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Sandra Íñiguez-Muñoz1, Matthew P. Salomon3, Borja Sesé1, Maggie L. DiNome4*
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Triple-negative breast cancer (TNBC) is a highly heterogeneous disease defined by the
absence of estrogen receptor (ER) and progesterone receptor (PR) expression, and
human epidermal growth factor receptor 2 (HER2) overexpression that lacks targeted
treatments, leading to dismal clinical outcomes. Thus, better stratification systems that
reflect intrinsic and clinically useful differences between TNBC tumors will sharpen the
treatment approaches and improve clinical outcomes. The lack of a rational classification
system for TNBC also impacts current and emerging therapeutic alternatives. In the past
years, several new methodologies to stratify TNBC have arisen thanks to the
implementation of microarray technology, high-throughput sequencing, and
bioinformatic methods, exponentially increasing the amount of genomic, epigenomic,
transcriptomic, and proteomic information available. Thus, new TNBC subtypes are being
characterized with the promise to advance the treatment of this challenging disease.
However, the diverse nature of the molecular data, the poor integration between the
various methods, and the lack of cost-effective methods for systematic classification have
hampered the widespread implementation of these promising developments. However,
the advent of artificial intelligence applied to translational oncology promises to bring light
into definitive TNBC subtypes. This review provides a comprehensive summary of the
available classification strategies. It includes evaluating the overlap between the
molecular, immunohistochemical, and clinical characteristics between these
approaches and a perspective about the increasing applications of artificial intelligence
to identify definitive and clinically relevant TNBC subtypes.

Keywords: triple-negative breast cancer, TNBC, molecular subtype of breast cancer, epigenetics, clustering,
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INTRODUCTION

Breast cancer (BC) is the most prevalent cancer in women,
with a steadily increasing number of cases diagnosed every
year (1). Traditionally, BC is classified and treated based on
the status of estrogen receptor (ER), progesterone receptor (PR),
and human epidermal growth factor receptor 2 (HER2)
expression. The presence of these markers has allowed the
development of targeted and efficient therapies. Tumors
without expression of ER, PR, and overexpression of HER2,
collectively known as triple-negative breast cancer (TNBC),
lack targeted therapies, leaving chemotherapy as the only
systemic therapeutic alternative (2). TNBC exhibits a higher
proliferation rate, higher incidence of metastases to the brain,
liver, and lungs (3), and more often affects younger patients
(4) than the other BC subtypes. This aggressiveness, added to
the absence of targeted therapies, maintains TNBC as an unmet
clinical challenge.

One of the main strategies employed to improve precision
oncology involves a better understanding and rational
classification of malignancies. During the last 20 years,
researchers have characterized BC tumors and classified them
into intrinsic molecular subtypes (5, 6). In these pivotal studies,
the basal-like subtype was associated with the absence of ER and
HER2 expression, and a higher expression of basal cytokeratin
(CK 5/6). This classification, currently performed by the PAM50
test (7), is well accepted in the clinical setting. The TNBC and the
PAM50 Basal-like subtype have frequently been considered
synonymous; however, this is not always the case. Although
nearly 85% of PAM50 basal-like tumors have a TNBC
phenotype, the remaining 15% exhibit other express ER, PR, or
HER2 markers (8–10).

Despite TNBC being grouped as a single disease, clinical,
histological, and molecular profiling highlight its intrinsic
heterogeneity. Nevertheless, from a clinical perspective and
based purely on the absence of ER, PR, and HER2 positivity,
patients with TNBC are uniformly considered for treatment with
chemotherapy. However, response to treatment is markedly
variable, and patients with TNBC still have higher rates of
distant relapse than patients with any other BC subtype.
Therefore, a greater understanding of the heterogeneity of
these tumors and a more efficient classification system that
highlights targetable differences is urgently needed to improve
the treatment and outcome of patients with TNBC.
THE ORIGINS OF TNBC SUBTYPING

During the last decade, several groups invested their efforts into
characterizing TNBC at different molecular levels. The first
attempts to stratify TNBC were based on histology,
immunohistochemistry (IHC), and transcriptomic profiling
(Table 1). In 2013, TNBC was classified using 13 IHC markers
by Elsawaf et al. This study identified four groups according to
the expression patterns of cytokeratins (CK). After subsetting,
patients with luminal (20%) or basoluminal (28%) displayed a
Frontiers in Oncology | www.frontiersin.org 2
significantly worse survival than patients with basal A (26%) or
basal B (26%) TNBC tumors (11).

