amines reactions

(Kurita 2001). The commonly available chitin and chito-

san are, generally, not strict homopolymers but they may

exist as copolymers (Akila 2014). The presence of amine

groups in both chitin and chitosan enables distinctive bio-

logical functions in addition to the application of modifi-

cation reactions (Kumar 2000). Chitin and chitosan have

many desirable properties such as non-toxicity, biodegrad-

ability, non-allergenic, bioactivity, biocompatibility, biore-

sorptivity, and good adsorption properties which make

them suitable alternatives to synthetic polymers (Tan et al.

2009; Croisier and Jérôme 2013). However, the presence

the amine and hydroxyl groups on each deacetylated unit

make chitosan, chemically, more active than chitin. The

chemical modifications of these reactive groups alter the

Fig. 1 Structure of cellulose, chitin, and chitosan
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physical and mechanical properties of chitosan (Islam et

al. 2017).

Physicochemical properties

Solubility

Chitin has very few applications because it is insoluble

in most solvents. In contrarily, chitosan has many appli-

cations because it is, readily, soluble in dilute acidic so-

lutions such as acetic, formic, and lactic acids at pH <

6.0. The most commonly used solution is 1% acetic acid

at about pH 4.0 (Zamani et al. 2008).

Molecular weight

Chitin and chitosan are considered as high molecular

weight biopolymer. The molecular weight of these

biopolymers varies with the variation of the source ma-

terial and the preparation and extraction methods. The

molecular weight of these biopolymers determines their

suitable application, e.g., it has been reported that

chitosan with low molecular weight has greater anti-

microbial activity (Amorim et al. 2003; Franco et al.

2004; Tajdini et al. 2010; Moussa et al. 2013; Oliveira et

al. 2014). The chitin molecular weight is as high as many

Daltons. However, chitosan molecular weight may range

from 100 to 1500 kDa due to the use of harsh chemical

treatments. Chitosan of low molecular weight can be ob-

tained either by chemical or enzymatic methods (Cai et

al. 2006). Although, fungal chitin has unknown molecu-

lar mass, it has been proposed that Saccharomyces cere-

visiae synthesizes a uniform chain of GlcNAc containing

120–170 monomer units which may correspond to

24,000–34,500 Da (Valdivieso et al. 1999).

Degree of deacetylation

The degree of deacetylation (DD) is one of the most im-

portant parameters that affect the physical and chemical

characteristics of chitin and chitosan (copolymers), activ-

ity, and applications (Akila 2014). It can be defined as

the molar fraction of GlcN in chitosan and represented

by the following equation:

DD ¼ 100
nGlcN

nGlcN þ nGlcNAc

where (nGlcN) represents the average number of D-glu-

cosamine units and (nGlcNAc) represents the average

number of N-acetyl glucosamine units.

For example, only chitin samples with DD of about 50%

are soluble in water, whereas those with lower or higher

DD were insoluble (Wu 2004). Chitosan molecules with

high DD (> 85%) have strong positive charge in aqueous

solution with pH bellow 6 (Sorlier et al. 2001).

Various methods have been proposed for determination

of chitin and chitosan DD. These techniques include:

i. Infrared spectroscopy (IR) (Brugnerotto et al. 2001;

Duarte et al. 2002): it is the most popular technique

because it is very simple and requires minimal

sample preparation. However, the use of this

technique requires precise calibration.

ii. 13C solid-state NMR (Duarte et al. 2001): it appears

to be the most reliable method and is often used as

a reference. Unfortunately, it is not available at

most laboratories due to the elevated cost.

iii. High-pressure liquid chromatography (HPLC) (Han

et al. 2015): it depends on the hydrolysis of chitin

and chitosan and analysis of the produced acetic

acid.

iv. Potentiometric titration (Ke and Chen 1990).

v. Ultraviolet spectrometry (Liu et al. 2006).

Potentiometric titration and ultraviolet spectrometry

require dissolved samples and therefore not suitable for

chitosan with (DD < 50%) and chitin.

