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ABSTRACT

Current work and trends in the application of neutron diffusion

theory to reactor design and analysis are reviewed. Specific, topics

covered include finite-difference methods, synthesis methods, nodal

calculations, finite-elements and perturbation theory.



INTRODUCTION

The analysis r.,f nuclear reactor cores is dominated by two fundsmental

concerns. In somewhat oversimplified terms, the first is finding where

the neutrons are. and what they are doing. The second is determining

critlcality, the state of the core that is required in order to sustain

the fission chain reaction. Among the various deterministic and probabalistic

methods available for treating these problems neutron diffusion theory is by

far the most widely used.

The distribution of neutrons is most conveniently described by the scalar

neutron flux, if>(x,E,t), which, in general, is a function of space (x),

energy (E) and time (t), and which is the product of the neutron speed,

v(E), and the neutron population density, n(x,E,t). Given the flux and

cross sections (the probabilities per unit flux of neutrons interacting in

various ways with the nuclei of atoms forming the materials in a reactor)

one may directly determine heat generation rates, neutron radiation exposures,

fuel burnup, and other quantities which affect the performance, safety and

economy of nuclear reactors.

With deterministic methods of reactor analysis the energy variable is

almost always treated with multigroup theory. The continuous neutron energy

spectrum is replaced by a set of G energy groups,

<f>(x,E,t> + <j>g(x,t) ,

0 ^ E < «• l < g _ < G (1)

and cross sections for reactions resulting in changes in neutron energy are

defined in terms of transfers from one group to another. One or two energy



groups suffice for most thermal reactor design calculations; the limiting

factor is the fine structure of the spatial distribution. On the order of

ten-group calculations are common in fast reactor design, where the analysis

is very sensitive to the energy dependence of cross sections. More energy

groups, perhaps twenty or thirty, are used for the analysis of effects that

are particularly sensitive to the neutron spectrum (e.g. reactivity coefficients

for safety calculations).

Since the subject of this review is diffusion theory, and not reactor

kinetics, we will drop the time dependence of the flux. Most methods of

treating the spatial dependence of the flux can be extended to include time

dependence without introducing serious theoretical complications. This

review will concentrate on several current areas of interest in applications

of diffusion theory to multidimensional (two-dimensional and three-

dimensional) static calculations.

THE MULTIGROUP DIFFUSION EQUATIONS

With the preceding simplifications the multigroup neutron diffusion

equations for a critical system can be written either as a second-order

partial differential equation,

- V • (D(x) 7 <p (x)) + (A(x) - £ M(x)) <Hx) = 0, (2)

or in the P. form,

V • J(x) + (A(x) - ̂ M(x)) <Kx) = 0, (3a)

J(x) + D(x) VcKx) = 0. (3b)

<|>(x) is a vector of group fluxes whose elements are $ (x) . J(x) is the

neutron current, whose three spatial components J (x), J (x) and J (x) (each



a group vector like the flux) are the net flow of neutrons per unit area

and time in each group in the x, y and z directions. k is the eigenvalue.

In principle k should be 1.0 for a model of a critical reactor; in practice

inadequacies in the modeling procedures lead to "critical eigenvalues" on

the order of .01 different from unity for models of cores and critical

assemblies known to be critical.

A(x), M(x) and D(x) are GxG matrices. The elements of A(x) $(x) are

the net losses of neutrons in each group due to absorption and group-to-

group scattering transfers. The elements of M(x) 4>(x) are the net sources

of fission neutrons in each group. D(x) is a diagonal matrix of diffusion

coefficients; in isotropic materials

D(x) = (3 Z^GO)"1, (4)

where Z^ (x) is the transport cross section.

At internal boundaries in the region of solution of Eqs. (2) and (3)

both fluxes and currents must be continuous. At the outer boundaries of

.lie region of solution the boundary conditions are usually either

homogeneous or periodic. The homogeneous form is

ag *8(s) + b g n • J8(s) = 0. (5)

a and be are scalar constants (one of them may be zero). s denotes the

outer surface and n is the unit normal to that surface. Periodic boundary

conditions require that the flux and current along one boundary of the model

match those along another and are used, when the symmetry of the problem

permits, to reduce the size of the region of solution.



Eq. (3b) is "Pick's law" and is a fundamental feature of all applications

of diffusion theory 'e.17. heat conduction). Useful corollaries to Fick's law

are expressions for the partial neutron currents, the flow of neutrons, per

unit area and time, in the positive (+) and negative (-) directions for

each coordinate (d).