The Legacy of BC Subtyping Using Gene
Expression Patterns
In 2011, Lehmann et al. identified six TNBC subtypes
(TNBCtype-6 classification) based on gene expression profiling
and ontology analyses (12). The novel subtypes included basal-
like (BL) 1 and BL2, which were enriched in cell cycle genes and
growth factor signaling, respectively; Immunomodulatory (IM),
with high expression of immune-related pathways; mesenchymal
(M), which presented genes of mesenchymal differentiation and
proliferation; mesenchymal stem-like (MSL), which had
mesenchymal features and low proliferation; and luminal
androgen receptor (LAR), characterized by the activation of
hormone-related pathways. Importantly, LAR and M subtypes
had a significantly lower relapse-free survival than the rest of the
subtypes. Five years later, the same group refined the
classification since they observed an important presence of
tumor-infiltrating lymphocytes (TILs) and stromal cells in the
IM and MSL subtypes, respectively. Thus, the TNBC subtypes
were refined as BL1, BL2, M, and LAR (TNBCtype-4
classification). BL1 displayed the best prognosis among the
four subtypes (13). Similarly, Burstein et al. subdivided TNBC
tumors using gene expression profiling and copy number
variations (CNVs). They identified four stable groups with
distinct prognoses and suggested putative subtype-specific
targets. These subtypes were named LAR, mesenchymal
(MES), basal-like immune-suppressed (BLIS), and basal-like
immune-activated (BLIA). BLIS showed the worst survival, and
BLIA the best survival compared to the rest (14). A recent study
by Jézéquel et al. also employing transcriptomic profiling
identified three different TNBC subtypes (C1, C2, and C3),
taking advantage of the fuzzy clustering strategy. The C1
cluster included TNBC tumors with a molecular apocrine
phenotype that showed a better prognosis, and C2 and C3
were enriched in basal-like properties. C2 displayed biological
aggressiveness and an immune-suppressive phenotype, whereas
C3 outlined the adaptive immune response and immune
checkpoint upregulation (15).

Long-non-coding RNAs (lncRNAs) were considered to
classify TNBC tumors by Liu et al., given their role as
regulators of gene expression. They combined mRNA and
lncRNA expression profiles (16) to construct the Fudan
University classification (FUSCC) system. Similar to the
findings by Lehman et al. and Burstein et al., four subtypes
were identified: IM, enriched in immune cell signaling pathways;
LAR, enriched in hormone-related pathways; MES, whose main
features were low levels of cell proliferation-related genes and
enriched pathways associated with epithelial-mesenchymal
transition (EMT); and BLIS, showing upregulation of
proliferative pathways and the downregulation of genes
involved in the immune response. Again, patients with BLIS
TNBC showed a worse overall prognosis. The authors compared
these clusters with the TNBCtype-6 classification. They found
that the IM groups were nearly identical in both studies, and LAR
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and BLIS partially covered Lehmann’s LAR and BL1 groups,
respectively. The authors also designed an IHC-based approach
to classify TNBC patients (22). Quist et al. employed a four-gene
signature to cluster TNBC tumors into six subtypes. The MC6
subtype, which comprised nearly 50% of TNBC samples, was
associated with a higher sensitivity to platinum-based
chemotherapy. Importantly, this correlation was further
validated in TNBC cell lines (23).