Occurrence and biological functions in nature

Chitins is considered as the main component in the

shells of crustaceans such as crab, shrimp, and lobster,

and is also a component of the exoskeletons of insects

and mollusks as well as in the cell walls of some fungi

(Yeul and Rayalu 2013). However, chitin and chitosan

are not present in higher animals and higher plants.

Currently, shrimp and crab shell wastes are the main in-

dustrial sources for the large-scale production of chitin

and chitosan. It has been reported that chitin represents

13–15% and 14–27% of dry weight of crab and shrimp

processing wastes, respectively (Ashford et al. 1977).

Processing of these biological wastes from marine food

factories helps recycling and useful use of the wastes in

other fields. The extraction of chitin and chitosan from

these crustacean shell wastes requires stepwise chemical

methods because they are composed of protein, lipids,

inorganic salts, and chitin as main structural compo-

nents (Kim and Rajapakse 2005).

Chitin is widely distributed in many classes of fungi in-

cluding Ascomycetes, Basidiomycetes, and Phycomy-

cetes. Fungal chitin is a component of the structural

membranes and cell walls of mycelia, stalks, and spores.

However, chitin is not found in all fungi and may be ab-

sent in one species that is closely related to another.

Chitin was reported in Saccharomyces cerevisiae as a

major component in primary septa between mother and

daughter cells (Sbrana et al. 1995).

Industrial production

The crustacean shells annual production has been esti-

mated as 1.2 × 106 tons worldwide (Synowiecki and

Al-Khateeb 2003). As it has, already, mentioned, crab

and shrimp shells are the main industrial source for the
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large-scale production of chitin and chitosan. These

crustacean shell wastes contain, in addition to chitin,

proteins, inorganic salts, pigments, and lipids as main

structural components. Therefore, chemical extraction

of chitin and chitosan should be employed to obtain the

pure product. Briefly, the following steps should be

performed:

1. Demineralization/decalcification: the shell wastes

are washed, dried, and ground to smaller sizes and

minerals such as calcium carbonate are removed

with good mixing with dilute hydrochloric acid at

ambient temperature.

2. Discoloration: to remove pigments from the

produced chitin.

3. Deproteinization: the pure chitin and chitosan

should be prevented from protein contamination

and, therefore, residual material is treated with

dilute aqueous solution of sodium hydroxide to

remove proteins, glycoproteins and branched

polysaccharides.

4. Acid reflux for separation of chitin and chitosan:

the acidic treatment is usually carried out using 2 to

10% hydrochloric acid or acetic at 95 °C for 3 to

14 h.

5. Deacetylation: for chitosan production, the resulting

chitin is treated with 40–45% sodium hydroxide, in

the absence of oxygen, at 160 °C for 1–3 h in a

process called deacetylation in which the acetyl

group is removed from chitin molecules (Fig. 2)

(Roberts 1992). Repetition of this process can give a

degree of deacetylation (DD) up to 98%, but the

complete deacetylation can never be achieved

(Mima et al. 1983). The degree of chitin

deacetylation depends on the concentration of

NaOH, reaction temperature, and time (Kasaai

2009.). However, at least 85% deacetylation should

be achieved for a good solubility of chitosan (No

and Meyers 1995).

In contrarily, the crude fungal chitin has a lower level

of inorganic matters compared to crustacean shell

wastes and thus the step of demineralization is not re-

quired during the processing (Teng et al. 2001).

Applications of chitin and chitosan

Biological properties

Chitin and chitosan have many intrinsic characteristics

that make them suitable for versatile applications in vari-

ous fields. These characteristics include biocompatibility,

biodegradability, strong antibacterial effect, non-toxicity,

and high humidity absorption (Aranaz et al. 2009). Fur-

thermore, other biological properties such as antitumor,

analgesic, hemostatic, antitumor, hypocholesterolemic,

antimicrobial, and antioxidant properties have also been

reported by researchers (Islam et al. 2017).

Most of the chitin and chitosan biological properties are

directly related to their physicochemical characteristics.