Jd+(x) = -| $(x) + | Jd(x), (6a)

Jd~(x) = I <Kx) - \ Jd(x), (6b)

Jd(x) = Jd+(x) - Jd~(x), d = x,y,z. (6c)

In practical applications few attempts are ever made to solve the

differential forms of the diffusion equations (Eqs. (2) and (3)). A

variety of approximations are usually employed, and a third form, the

so-called weak form, of the diffusion equation is often used to provide a

formalism for developing these approximate methods. Consider the functional,

F = I | dx I ip*(x) (A(x) - •£ M(x))

r

V <p*(x) • D(x) V i()(x) I. (7)]•
The subscript r denotes regions where the material properities of the reactor

model are continuous. The vectors <|>*(x) and ij>(x) are arbitrary "trial

functions."

When one requires that the change in the value of F (the variation of F)

due to arbitrary, independent and infinitesimal changes to the trial functions

(6i|/*(x) and 6i|)(x)) be zero,



<5F = 0 = I \ dx 6^*(x) (A(x) - £ M(x)) i>(x)

1
- V • D(x) V ij,(x

I dx S*(x) (AT(x) - iM T(x)) <i*(x)

- V • DT(x) V IJJ*(X

ds 6i|/*(s) D(s-) n • VIJJ(S-) - D(s+) n • VIJJ(S+)

s ' L <
s

v f r T A
) ds 01); (.s) D (s-) n •

s i L
s

s-) - DT(s+) n

s denotes the internal boundaries between regions; the signs (+) and (-)

distinguish the two sides of each interface. When the variations permitted

to the trial functions are completely arbitrary the condition, 6F = 0,

implies that i|i(x) satisfies Eq. (2) and the current continuity condition.

The additional Euler equations for I/J*(X) introduce the adjoint flux,

<f>*(x), which is defined by,

- V • (DT(x) V $*(x» + (AT(x) - ̂ M T(x)) **(£•) = 0. (9)

A variety of approximate solutions to the diffusion equation may be

derived by substituting particular trial solutions (each with a limited

number of undetermined parameters) into Eq. (7) and requiring 6F = 0. In

these cases the variations to the trail functions, 5i/i*(x) and 6ifi(x),



are no longer completely arbitrary, and the trial functions will not, in

general, satisfy the differential forms of the diffusion equation everywhere

in the region of solution. Equation (8) is a weaker statement of the neutron

balance than Eqs. (2) and (3).

Note that it is not necessary for the trail solutions to produce con-

tinuous currents at internal boundaries as long as 6iji*(s) is not

identically zero. Continuity of flux can be guaranteed either by supplying

continuous trial functions or by adding surface terms to the functional

(Eq. (7)) that lead to additional Euler equations establishing continuity

of flux. Several functionals that explicitly permit discontinuous trial

functions have been discussed in papers by Stacey and Nelson. In

addition to the form shown in Eq. (7) functionals can be written which

yield the P.. equations and which permit separate trial functions for flux

and current.

THE FINE-MESH, FINITE-DIFFERENCE EQUATIONS

To adapt the diffusion equation to digital computers the continuous,

differential forms of Eqs. (2), (3) and (7) must be converted to discrete

representations. The most direct approach, the "fine-mesh, finite-

difference" approximation, leads to a set of linear, coupled algebraic

equations. One- and two-dimensional, finite-difference calculations have

long been a staple of reactor design. In recent years finite-difference

codes for three-dimensional calculations have become available and are

becoming important tools in reactor analysis. Among them are PDQ-7 ,

TRITON^4 , 3 D B ^ and VENTURE^ .



The first step in any discretization of the diffusion equation is the

superposition of a grid, or mesh structure, on the region of solution.

Figure 1 shows a few "mesh cells" of such a structure for a two-dimensional,

x-y geometry. 1+1 vertical and J+l horizontal mesh lines divide the model

into IxJ mesh cells, each homogeneous in composition. Mesh cell (i,j) is

bounded by vertical lines at x = x... and x = x. and by horizontal lines

at y •= y. - and y = y.. The four outer boundaries of the region of solution

are x = xQ, x = Xj, y = yQ and y = yjm

Two forms of the fine-mesh, finite-difference, diffusion theory equations

(7 8}

are in widespread use: the "corner-mesh" equations ' anc*. the "mesh-

centered" equations ' . The derivations of both forms are based on Taylor

series expansions of the flux within a small volume, a neutron balance within

that volume, and the imposition of average flux and current continuity at the

boundaries of the volume. When the volume boundary lies on the external

boundary of the region of solution, the external boundary conditions (e.g.