From DNA to Metabolites for
TNBC Clustering
New ways of stratifying TNBC patients have arisen thanks to the
advent of next-generation sequencing, computing systems, and
the exponential increase of available data sources during the
following years. Thereby, new data types have been used to
classify TNBC into novel subtypes (Table 1). Different single
nucleotide variant (SNV) patterns have been identified in TNBC
Frontiers in Oncology | www.frontiersin.org 3
tumors (24) and circulating DNA from TNBC patients (25).
Jiang et al. explored these differences in the FUSCC cohort. They
discovered that somatic mutations and CNVs events were not
homogeneously distributed among TNBC subsets. For instance,
FUSCC LAR tumors were enriched in PI3K pathway mutations.
High genomic instability was associated with the FUSCC BLIS
subtype. Given the mutational differences, this study defined four
genetic subtypes: Homologous recombination deficiency (HRD),
clock-like, APOBEC, and mixed (26). Interestingly, the HDR
subtype showed a greater proportion of germline variants than
other mutation subtypes. BRCA1, RAD51D, and BRCA2 were the
most frequently mutated genes (27).

The mRNA processing machinery has also been considered to
establish TNBC subtypes with analysis of alternative
polyadenylation events in a TNBC cohort using a Bayes-based
strategy. The gene expression of these four subtypes was then
compared with TNBCtype-6 subtypes. Subtype 1, named LAR,
TABLE 1 | Examples of TNBC stratification methods.

Classification Method Subtypes Freq
(%)

Effect on
prognosis

Characteristics

Histochemistry (11) Luminal 20 Worse EGFR<10%, Ki-67<50%, 2 or more luminal CK+
Basoluminal 28 Worse EGFR>10%
Basal A 26 Better EGFR<10%; high proliferation (Ki-67>50%)
Basal B 26 Better EGFR<10%, Ki-67<50%, 2 or luminal CK-

Gene expression from microarray (12) BL1 18-26 Neutral Cell cycle, DNA damage
BL2 10-15 Neutral Growth factor signaling
IM 10-20 Neutral Immune-related pathways
M 12-20 Worse Mesenchymal differentiation and proliferation

MSL 8-16 Better Mesenchymal features, low proliferation
LAR 10-15 Worse Hormone-related pathways, inflammation

Gene expression from microarray (13) BL1 35 Better Cell cycle, DNA damage
BL2 22 Neutral Growth factor signaling
M 25 Neutral Mesenchymal differentiation and proliferation

LAR 16 Neutral Hormone-related pathways, inflammation
Gene expression and CNV (14) BLIA 49 Better High proliferation, immune activation

BLIS 23 Worse High proliferation, immune suppression
LAR 15 Neutral Hormone-related pathways, inflammation
MES 13 Neutral Mesenchymal differentiation and proliferation

Gene expression (15) C1 23 Better Apocrine
C2 41 Neutral Basal-like, Immune suppression
C3 36 Neutral Basal-like, Immune checkpoint upregulation

mRNA and lncRNA expression (16) MES 34 Neutral EMT, lower levels of proliferation
BLIS 32 Worse Proliferative pathways, immunosuppression
LAR 17 Neutral Hormone-related pathways, inflammation
IM 17 Neutral Immune signaling

Alternative Polyadenylation (17) LAR 22 Neutral Hormone-related pathways
MLIA 22 Neutral Mesenchymal and Immune-related pathways
BL 40 Neutral DNA-damage response
S 16 Worse Cell growth, immune-related pathways

DNA methylation, 450K (18) Epi-CL-A 25 Neutral Mesenchymal differentiation and proliferation
Epi-CL-B 33 Worse DNA-damage response Cell division
Epi-CL-C 22 Neutral Hypoxia, protein degradation
Epi-CL-D 20 Neutral Immune-related pathways

DNA methylationMBDCap-Seq (19) Cluster 1 58 Better Largely hypomethylated
Cluster 2 18 Neutral High methylated
Cluster 3 24 Worse Medium methylated

Protein levels (20) I/H-subtype 66 Neutral Hormone-related pathways, inflammation
DD-related 34 Neutral DNA-damage response