These characteristics include degree of deacetylation, mo-

lecular mass, and the amount of moisture content (Aranaz

et al. 2009). For example, chitosan-mediated inhibition of

fungal and bacterial growth relies on the functional groups

and molecular weight of chitosan. Two theories have been

proposed for chitosan antimicrobial activity. The first the-

ory relays on molecular weight; the smaller oligomeric

chitosan can easily penetrate the cellular membrane and

prevents the cell growth by inhibiting RNA transcription

(Klaykruayat et al. 2010). The second relays on the pol-

ycationic nature of chitosan which changes the cellular

permeability and induce the leakage of intracellular com-

ponents due to interaction with anionic components of

the cell membrane leading to cell death (Lim and Hudson

2004). Moreover, chitosan may disrupt the microbial cell

physiological activities by absorbing the electronegative

substrate, e.g., proteins, and finally death of cells (Zheng

and Zhu 2003). The distribution of acetyl groups and the

length of polymer chain in chitin and chitosan affect their

biodegradation kinetics (Zhang and Neau 2001). It has

been reported that chitosan with a high degree of deacety-

lation (97.5%) has a higher positive charge density com-

pared to the moderate DD (83.7%), thus confers a

stronger antibacterial activity (Kong et al. 2010).

The chitin poor solubility is the main limiting factor in

its utilization. On the other hand, chitosan is considered

Fig. 2 Deacetylation of chitin
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as a potential biopolymer due to its free amino groups

that contribute polycationic, chelating activity, and dis-

persion forming properties along with its solubility in di-

lute acetic acid (Akila 2014). Due to its exceptional

versatile biological, chemical, and physical properties, chi-

tosan can be used in a wide variety of applications includ-

ing industrial, agricultural, medical and pharmaceutical.

Industrial applications

In industry, chitosan found many applications in various

areas including biotechnology, e.g., enzyme immobilization,

cosmetics, paper production, textile, semi-permeable mem-

branes, wastewater treatment, and food processing (Bashar

and Khan 2013).

Agricultural applications

Chitin and chitosan are potent agents that inhibit the

growth of bacterial and fungal plant pathogens, conse-

quently, elicit defense reactions in higher plants (Shibuya

and Mimami 2001). In bell pepper fruit pathogen, chito-

san has the ability to effectively reduce Botrytis cinerea

polygalacturonases causing severe cytological damages

to the invading hyphae (Glaouth et al. 1997). Similarly,

spraying chitosan or chitin on the surface of cucumber

plants before the inoculation with the pathogen B.

cinerea, the activity of peroxidase and chitosanase in-

creased causing inhibition of B. cinerea (Ben-Shalom et

al. 2003). Furthermore, a Brazilian patent by Stamford

and co-worker (Stamford et al. 2015) was published de-

scribing the successful application of fungal chitosan as

a biofertilizer (Batista et al. 2018).

Biomedical and pharmaceutical applications

Chitin and chitosan biopolymers are considered as use-

ful non-toxic and biocompatible materials to be used in

various medical devices to treat, augment, or replace tis-

sues, organs, or function of the body. Furthermore, chi-

tosan and its derivatives are promising materials for

supporting in tissue engineering applications (Islam et

al. 2017). Chitosan serves as a potential material for

nerve regeneration, wound-healing management prod-

ucts and wound dressing, burn treatment, cancer treat-

ment, artificial kidney membrane, bioartificial liver

(BAL), artificial skin, artificial tendon, articular cartilage,

drug delivery systems, e.g., carrier in case of vaccine de-

livery or gene therapy, blood anticoagulation, bone dam-

age, and antimicrobial applications. Moreover, chitosan

has antioxidant, antitumor, antidiabetic, and antiulcer

activities. It is provided as dietary supplements, under

several proprietary names, in combination with other

substances for weight loss (Candlish 1999). It has been

sold to inhibit fat absorption in Japan and Europe as a

nonprescription product (Akila 2014). Glucosamine

(GlcN), chitosan hydrolysate, is an amino monosaccharide

that has been reported to have the potential to prevent

changes in the joint structure in patients with osteoarth-

ritis (Reginster et al. 2001; Richy et al. 2003). Chitin is con-

sidered as a promising treatment for umbilical hernia

(Islam et al. 2017).