Eq. (5)) are used instead of the continuity conditions.

For the corner-mesh form, and for the two-dimensional geometry shown in

Fig. 1, the neutron balance (Eqs. (2) or (3a)) is integrated over the area

defined by the dashed lines. The dashed lines bisect, at right angles, the

mesh line segments connecting the intersection of lines x = x. and > - y.

(point "a") to the next nearest intersections along each mesh line. For the

mesh-centered form the flux is expanded about the center of each mesh cell

(point "b" in Fig. 1). For either approach to the discretization the final

form of the finite-difference equations may be written,

•«



Fig. 1. A portion of a two-dimensional mesh structure. Mesh cell (i,j)
is bounded by vertical mesh lines at x = x. .. and x « x. and by

horizontal mesh lines at y = y.. •, and Y = y*« The dashed lines

define a neutron balance volume about point "a" for the corner-
mesh form of the finite-difference equations. The mesh-centered
form of the equations derives from a balance in mesh cell (i,j)
about point "b".
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Table I gives expressions for some of the matrix coefficients in Eq. (10).

<J). . is the zero order Taylor series term and, therefore, can be inter-

preted as the flux at point "a" or point "b" for the corner-mesh and mesh-

centered differencing schemes, respectively. vT. for interior mesh

x v
points, and y.. and yJ on boundaries other than x = x_ may be obtained

from Table I by switching x and y coordinates and/or reversing the indexing.

For Eq. (10) to be valid on the boundaries of the region of solution

certain conventions of notation must be observed. Point fluxes (<j> .) out-

side the region of solution (e.g. <f> , . in the corner-mesh equations for

i = 0 and <j>_. in the mesh-centered equations for i = 1) are identically

zero for boundary conditions of the type shown in Eq. (5). Along a boundary

with periodic conditions, point fluxes cutside the region of solution are

identical to point fluxes within the region of solution along another

boundary.

When working with the differential form of the diffusion equations one

must consider not only the nevtron balance (Eqs. (2) or (3)) but also the

separate equations defining the boundary conditions and flux and current

continuity. No such separate side conditions are required for the finite-

difference form; the boundary and continuity conditions have been absorbed

into the balance equation (Eq. (10)) during the derivation.

For any practical problem, even in one dimension, it is not feasible to

solve the matrix eigenvalue problem (Eq. (10)) directly. Computer codes are

structured as a series of "outer iterations". Each outer iteration is a

solution of an inhomogeneous equation that results when some of the terms in

Eq. (10) are collected together and evaluated using fluxes and eigenvalue

estimates from previous iterations. In one dimension it is often possible

to solve each inhomogeneous calculation directly; in two and three dimensions

each inhomogeneous solution must be done iteratively, through a series of

"inner iterations".



TABLE I. Definitions of Some of the X-Y Geometry, Finite-Difference Coefficients in

Eq, (10), In the Expressions for a|^ , s|? = A?? - ~ M^?

Y X g

Yij
at internal
mesh points

•s'
at internal
mesh points

Y X 8

Y i j

at x - xQ

boundary

corner-mesh
equations

D?iA y i + D ! i + i A y i + i
2Ax

i=l . . . I
J-1...J-1

\ (Ax.Ay. iff + Ax.+1Ayj £ g ; .

+ Ax iAy j+1 lff+1 + Ax i+1Ay.+1 r j j y + 1 >

i=l...I-l
j=l...J-l

ag A7j| + Ay.+1

b^ 2

i=0
j=l . . . J - l

mesh-centered
eequations

2 D t l iD i iA y i
AxiDi-lj + Axi-lD8ij

i=2...I
J-1...J

AXiAy. iff

1=1.. .1
j= l . . . J

D l i a g A y _i
Dj.b8 + h Ax^g

1=1
J-1...J
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The theory behind the iterative techniques used to solve the fiaite-

(7-9)
difference equations is well established , but codes differ sotaowhat

in how they apply the available acceleration procedures. For example,

(3)
PDQ-7 , which has become something of a standard in light-water reactor

design, uses Chebyshev polynomials on the group fluxes to accelerate the

convergence of the outer, power iterations. Ferguson and Derstir.e, in a

paper at this meeting, show that for fast reactor applications signi-

ficant improvemencs in efficiency can be achieved by using a very similar

strategy with Chebyshev acceleration of the fission source.