Metabolic pathways (21) MPS1 26 Neutral Lipogenic
MPS2 37 Worse Glycolytic
MPS3 37 Neutral Mixed phenotype
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was enriched in hormone-regulated pathways and displayed a
significant overlap with the TNBCtype-6 LAR subtype. Taking
this classification as a reference, gene expression patterns found
in M, MSL, and IM groups were found in subtype 2, termed
mesenchymal-like immune activated (MLIA). Subtype 3 was
called basal-like (BL) due to increased proliferation and DNA
damage-related genes, similar to the TNBCtype-6 BL subtype.
Subtype 4, which exerted the worst prognosis, showed
downregulation of cell growth and immune-related pathways
and was identified as the Suppressed (S) subtype (17). Alternative
splicing was also used to stratify TNBC tumors and identify a
model to predict the overall survival. Alternative promoter
signature significantly separated TNBC patients into high- and
low-risk groups, suggesting that it might play a special role in the
development and progression of TNBC (28).

DNA methylation (DNAm) patterns are also being
implemented for tumor characterization (29, 30). Initially,
three different TNBC DNAm clusters were identified using
MBDCap-Seq. This study identified 865 TNBC differentially-
methylated regions (DMR), most of them hypermethylated.
Survival analysis showed that the TNBC subgroup, which
included hypomethylated tumors, displayed a better prognosis
(19). Most recently, we tried to explain the TNBC heterogeneity
using DNAm profiles. Four TNBC epitypes were identified using
machine learning (18). The Epi-CL-A was mainly composed of
samples identified as mesenchymal according to the TNBCtype-
6 classification. Epi-CL-B, which presented a worse prognosis,
partially overlapped with the TNBCtype-6 LAR and the Burstein
et al. BLIS subtypes. Consistent with the overlap mentioned
above, Epi-CL-A showed activation of mesenchymal cell
differentiation and proliferation pathways. In contrast, most of
the differentially expressed genes in Epi-CL-B were involved in
DNA damage response, maintaining chromatin structure, and
cell division. Epi-CL-C was characterized by the activation of
hypoxia-related pathways and the modulation of protein
homeostasis. Finally, Epi-CL-D showed enrichment in
immune-related pathways such as response to interferon-beta,
positive regulation of T cell-mediated cytotoxicity, or antigen
processing and presentation (18).

The tumor proteome analysis is another feature that is
starting to see precision medicine applications as an approach
for patient stratification. For example, two stable clusters of
TNBC tumors were identified by reverse-phase protein array
(RPPA). Analysis of the protein signatures revealed that one of
the clusters was enriched in growth arrest and DNA damage
(GADD45 genes) and p53 signaling pathways. This subtype was
identified as the DNA damage (DD)-related subtype. Another
cluster was designated as I/H-subtype due to its association with
inflammation, hormonal receptor, and MAPK signaling
pathways (20). Deeper subsetting defined the existence of 5
RPPA subtypes. Researchers found significant agreement
between the RPPA classification system and the TNBCtype-4
system (13) and intrinsic subtypes by PAM50. Thus, the
TNBCtype-4 subtypes BL1 and BL2 were enriched in the
RPPA subclusters 2 and 1, respectively, classified as DD-
related. The RPPA cluster 4, a subset of I/H-subtype, was
Frontiers in Oncology | www.frontiersin.org 4
enriched in PAM50 normal-like TNBC tumors (20).
Additionally, integrative analysis of the proteome and genome
identified potential protein markers of drug sensitivity and drug
resistance. For example, enrichment with mitochondrial proteins
was associated with sensitivity to drugs that might depend on
mitochondrial protein expression, like belinostat (31). Similarly,
a comprehensive quantitative proteome profile of BC cell lines
identified two major subgroups within TNBC cell lines (basal A
and B) with different functional signatures (32).