Fungal chitin and chitosan

Historical background

Chitin was first isolated from some types of fungi, i.e.,

Agaricus volvaceus, Agaricus acris, Agaricus cantarellus,

Agaricus piperatus, Hydnum repandum, Hydnum hybri-

dum, and Boletus viscidus, by Braconnot (1811). During

the nineteenth century, Odier succeeded in production

and isolation of chitin and chitosan from the cuticle of

insects and from mushrooms (Odier 1823). Rouget

(1859) was initially described the presence of an amine

grouping at position (C-2) and determined the character-

istics of chitosan formation (Novak et al. 2003). The name

of chitosan was first proposed by Hoppe-Seyler (1894).

Chitosan isolation from fungal mycelium was first de-

veloped by the scientist White et al. (1979), followed by

several other researches to develop adaptations for im-

proving the process efficiency (Rane and Hoover 1993;

Crestini et al. 1996; Synowiecki and Al-Khateeb 1997).

Based on these studies, Hu and colleages (1999) devel-

oped an extraction protocol for fungal chitosan. This

protocol describes steps for successful cultivation and

extraction (Hu et al. 1999).

The synthesis of chitosan in the cell wall of fungi was

first described by Araki and Ito (1974) in Mucor rouxii

(Zygomycetes). This process takes place due to the activ-

ity of chitin deacetylase enzyme (EC 3.5.1.41) which cat-

alyzes bioconversion of chitin residues in the fungal cell

wall (Batista et al. 2018). This discovery was the start for

other researchers to analyze the walls and confirm the

presence of chitosan in many fungal species (Kendra et

al. 1989; Sudarshan et al. 1992; Synowiecki and

Al-Khateeb 1997).

Features of fungal chitin and chitosan production

During the last few years, the industrial production of

chitin and chitosan from fungal sources has attracted

the attention of many countries due to their significant

advantages over the currently applied processes. The fol-

lowing Table 1 summarized the major advantages of chi-

tin and chitosan production from fungal mycelia over

crustacean sources (Knorr et al. 1989; Rane and Hoover

1993; Teng et al. 2001; Adams 2004).

In addition to the above-mentioned differences be-

tween chitin and chitosan production from fungal myce-

lia and crustacean sources, it has been reported that the

degree of acetylation, molecular weight, and distribution

of charged groups in fungal chitin and chitosan are po-

tentially different from that of crustacean source which
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enhances bioactivity and promotes their functional prop-

erties (Wu et al. 2004). However, further researches are

required to get the most economical way for obtaining

the chitinous material from fungal mycelia.

The production of chitin and chitosan from fungi has a

significant role in lowering the expenses involved in man-

aging fungal-based waste materials in parallel with

production of value-added products which may provide a

profitable solution to the biotechnological industries

(Wu et al. 2005). The worldwide production of the

mushroom, Agaricus bisporus, results in about 50,000

metric tons/year of useless waste material. On the

other hand, the production of citric acid from Asper-

gillus niger results in approximately 80,000 tons/year

of mycelial waste materials (Ali et al. 2002). These

fungal wastes and others represent a free natural

source of chitin and chitosan.