Finally, as in the case of the continuous form, one can write a weak

form of the finite-difference, diffusion theory equations. The following

functional, subject to the conventions and definitions defined earlier,

will yield Eq. (10) as its Euler equation.

Although a variety of mesh geometries (e.g. x-y-z, r-z, triangular)

are treated by available codes, most involve low-order, nearest-neighbor

coupling schemes comparable to Eq. (10) and Table I. Abu-Shumays and

Hageman have derived a number of higher-order finite-difference

equations for regular mesh arrays, but at a cost of a more complicated

coupling. They also have derived finite-difference equations for an

arbitrary, quadrilaterial mesh, that is, one for which the mesh lines

(12)
are not all parallel. Natelson ef. al. have varied the. mesh with

energy group.
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Existing codes on the current generation of computers permit two-

dimensional, fine-mesh finite difference calculatiors on a more or less

routine bases. We have not yet reached the point, however, where routine

fine-mesh, design calculations can be carried out in three dimensions.

Accurate fine-mesh models call for mesh spacings of a few centimeters or

less, and in three dimensions this requirement translates into hundreds

of thousands of space-energy points. This limitation is felt in both thermal

reactor calculations, where the diffusion length for neutrons may be on the

order of a centimeter, as well as fast reactor calculations, where the

diffusion length is significantly longer but the number of energy groups

is greater. The advent of faster computers with larger fast memories will

make three-dimensional fine-mesh calculations more practical. Vector pro-

cessing capabilities may prompt the development of new iteration strategies.

SYNTHESIS METHODS

Although reactor models are always heterogeneous, they are frequently

"less heterogeneous" in one direction than in the others. Along lines

parallel to fuel elements or coolant channels one encounters few material

discontinuities, and the neutron flux is relatively slowly varying. For

all practical purposes, the flux may be treated as separable over all, or

at least part, of the region of solution. Under these conditions synthesis

methods may be used to combine several, local solutions of the diffusion

equation into a single, global one.

The separability of the three-dimensional neutron flux into axial and

planar factors is implicit in every two-dimensional, planar calculation

which uses a buckling to approximate the axial leakage. The term synthesis

is never applied to this practice, but, in fact, the three-dimensional

equations have, been reduced to two dimensions by factoring the flux,
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and introducing a buckling.

— Dg — a8 = - D8 (B2 ") g a8

3z U(x,y,z) 3z a(x,y,z) "(x.y,**/ (x.y.z)' a(x,y,z)

fc D(x,y,z) fz" *(x,ysz) * "
 D(x,y,Z)

(B(x,y,2)
)S *(x,y,z)

2 E
In practice bucklings, (B, 0 > a r e chosen either arbitrarily (presumably

vKjy,z^

on the basis of some prior knowledge of the axial shape of the flux) or by

iteration within the two-dimensional calculation. The iterative procedure

2
usually requires a space- and energy independent buckling, B , and the goal

2
is to adjust B so that the eigenvalue of the two-dimensional calculation

matches the "critical eigenvalue" expected for the three-dimensional problem.

The codes BlSYtT1 and SYNBUFtfT1 ^ extend the buckling approximation

towards an automated synthesis scheme for two-dimensional models by

alternating one-dimensional calculations in the two different directions.

Transverse leakages are approximated by bucklings which are updated after

each one-dimensional solution. Three-dimensional calculations, which

alternate one- and two-dimensional calculations, have also been tested

It is not clear from published results how accurate these methods are near

core-reflector or core-blanket interfaces, where the reduced equations may

contain large, negative bucklings.

The single-channel and multichannel spatial flux synthesis approximations

provide a determination of the axial shape factor in a more direct

way. ? ' One starts with a set of precalculated, fine-mesh finite-

difference, two-dimensional flux solutions, ij> .. (n = 1...N), which represent
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the best practical estimates of the planar flux shapes at a number of axial

locations. In the basic, single-channel flux synthesis p.pproximation the

three-dimensional flux, <b~!.-,, is assumed to be a blend of these two-
ijK

dimensional expansion functions,

f I A 8 <J,8... (15)

For those energy groups, g, or axial positions, k, where a particular ex-

pansion function, ijj , cannot be expected to make a useful contribution

to the three-dimensional, synthesized flux (Eq. (15)) it may be "turned

off" by the simple device of defining the combining coefficient, A8,, to

be identically zero.