Most recently, metabolic pathways were also exploited as a
differential feature to classify TNBC. Gene expression from the
FUSCC cohort (26) was analyzed to identify transcriptional
differences in genes involved in metabolic pathways (21). Thus,
TNBC tumors were classified into three different molecular
pathway subtypes (MPS) based on the enrichment scores of
metabolic pathways. MPS1 was defined as the lipogenic subtype;
MPS2 was characterized as a glycolytic subtype and showed the
worst relapse-free survival among the three metabolic subtypes.
Tumors that showed a mixed enrichment were identified as
MPS3 subtype. Untargeted metabolomic analysis on frozen
TNBC samples revealed that MPS1 presented higher amounts
of fatty acids, whereas MPS2 showed higher levels of glycolysis
mediators. Furthermore, they found that cell lines classified as
MPS1 showed a higher fatty acid uptake and a higher sensitivity
against C75, a de novo lipid synthesis inhibitor. In
contraposition, glycolysis inhibitors displayed a more powerful
growth inhibitory effect in those cells stratified as MPS2.
Interestingly, based on this classification, the researchers were
able to sensitize MPS2 against PD-1-targeted therapy through an
LDH inhibitor, which decreased lactate levels, promoting
immune recognition (21).
The Microenvironment, a Novel Source
of Information and Noise for Subtype
Discovery
TNBC tumors have also been stratified according to their
immunogenomic profile. The analysis of 29 immune-associated
gene sets defined three clusters in four BC datasets. The subsets
were called immunity low, immunity medium, and immunity
high. The latter group was characterized by greater immune cell
infiltration and anti-tumor immune activities associated with a
better prognosis (33). The tumor microenvironment is also
known to impact TNBC outcome, defining response subtypes.
TNBC presents the highest proportion of TILs in comparison
with other BC subtypes (34). Its presence is associated with a
better prognosis (35, 36), higher rates of complete pathological
response (pCR) to neoadjuvant chemotherapy, and better
response to immunotherapy (37, 38). In another study, a high
number of TILs was associated with enhanced survival. In
contrast, increased levels of the immunosuppressor markers,
such as PD-L1, CD163, and FOXP3, or a glycolytic
microenvironment, determined by MCT4 expression, predicted
a worse outcome. Together, these parameters were used to subset
174 TNBC tumors into four clusters. Clusters 1 and 2 defined by
high TILs and low PD-L1 and FOXP3 showed better survival
June 2021 | Volume 11 | Article 681476
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than clusters 3 and 4, both associated with increased PD-L1,
FOXP3, and stromal MCT4 (39).
CURRENT AND FUTURE APPLICATIONS

Precision treatment of TNBC is not utopic, and it is only just
knocking on the door. Characterization of driver alterations in
potentially druggable genes is essential to assess TNBC
heterogeneity and tailor the best treatment for each patient
(40). Molecular stratification and differential treatment
assignment have been used in patients with refractory
metastatic TNBC (ClinicalTrials.gov identifier: NCT03805399).
The study revealed clinical benefits in IM and BLIS+BRCA1/2
wild-type subsets. Patients whose malignancies were classified as
IM received a combination of paclitaxel + anti-PD-1, which
promoted an objective response rate (ORR) in 50% of patients
(41). Previous trials using monotherapy in TNBC without
stratification showed an ORR of around 5-10% (42, 43). These
preliminary data suggest that the overly simplistic current IHC
classification of TNBC alone betrays the diverse heterogeneity of
this subgroup and risks leaving on the table potential treatment
options that can be effective if directed toward specific
intrinsic subtypes.

In early-stage TNBC, TILs evaluation has been standardized
(44) and should be routinely performed due to its prognostic
value (45). In advanced TNBC, germline BRCA1/2 mutations are
associated with higher response to platinum compounds (46).
These mutations are routinely assessed to identify candidates for
PARP inhibitor therapy (47, 48). Ongoing studies evaluate the
incorporation of PARP inhibitors in other germline mutations
beyond BRCA1/2, like PALB2, or in somatic BRCA1/2
mutations. PD-L1 expression by IHC is assessed to select
patients for immunotherapy associated with chemotherapy (49,
50). Patients with metastatic TNBC harboring PIK3CA/AKT1/
PTEN alterations have longer progression-free survival when
treated with AKT inhibitors and chemotherapy (51, 52).
Identifying tumor-associated antigens overexpressed in a
subpopulation of TNBC may prompt the generation of new
therapeutic strategies (53).