Physiological function of fungal chitin and chitosan

Generally, the fungal cell walls are composed of chitin,

chitosan, neutral polysaccharides, and glycoproteins in

addition to minor amounts of polyuronides, galactosamine

polymers, lipids, and melanin (Wu et al. 2004). Chitin ex-

ists in the spores and hyphal cell walls in conjunction with

glucan molecules forming microfibrils. These microfibrils

are embedded in an amorphous matrix to provide the

framework and cell wall morphology and rigidity. Chito-

san is not considered as native to animal sources; mean-

while, it presents in some fungal species such as Mucor,

Absidia, and Rhizopus as one of the structural compo-

nents in their cell wall (Ruiz-Herrera 1992). Chitin and

chitosan are thought to increase the cell wall integrity and

strength and provide protection against foreign materials,

e.g., cell inhibitors and higher temperatures to which fun-

gal cells may be subjected (Adams 2004; Banks et al. 2005;

Baker et al. 2007). Chitin and chitosan represented other

functions as revealed by mutants bearing a defect in the

complex machinery of chitin biosynthesis, deposition of

the polysaccharide in cell walls, or intracellular trafficking

of chitin synthases (Specht et al. 1996).

Biosynthesis of chitin and chitosan

Glycogen is the starting material for chitin synthesis. The

first step is the catalysis of glycogen by phosphorylase en-

zyme where glycogen is converted to glucose-1-phosphate.

In the presence of phosphomutase, glucose-6-P is formed

and further converted to fructose-6-P by hexokinase.

Fructose-6-phosphate is then converted to N-acetyl glu-

cosamine which involves amination (glutamine to glutamic

acid) and acetylation (acetyl CoA to CoA). Isomerization

step is as follows (phosphate transfer to C6 to C1 catalyzed

by a phospho-N-acetyl glucosamine mutase). Further

inter-conversion, uridine diphosphate (UDP) N-acetyl glu-

cosamine is formed by utilization of uridine triphosphate

(UTP). Finally, chitin is formed from UDP N-acetyl glu-

cosamine in the presence of chitin synthase. Chitin deacety-

lation results in chitosan. Chitin deacetylation in the cell

wall of fungi is catalyzed by the chitin deacetylase enzyme

(EC 3.5.1.41) (Batista et al. 2018). Biosynthetic pathway of

chitin is graphically represented in Fig. 3.

Chitin and chitosan-producing fungi

The cell walls and septa of many fungal species belong

to the classes Basidiomycetes, Ascomycetes, Zygomy-

cetes, and Deuteromycetes contain, mainly, chitin to

maintain their strength, shape, and integrity of cell struc-

ture (Kirk et al. 2008). Chitin is considered as the second

most abundant polymer in the fungal cell wall. Also,

chitosan can be easily recovered from these microorgan-

isms (Synowiecki and Al-Khateeb 1997; Yokoi et al.

1998). These fungal classes include Absidia coerulea,

Absidia glauca, Absidia blakesleeana, Mucor rouxii, As-

pergillus niger, Phycomyces blakesleeanus, Trichoderma

reesei, Colletotrichum lindemuthianum, Gongronella but-

leri, Pleurotus sajo-caju, Rhizopus oryzae, and Lentinus

edodes which have been investigated for chitin and

chitosan production (Hu et al. 1999; Teng et al. 2001;

Chatterjee et al. 2005) and suggested as an alternative

sources to crustaceans (Nwe et al. 2002; Pochanavanich

and Suntornsuk 2002; Suntornsuk et al. 2002). The

amount of chitin in the fungal cell wall is specific to spe-

cies, environmental conditions, and age. The chitin

Table 1 Comparison between chitin and chitosan production from fungal mycelia and crustacean sources

Basis for comparison Fungal mycelia Crustacean sources

Availability Does not have seasonal or geographic limitations. Limited by sites of fishing industry and seasons.

Inorganic materials Low levels High levels

Extraction process Simpler Requires harsh solvents

Cost of waste management Low High

Demineralization treatment Not required Required

Physico-chemical properties Consistent Vary

Induction of the plant immune response More effective Less effective
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content in the dry fungal cell wall may vary from 2 to 42%

in yeast and Euascomycetes, respectively. Chitosan is also

one of the structural components in the fungal cell walls

which differ depending on fungal taxonomy. Thus, the cell

wall in Zygomycetes contains chitosan-glucan complex,

while contains chitin-glucan in Euascomycetes, Homoba-

sidiomycetes, and Deuteromycetes (Ruiz-Herrera 1992).