Equation (15) is written in terms of the discrete form of the neutron

flux. This was done because, as a practical matter, the expansion functions

for synthesis calculations must be generated in the discrete form by finite-

difference methods (Eq. (1C)). Although many derivations of the synthesis

equations in the literature are written in terms of the continuous form of

the diffusion equations, a more consistent approach is to work entirely in

the discrete representation. This can be done by substituting Eq. (15) into

the weak form of the finite-difference, diffusion theory equation (Eq. (11))

and then setting the variations of F with respect to the non-zero combining

coefficients equal to zero. The usual practice is to use the same expansion

functions, ^8.., for the direct and adjoint synthesis expansion.

Working strictly in the discrete form is not only consistent with the

nature of the expansion functions, it also avoids the problems of dealing

with continuity and boundary conditions that must be faced with the con-

tinuous form. Discontinuous trial functions are handled automatically by

Eq. (11); the boundary and continuity conditions are implied in the finite-

difference coefficients.
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The basic multichannel spatial flux synthesis approximation can be

written,

which differs from Eq. (15) by the additional sum over index c (for channel)

and the set of multichannel basis functions f8 ... which permit some
ncij

modulation of the original ejipansion functions. In the original work by

Washspress and Becker the basis functions were unity over a portion of

the plane (a channel) and zero elsewhere. Later authors have used low order
(19-21)

polynomials in order to make the modulations less abrupt. Note that

Eq. (16) permits different sets of basis functions for the different

expansion functions.
(22 23)

Coarse-mesh rebalancing, ' which is a method sometimes used to

accelerate discrete diffusion and transport calculations, resembles multi-

channel synthesis. Coarse-mesh rebalancing equations can be derived in a

manner similar to the synthesis method by applying a set of three-dimensional

basis functions, f°.., , to a single, three-dimensional expansion function
cij it

(a partially converged solution), #?•!•

The hope is that when the combining coefficients are determined and Eq. (17)

evaluated the results (<(>?.,) will be closer to the true solution than the
XJK

original expansion function Op?..). Compared to other acceleration techniques,
ljtt

coarse-mesh rebalancing has a relatively weak theoretical base.
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The choice of basis functions for multichannel synthesis is arbitrary,

though they should probably permit the recovery of the original expansion

function from the synthesis approximation (Eq. (16)). Wachspress, for example,

has developed a set of functions which, in this application, will assure

(24)

continuous fluxes and permit arbitrarily shaped boundaries.

Most authors refer to the functions t|/8.. as "trial functions." It

would perhaps be more descriptive to call Eqs. (15) and (16), the statements

of the synthesis approximations, the "trial functions." Then the term

"choice of trial functions" implies not only the choice of expansion functions,

\p .., but also the specification of ranges in energy and axial positions

where the functions are to be used (the ranges of non-zero A , , ) and the
nek s

choices of channel structure.

The choice of trial functions is not a difficult problem for single-

channel calculations. Critically buckled eigenvalue problems at various

elevations of the core will provide good shapes through the core. No
(25)

problems have arisen in axially discontinuous synthesis calculations,

where functions are used only over axial zones where they are deemed

appropriate. Combining coefficients should be set equal to zero (i.e.

expansion functions should be dropped) a few diffusion lengths into
( 26^

adjacent zones, to permit the mode to decay gradually in space. In

axial reflectors and low reactivity zones (e.g. fast reactor blankets),

where eigenvalue problems are not appropriate, fixed source problems can

provide adequate shapes. Multichannel synthesis requires the additional

choice of channel structure; this is a problem that has not been adequately

investigated.
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Single-channel synthesis codes have existed for some time, and

three are available from code centers. PDQ-7 and SYN3D may be

(29)
obtained through the Argonne Code Center, and KASY is at the NEA

Computer Program Library at Ispra. KASY and SYN3D do not include calculations

of the expansion functions; these must be generated by some other finite-

difference, diffusion theory code. When finite-difference and synthesis

codes are mated, care should be taken that they both use the same finite-

difference form. For example, SYN3D uses the mesh-centered form, because

the code was designed to be used with the mesh-centered-equation codes used

in the fast reactor community.v '