For TNBC that are classified into the immune-activated
subtype, new biomarkers are emerging to predict response to
immunotherapy in addition to PD-L1, such as the presence of
TILs (54), tumor mutation burden (55), expression of immune
genes (56), or through the construction of personalized cancer
immunograms that integrate multiple variables (57).

What Is Clear About the Still Fuzzy
TNBC Subtyping?
Perhaps, the several strategies employed to construct systems
that identify clinically useful TNBC subtypes reflect the lack of
proper definition of this disease. From the quantitative variables
such as gene and protein expression or metabolic and
epigenomic profiling to the qualitative traits such as gene
mutation, basic and translational researchers have explored a
problem that still appears to remain unsolved. We see a common
Frontiers in Oncology | www.frontiersin.org 5
factor, independently of the approach, that clear overlaps exist
between the different classification systems (Figure 1A). This is
encouraging as it points towards the existence of stable
entities identified in diverse patient populations. However, the
fact that there is still a large variability, added to several
subtle similitudes between some of the current subtyping
systems (grey ribbons Figure 1A), suggests that there is still a
long way to go.

In Pursuit of the Consensus
TNBC Subtypes
In the upcoming years, integrating different data sources will be
key in identifying definitive TNBC subtypes that will help guide
clinicians toward specific treatment recommendations for their
patients. Integrative analyses comparing TNBC and non-TNBC
patients from the TCGA cohort have been performed combining
gene expression, DNAm, and somatic mutations, revealing
differential signatures between these two types of BC (58).
Thus, a similar approach combining even more layers of
information may identify consensus TNBC subtypes. There is
already one attempt to stratify TNBC patients using multiple
data types, specifically using transcriptome (RNA-seq), micro-
RNA expression (miRNA-seq), and CNV (59). However, this
study did not use metabolomics, proteomics, imaging, or
histomolecular features, which have independently proven to
be informative for subtyping TNBC.

Beyond the Human’s Good Intentions,
Is Artificial Intelligence the Key?
The efforts of several scientists led to the generation of a
substantial amount of knowledge about TNBC heterogeneity,
which is intended to improve precision treatments. Nevertheless,
there is still a wealth of static and dynamic data due to clinical
parameters and treatment perturbations that escape from the
analytical skills employed to construct the subtyping systems. It
seems clear that the key to constructing a definitive and clinically
useful classification of TNBC subtypes will incorporate
integration of all the datasets and subtyping systems created
to date. We believe that recent advances in artificial
intelligence (AI) will accelerate this process and provide the
largely anticipated rational stratification system for TNBC
patients (Figure 1B).

Most of the current subtyping systems have relied on
information from a single data source. However, the
complexities of TNBC biology are unlikely captured sufficiently
by a single data type. Instead, the combined information across
multiple data types can provide a more holistic view of the
complexities of TNBC biology. Advancements in the AI subfields
of machine learning and deep learning have produced powerful
methods that can be leveraged to construct models using diverse
molecular data types (60, 61). The power of these methods lies in
the ability to capture more complex relationships within data
than traditional statistical approaches. Thus, these methods
provide the necessary tools to integrate the diverse molecular
data of current TNBC subtype systems. Furthermore, deep
learning methods effectively extract information from non-
June 2021 | Volume 11 | Article 681476
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molecular data types such as clinical imaging and histopathology
(62), significantly improving the current stratification methods.
As the speed and scale at which biological data is collected
increases and new advancements in computational technology
emerge, AI-based methods will increasingly provide a powerful
analytical framework for analyzing molecular and clinical data.
Without question, these parallel advancements will constitute a
breakthrough in TNBC precision diagnosis and treatment,
addressing the most aggressive form of BC.
Frontiers in Oncology | www.frontiersin.org 6
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