Among the investigated species, M. rouxii of the Zygo-

mycetes class was the most researched and studied since

the quantities of chitin and chitosan in its cell wall

reached 35% of the dry weight (Wu 2004). Chitosan has

been mostly studied, produced, and characterized in

Absidia and Mucor (Pochanavanich and Suntornsuk

2002). However, A. niger (produced from citric acid in-

dustry) and Agaricus bisporus, as waste materials, pro-

vide a plenty source of raw materials for chitin and

chitosan production (Wu 2004). The chitin content in

Agaricus cell walls has been reported to be 13.3 to

17.3%, 35%, 20 to 38%, and 43%. This broad range of

chitin concentrations can be attributed to the fact

that chitin content varies, significantly, during the

mushroom life-cycle as well as during postharvest

storage (Wu et al. 2004).

Fermentation systems of fungal chitin and chitosan

The content of chitin and chitosan within fungal species

can vary depending on the method of fungal cultivation

and fermentation system. Two types of fermentation sys-

tems can be differentiated: solid-state fermentation (SSF)

and submerged fermentation (SmF), both of which can

be used for production of chitin and chitosan from

fungi. In solid-state fermentation, the microbial growth

takes place on moist solid substrates where no free water

flowing (Pandey et al. 2000; Gabiatti Jr. et al. 2006). On

the other hand, submerged fermentation takes place in

liquid medium.

Generally, the production of chitin and chitosan in the

cell walls of fungal systems are associated with the fun-

gus biomass concentration. Focusing on biomass con-

centration difference, and subsequently chitin and

chitosan concentration, due to the different cultivations

technique, it was shown that SSF of the fungus, Lentinus

edodes, yielded a greater biomass concentration (up to

50 times), after 12 days of incubation, than that of SmF

(Crestini et al. 1996).

There are many reports that confirm that SSF is more

efficient in fungal biomass production compared with

SmF. However, there are some cases in which the bio-

mass production in SmF exceeds that of SSF. Biomass

production by Pleurotus ostreatus was compared

through SSF and SmF in a study by Mazumder et al.

(2009). The results showed no significant difference be-

tween biomass concentrations in both techniques during

the initial growth period. However, after 2 days of

growth, SmF produced a higher biomass concentration

of P. ostreatus. From these studies of fermentation sys-

tems, it can be concluded that it is difficult to derive a

solid comparison between solid-state and submerged

fermentations in terms of biomass concentration. In

other way, the suitable fermentation system for chitin

and chitosan production is specific to species. The main

variation in chitin and chitosan productivity arises due

to changes in substrate, environmental conditions and

medium composition, etc. (Bhargav et al. 2008). The

substrate in case of SSF can be homogenous (e.g., poly-

urethane foam (PUF)) or heterogeneous (e.g., rice bran,

wheat straw, soybean, or other agricultural byproducts).

The use of homogenous substrate is advantageous as it

allows the control of oxygen transfer, feed rate, medium

composition, and facilitates the quantification of fungal

biomass. On the other hand, the difficulty of fungal bio-

mass measurement is a major hindrance of using SSF or

Fig. 3 Biosynthesis of chitin (Balaji et al. 2018)
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more specifically the heterogeneous substrate (Zhu et al.

1994; Sparringa and Owens 1999). In brief, the

characterization, optimization, and standardization of SSF

process is very difficult. The substrate’s physical proper-

ties, strongly, affect the rate of oxygen and nutrients diffu-

sion, water activity, and consequently metabolic activity.

The difficulty of recovering fungal biomass in case of SSF

affects the extraction process of chitin and chitosan. These

conditions push toward the use of SmF instead of SSF

(Sitanggang et al. 2012). The simple step for determination

of the fungal biomass in SmF makes this fermentation

system preferred for production of chitin and chito-

san. However, the higher probability of contamination,

if the aseptic conditions are not maintained, the pro-

duction of much waste water after biomass recovery,

and high energy expenditure during the agitation for

adequate mixing are the major obstructions in the

use of SmF (Sitanggang et al. 2012).