(32-34)
Nodal synthesis methods do not fit comfortably within the strictly

finite-difference approach outlined above. The nodal coupling does not come

from a unified treatment of the problem as a whole but rather from special

definitions of internal boundary conditions. The effect of the nodal syn-

thesis schemes can be achieved with Eqs. (16) and (11) by limiting the number

of expansion functions to one for each channel and by choosing multichannel

basis functions which do not overlap channels. Although no direct comparisons

have been made of different nodal synthesis schemes, Nelson has made an attempt

to compare several of the explicit treatments of discontinuous trial functions

(2)

in the continuous (i.e. differential equation) form of diffusion theory.

COARSE-MESH AND NODAL METHODS

Fine-mesh, finite-difference, diffusion theory calculations are both

reliable and familiar, and for these reasons reactor core designers and

analysts have relied heavily on them. For two- and three-dimensional models,

however, finite-difference methods with mesh spacings consistent with the

Taylor series flux expansion approximation implicit in Eq. (10) are expensive.
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Many attempts have been made to reduce the number of unknowns (the spacft-

energy point fluxes) by using coarser mesh spacing and appropriately defined

finite-difference coefficients. These methods range in sophistication from

empirical adjustments of the conventional finite-difference equations

(specifically the leakage coefficient y . in Eq. (10)) to involved pro-

cedures employing individual diffusion theory solutions within each mesh

interval, or node. Review articles by Henry and Wagner outline the

progress of nodal methods up to recently. A thesis by Robinson contains

(37)
detailed comparisons of several of the earlier methods.

Because of the variety of approaches used, coarse mesh and nodal methods

defy precise classification. If there is a common theme, it is that most of

the methods can be reduced to finite-difference-like equations which can be

solved by existing finite-difference codes modified for the purpose. The

formally exact nodal equations may be obtained by integrating Eq. (3a) over a

homogeneous node; in x-y geometry, and using the index notation in Fig. 1,

$.. is the average flux in node (i,j). J J + I • *
s t n e average, x-direction

neutron current normal to the mesh line at x = x. . between y = y and

y = yi+1• The thrust of all nodal methods is to find a simple but accurate

relationship between the average flux in a node and the currents on its

faces. In many cases it is convenient to break the currents in Eq. (18) up

into incoming and outgoing components by using the partial current relation-

ships (Eq. (6a) and (6b)).
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Early methods, which neglected the shape of the flux within the node,

produced equations with constant finite-difference coefficients. Later

methods generally make some provision for the flux shape within the node and,

as a result, introduce non-linear effects into iterative solutions. A

number of authors have used approximations to a Green's function to define

the nodal coupling, and one version of the MEDIUM code uses a collison

(41)
probability approach. These later methods were more accurate but

frequently gave poor results near the core-reflector interface in the light-

water reactor models to which they were applied.

More recently developed nodal methods have focused on more accurate

(42-46)
treatments of the flux solution within the node. These techniques

are characterized by some form of continuous, in-node solution of the

diffusion equation combined with sparse coupling to adjacent nodes. The

combination takes advantage of the accuracy of the finite-element method,

but the resulting equations retain the finite-difference form (Eq. (10)).

All of these methods have yielded power distributions with errors on the

order of 1% for two-dimensional, light-water reactor test calculations with

nodes the size of fuel assemblies.

(42)
Aoki aiid Tsuiki assume that the neutron source distribution within

a node can be written in a particular form (a sum of exponentials) for which

the inhomogeneous diffusion equation can be solved analytically. Rewriting

the analytic solution in terms of point fluxes and applying continuity

conditions leads, in two dimensions, to five-point equations. The source is

updated in a power iteration sequence.

(44)
The COMETA code uses analytic solutions of the buckling equation

within each node, and then proceeds in a similar fashion to the five-point

equations. The bucklings are updated each iteration from estimates of the

average currents at the node interfaces.
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Bennewitz et al. "" and Shober et al. have developed several

methods which have the common feature that the in-node, multidimensional

calculation is reduced to several one-dimensional calculations (by formally

integrating out the transverse dimension variables). The methods differ

in the nature of the one-dimensional solutions (analytic or polynomial

approximations) and the treatment of the buckling term that appears in the

reduction to one dimension.

All the applications of the latest generation of nodal methods have

been to light-water reactors with rectangular fuel assemblies. Most, though

not all, can be easily extended to multigroup models. It is less clear how

to handle the hexagonal nodes required for fast reactor calculations.

Because diffusion lengths are longer in fast reactors, less sophisticated

methods may be adequate.

FINITE-ELEMENT METHODS

The finite-element method was used in many other fields of engineering,

particularly structural mechanics, before it was applied to neutron diffusion

calculations. The basic idea is to divide a reactor model into nodes (called

elements), assume a polynomial expansion trial function for the flux within

the node, and apply the weak form of the diffusion equation (Eq. (8)) to

reduce the problem to a set of linear algebraic equations in terms of the

coefficients of the polynomials. In principle the elements can be any

arbitrary shape and the polynomials of any arbitrary order. In practice

the elements are usually triangles or quadrilaterals (in two dimensions),

and the polynomials are of relatively low order. Complicated shapes and

high order polynomials lead to dense, irregularly coupled equations which

resist efficient solution techniques.
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A simple, finite-element approach was used several years ago in the

(47)
diffusion-theory code VARI-QUIR . It has only been in the last few years,

however, that the method has became popular. Several authors have

studied choices of elements and polynomials and have showed that the

method can yield more accurate results than finite-difference codes with

fewer unknowns and equations. Published timing comparisons sometimes showed

improvements of factors of 50 in running times.

Several review articles have outlined the successes and problems of

finite-element diffusion theory calculations.' > > ) The early

enthusiasm for the method was largely due to test problem comparisons

between finite-difference and finite-element which did not accurately

reflect the heterogeneous nature of current reactor design models. For

three-dimensional design methods the finite-element method will require

solutions of systems of equations much larger than those which up to now

have been studied. The direct methods of solution used earlier may no

longer be practical; accelerated, iterative techniques will have to be

(54)

employed.

Although it is possible to perform accurate calculations with large,

homogeneous elements, it is not always desirable. Homogenizing fuel

assemblies subject to different exposures and temperatures may change the

performance of the reactor model in a significant way. Deppe and Hansen

have had success with elements that extend over mild discontinuities in the

cross section distributions. Kavenoky and Lautard have extended

polynomial expansions to the cross sections as well as the fluxes, permitting

spatially dependent burnup within an element. Inhomogeneous elements will

cost additional computing time.
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Walters and Komoriya have reduced the number of equations to be

solved by using different element sizes in different energy groups, and by

tailoring the size of the elements to the requirements for each group.

The most serious problem faced by finite-element methods is one of

identity. If it is to compete successfully with fine-mesh finite-

difference calculations it will have to prove its advantage for three-

dimensional models with more equations than can be handled with direct

solution methods. Fine-mesh finite-difference codes with solidly based

iterative strategies have been around a long time, and designers and

analysists have great confidence in them. Someone will have to write a

finite-element equivalent of PDQ.

On the other hand, the place for finite-element methods to make a

contribution may be in coarse-node applications. Some of the best of the

(43 45 46)
nodal methods ' ' use finite-element techniques. These methods need

ageing, and perhaps some attention to programming details, before any hard

comparisons can be made.

PERTURBATION THEORY

It is probably worth while every so often to remind the reactor analysis

community about perturbation theory. This is particularly true since the

development of generalized perturbation theory, which has expanded the range

of applications of the method beyond eigenvalue changes.

The text-book form of perturbation theory yields an expression for the

change in eigenvalue due to a change in the diffusion equation coefficients.

The expression, which is exact, requires two flux solutions, one direct
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and one adjoint, of the two states (unperturbed and perturbed) of the

model. Exact perturbation theory saves no computing time but does provide

a way of displaying the spatial and spectral details of reactivity worths,

allows insights into the mechanism of feedback and assures greater accuracy

than can be obtained from the difference between two eigenvalue calculations.

When the unperturbed flux and adjoint are used, perturbation theory is

only good through first order, but for small perturbations the results are

still accurate. Considering the number of self-adjoint (one-energy-group)

calculations that are performed by reactor designers, it is surprising that

perturbation theory is not more widely used.

(59-64)
Generalized perturbation theory treats changes in arbitrary,

homogeneous, linear and bilinear reaction rate ratios for models described

by eigenvalue problems. This class of parameters includes power fractions,

instantaneous breeding ratios, delayed neutron parameters and perturbation

theory expressions for reactivity worths. For fixed source diffusion theory

calculations the same formalism covers changes in reaction rates (e.g.

detector responses).