Factors affecting fungal chitin and chitosan production

The quantity and/or quality of chitin and chitosan in the

fungal cell wall may change due to environmental and

nutritional conditions and the intrinsic characteristics of

producing species (Campos-Takaki et al. 1983;

Ruiz-Herrera 2012). Many researchers aim to maximize

the yield of fungal chitin and chitosan as well as

minimize the production costs to be able to compete

commercially with those obtained from crustacean’s shell

(Batista et al. 2018). Based on the mechanism of their

biosynthesis in fungal cells, several factors were proposed

to affect chitin and chitosan production by submerged

culture. These factors are not only important for produc-

tion, but for manipulation of physicochemical characteris-

tics, also (Tanaka 2001; Jaworska and Konieczna 2001;

Chatterjee et al. 2005; Chatterjee et al. 2008; Neves et al.

2013). These factors ultimately influence the metabolic ac-

tivity of fungi through catabolic repression (Solís-Pereira

et al. 1993; de Azeredo et al. 2007). For enhancing the

growth of fungal mycelium and biopolymers productivity,

many researchers tried to supplement additional nutrient

sources to the traditional fermentation medium.

The effect of urea has been demonstrated by Nwe and

Stevens (2004) showing a significant increase in total

chitosan production by the fungal species Gongronella

butleri. The addition of urea as a nitrogen source not

only resulted in an elevated amount of chitosan, but re-

sulted in differences in chitosan molecular weight, as

well. Mishra and Kumar (2007) examined the effects of

different N-sources; i.e., yeast extract, urea, ammonium

sulfate, and dry cyanobacterial biomass of Anacystis

nidulans on Pleurotus ostreatus and reported greatest re-

covery of the biopolymer in the presence of cyanobacter-

ial biomass due to its high nutritional value.

Benjamin and Pandey (1997) used coconut oil cake

(COC) as a substrate and examined different minerals,

nitrogen, and carbon sources on Candida rugosa. This

study involved optimization of N- and C-sources and

combining the optimum parameters. The effect of differ-

ent carbon sources, i.e., glucose, sucrose, or galacturonic

acid with pectin, on the production of fungal biomass by

A. niger was studied by Solís-Pereira and co-workers

(1993) under SmF. The addition of such supplemental car-

bon sources showed increased biomass concentrations.

Besides the use of additional N- and C-sources, the ef-

fects of treating solid substrates with ethanol, phosphate,

or acid and conditioning at different moisture contents

on biomass content by A. niger have been explored. Xie

and West (2009) showed that the treatment of the solid

substrate with acid demonstrated a significant increasing

the biomass concentration.

Exploration of the effect of plant growth hormones indi-

cated a significant improvement in the mycelium growth

of fungi in SmF. Chatterjee et al. (2008) demonstrated the

effects of kinetin, auxins, and gibberellic acid on the pro-

duction of chitosan by M. rouxii and R. oryzae in

molasses-salt medium and whey medium, respectively.

The low concentrations of these plant hormones caused

an increase in both chitosan content and mycelia growth

in R. oryzae and M. rouxii. However, at higher concentra-

tions of plant hormone, the growth in both aspects was

inhibited. In addition, the molecular weight of extracted

chitosan was increased (Chatterjee et al. 2008, 2009).

It has been reported that for obtaining the maximum

yield of chitin and chitosan, fungi should be harvested at

their late exponential growth phase (Akila 2014).

Optimization of the factors affecting fungal chitin and

chitosan production

The medium composition and environmental conditions

play critical role in industrial microbial cultivation

process due to their major influences on the final yield

of a particular culture’s end product (Basri et al. 2007;

Bibhu et al. 2007). In biotechnology, two approaches are

applied for optimization of the variable factors in the

bioprocesses; one-factor-at-a-time (OFAT) or “one-varia-

ble-at-a-time” and statistical or mathematical design of

experiment (DOE) (Singh et al. 2011). The last one may

be differentiated into factorial design or response surface

methods.