The VARI-1D code, which performs one-dimsnsional, generalized diffu-

sion perturbation theory calculations, is available through the Argonne Code

Center. The FORSS System will eventually do generalized perturbation

calculations in up to three dimensions in diffusion theory and is currently

used in a transport theory mode for cross section sensitivity analysis.

Time dependent, generalized perturbation theory is at the testing

stage. Kallfelz et al. have treated the combination of the diffusion

equation and depletion equations in a perturbation approach to burnup studies.
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Like synthesis methods, perturbation theory in practice is a parasitic

calculation, relying on independent codes for fluxes and adjoints. It is

important, therefore, that the inner products used in the perturbation

expressions be properly defined to be consistent with the discrete diffusion

theory form used in the flux and adjoint calculations. For the common

finite-difference form of the diffusion equations (Eq. (10)) the inner

products are of the form shown in the weak form finite-difference functional

(Eq. (11)). It would rot be appropriate, for example, to use fluxes and

adjoints interpolated from a finite-element calculation in a finite-difference

perturbation theory code.

There is at least one exception to this rule. Single-channel and

multichannel synthesis fluxes (Eqs. (15) or (16)) and adjoints can be used

in finite-difference perturbation theory codes. The synthesis and finite-

difference inner products are identical as long as the synthesis calculations

are based on the finite-difference diffusion equation. One must be careful

about the interpretation of the results, however. Despite the fact that

the perturbation theory code takes the synthesized fluxes in finite-

difference fora, the code really only predicts perturbations in the synthesis

model; the analyst must still provide appropriate flux and adjoint trial

functions.

DIFFUSION EQUATION CONSTANTS

The generation of the constants used in diffusion theory calculations

may be considered to be within the province of reactor physics, rather than

reactor mathematics, but it is so important a step in the modeling procedure

that it is worth mentioning several efforts in this area. In particular,

diffusion coefficients are derived quantities, and their definition has

attracted, a lot of attention.
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There are no theoretical or calculational problems encountered if

Fick's law (Eq. (3b)) is generalized to provide different diffusion

coefficients in different directions. The anisotropic nature of reactor

models (particularly in the presence of streaming channels) makes it an

attractive option in multidimensional diffusion theory calculations. The

problem arises when one tries to choose values for directional-dependent

diffusion coefficients. A number of authors have investigated

methods, and a paper at this conference describes an application to void

(73)
streaming. However, there does not yet appear to be a concensus on a

valid approach.

(74)
Kollas and Henry have derived diffusion coefficients from analytic

solutions in one-dimensional slabs. Pryor and Sicilian have determined

diffusion coefficients by combining fine mesh diffusion theory solutions

and the response matrix formalism. This is a non-linear procedure, but is

one way of including transport effects in diffusion theory calculations.

Although some of the most recent nodal methods do not appear to require

special treatment of interfaces, others employ special boundary conditions.

The core-reflector interface has received special attention ' ; in

water-moderated reactor models this region has been especially difficult to

calculate. Becker has suggested power corrections to account for thermal

spectrum transients near zone interfaces.

Finally, a number of authors have investigated alternative methods of

group collapsing cross sections, several of which fall into the category

(79)
of spectral synthesis. Kiguchi has derived a sort of modified one-group

method based on spectral synthesis for the case when one spectral mode can

(82)

be expected to dominate. Salvatores ' and Wade and Bucher have looked

at various adjoint weighting schemes. In a paper at this conference Nelson

considers some theoretical aspects of spectral synthesis.
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SUMMARY

The most powerful tool of reactor analysis and design is, and will

probably remain, the finite-difference form of the neutron diffusion equation.

Detailed spatial calculations are currently performed, at a significant cost,

for reactor core models with hundreds of thousands of space-energy points.

Reactor plant simulators with fast-running, coarse-mesh finite-difference

calculations are used routinely for a variety of design calculations where the

requirements of accuracy are not too severe.

Among the alternatives for diffusion theory calculations the nodal mathods

have made the greatest progress in recent years. Synthesis methods are used

sparingly; suspicion of their behavior and the inconvenience of the extra work

required in generating expansion functions seem to discourage potential users.

Finite-element methods are fast and accurate, but finite-element codes are not

generally available; solution techniques for the finite-element equations need

more attention.
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