� One-factor-at-a-time (OFAT) approach: it is the

conventional method used to optimize nutritional

and environmental factors by changing one factor

each time while keeping the other factors constant.

This approach is simple and easy to understand by

nonprofessionals. However, it is time consuming,
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laborious, and ignores the factor-factor interactions

among different variables (Vishwanatha et al. 2010).

� Statistical/mathematical approach: it is a useful

technique used for simultaneous study of the effect

of several variables. It is a collection of mathematical

and statistical tools that is powerful in both

fundamental research and applied research and

development (Almquist et al. 2014). It became an

indispensible tool in bioprocess design, simulation,

and optimization (Kiparissides et al. 2011). This

approach requires less number of experiments,

equipments, and financials. In addition, the data

obtained from this approach is much more reliable,

understandable, can be used for prediction and

simulation, and allow for evaluation of the

interactions among variables (Singh et al. 2011; Nor

et al. 2017).

Industrial biotechnology can benefit from mathemat-

ical models by using them to understand, predict, and

optimize the properties and behavior of cell factories

(Tyo et al. 2010). With valid models, improvement strat-

egies can be discovered and evaluated in silico, saving

both time and resources. Figure 4 summarizes the

scenario for successful modeling of biological process.

This scenario involves the following steps (Wang 2012):

Step 1: Identification of the problem; ask the questions:

it is to define the purpose of the model. Typical

questions are: Why do we model? What do we want to

use the model for? What type of behavior should the

model be able to explain?

Step 2: Post assumptions; select the modeling

approach: it is to determine the mathematical

expressions that define the interactions between the

different components.

Step 3: Define the variables and formulate the model:

when the network structure and the mathematical

expressions have been determined, the structure of the

model is complete. The model can now be written as a

set of equations.

Step 4: Analyze and simulate the model: next to

formulation of the model, the numerical values of the

parameters should be determined.

Step 5: Validate the model with real phenomena: it is to

determine the quality of the model.

Step 6: Apply the model and answer the questions:

when a model has been established it can be used in a

Fig. 4 Summary of the statistical procedures used to analyze the results from DOE (Granato and Calado 2014)
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number of different ways to answer the questions for

why it was created.

Step 7: Calibrate and extend the model.

During the recent years, a new trend for co-production

of multiple value-added products has been emerged to

lower the process cost and to be able to compete with the

chemical processes (Abo Elsoud et al. 2017). Coproduction

of chitin and fumaric acid by R. oryzae has been explored

by Liao et al. (2008). In addition, R. oryzae was reported for

its ability to produce lactic acid in parallel with chitin. Bio-

mass and gamma linolenic acid (GLA) production by M.

rouxii was investigated by Jangbua et al. (2009) using differ-

ent substrates and spore concentrations. Citric acid, lactic

acid, oxalic acid, and alcohol were also studied in a

co-production process with chitin from various fungal

sources (Sumbali 2005). The optimization of a

co-production process is very complicated; therefore, the

use of traditional methods, in this case, is inapplicable,

while statistical methods are going to be beneficial and give

steady and reliable results.

Conclusion

Chitin and chitosan are magic natural biopolymers that

exist in the shells of crustaceans, exoskeletons of insects

and mollusks, as well as in the cell walls of fungi. Indus-

trially, they are produced from the shells of crustaceans

and found many applications in many industries, agricul-

ture, and biomedicine. However, due to the inconsistent

structure of chitin and chitosan from crustacean origin,

the fungal origins represent suitable alternative, espe-

cially, for biomedical and pharmaceutical applications.

Chitin and chitosan production from fungal sources re-

lieves the world from a great amount of biological

wastes. The quantity and/or quality of chitin and chito-

san in the fungal cell wall may change due to environ-

mental and nutritional conditions. Optimization of these

conditions is better performed by statistical methods be-

cause the data obtained from this approach is much

more reliable, understandable, can be used for prediction

and simulation, and allow for evaluation of the interac-

tions among different variables.
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