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Abstract 

Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors 
have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged 
DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial 
role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from 
melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which 
involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to 
discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogen-
esis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-
resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.

Keywords: Melanoma, Epigenetics, Drug resistance, Immunotherapy

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Melanoma stems from a malignant transformation of 
melanocytes synthesizing melanin throughout the body 
as photo-protective pigments [1]. Melanoma has been 
rampant across the world [2], accounting for 5.5% of all 
new cancer cases and resulting in 7230 deaths (1.2% of all 
cancer deaths) just in the United States in 2019 [3]. Vari-
ous factors have been considered to involve in melanoma 
progression [4], namely genetic alteration in multiple 

genes (oncogenic and tumor suppressor genes) such as 
cyclin-dependent kinase inhibitor 2A (CDKN2A), mel-
anocortin receptor (MC1R), cyclin-dependent kinase 
4 (CDK4), Ras, and BRAF (v-raf murine sarcoma viral 
oncogene homolog B1) genes. In addition, damage in 
DNA repair processes, changes in cell growth, and prolif-
eration mechanisms are involved in melanoma progres-
sion. Whereas targeting epigenetic factors is deemed a 
novel strategy to treat melanoma patients [5, 6]. Epige-
netics refers to the study of changes in gene function that 
are mitotically and/or meiotically heritable and that do 
not entail a change in DNA sequence [7, 8]. Epigenetic 
factors can alter the expression of microRNAs, target 
genes in cell growth, differentiation, or even death [9, 10].

Herein the crucial risk factors and pathways involved in 
the development and pathogenesis of melanoma, as well 
as the function of epigenetics in melanoma progression, 
treatment, drug resistance, and the efficiency of targeted 
therapy and combined immunotherapy agents, will be 
reviewed and elucidated.

Open Access

Cancer Cell International

*Correspondence:  mohsennabi66@gmail.com; zpayandeh58@yahoo.com; 
pourzardosht@yahoo.com

13 Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares 
University, Tehran, Iran
14 Department Medical Biochemistry and Biophysics, Division Medical 
Inflammation Research, Karolinska Institute, Stockholm, Sweden
15 Biochemistry Department, Guilan University of Medical Sciences, Rasht, 
Iran
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8243-1530
http://orcid.org/0000-0003-2565-8231
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12935-022-02738-0&domain=pdf


Page 2 of 23Karami Fath et al. Cancer Cell International          (2022) 22:313 

Pathways and different risk factors involved 
in melanoma occurrence and development
MAPK and AKT signaling pathways
Genetic alterations in melanoma patients were seen 
to activate the RAS/RAF/MEK/ERK (MAPK) and the 
PI3K/PTEN/AKT (AKT) signaling pathways, so that it 
has been found that the growth of melanoma cells can 
be blocked as a result of inhibiting both ERK and PI3K 
signaling [11–13]. The MAPK (Mitogen-activated pro-
tein kinase) pathway can affect downstream pathways of 
some receptors, such as cytokine, heterotrimeric G-pro-
tein, and tyrosine kinase receptors. The small G protein 
Ras, which belongs to a family of hydrolase enzymes, 
is an anchored protein in the inner leaflet of the mem-
brane bilayer [14–17].

So, MAPK is an essential pathway in most cases of mel-
anoma. Several mutations, such as NRAS and BRAF can 
activate this pathway [18]. The most critical downstream 
molecules of the MAPK pathway are BRAF and CRAF 
serine-threonine kinases [18]. Both BRAF and CRAF 
were shown to have a regulatory domain (CRD), a RAS-
binding domain (RBD), and a kinase domain that inhibits 
RAF function [18]. Contemporary, it has been reported 
that mutation in both NRAS and BRAF is linked with 
poor prognosis in stage IV of melanoma cases [18]. Such 
mutations are ascertained in the benign proliferation of 
melanocytes, metastatic melanoma, and invasive mela-
noma [18]. Both vemurafenib and dabrafenib, which are 
approved by FDA, have shown a noticeable efficacy in 
BRAF inhibition, thus suppressing the tumor cells [18]. 
Mutations of NRAS (in 15–30 percent of melanoma 
tumor samples) have been recognized as a vital driver of 
oncogenesis in melanoma patients [18]. It should be pin-
pointed that growth factor receptors (namely epidermal 
growth factor receptor, c-Kit, and c-Met) can be activated 
by RAS promotion in melanoma cases [18, 19].

On the other hand, it is of note that rampant genetic 
changes in melanoma are capable of reducing apoptosis 
through the overexpression of B-cell lymphoma 2 (Bcl-2), 
loss of both Phosphatase and tensin homolog (PTEN) and 
nuclear factor-κB (NF-κB), and mutation of Akt3, NRAS, 
and BRAF [11, 20]. Most  importantly, lymphocytes and 
pigmented melanophages (possessing ingested melanin) 
are found close to  the  dermal-epidermal p53-positive 
cells, suggesting cell death among the melanocytes [21, 
22]. Accordingly, after p16INK4A-dependent senescence, 
melanocytes can be provoked by a p53-dependent ‘back-
up’ cellular senility checkpoint, thereby mediating the 
transformation of NRAS or BRAF [23].

BRN2 expression
BRN2 is a member of the POU domain family of 
transcription factors with a crucial function in the 

progression and metastasis of melanoma [24, 25]. A high 
level of BRN2 expression could lead to elevated invasive-
ness as well as suppression of DNA repair and apopto-
sis in melanoma cell lines [26]. This fact corroborates 
the notion that BRN2 is involved in high somatic muta-
tions in melanoma cases [24, 27]. Significantly, BRN2 
contributes to the melanocytic-lineage oncogenic fac-
tor (MITF)-mediated progress of melanoma. MITF is 
the master regulator in the transcription of melanocytes 
[24]. An in vivo imaging study on melanoma cell lines has 
indicated that the BRN2 expression is increased in inva-
sive cells of the primary tumor, while MITF expression is 
lost [28]. Most biopsy samples of melanoma patients and 
drug-sensitive melanoma cell lines have shown increased 
expression of MITF [29]. High expression of MITF is dis-
tinguished as a fundamental mechanism of resistance to 
MAPK pathway suppression [30]. Since overexpression 
of BRN2 and reduced expression of MITF are directly 
linked to activation of MAPK pathway, they are signifi-
cantly associated with early resistance to targeted ther-
apy [31]. Taken together, BRN2 is suggested as a critical 
regulator that is involved in drug resistance and invasion 
during melanoma treatment as a counterbalance to the 
MITF [24]. Even with well-known functions, the enor-
mous scope for uncovering its tumor progression effects, 
the tumor microenvironment on BRN2, and the involved 
epigenetic switching mechanisms are still needed.

Hypoxia‑inducible factor‑1 alpha
Hypoxia is the most commonly accruing condition among 
all solid tumors. It can lead to poor prognosis in cancer 
patients, irrespective of the kind. Hypoxia can increase 
the progression of tumor cells via activation of HIF-1α. 
This protein is responsible for regulating essential genes, 
which interfere in cell proliferation, angiogenesis, metab-
olism, and metastasis [32–36]. Hypoxia-Inducible Fac-
tor1 (HIF-1) is a transcription activator, which is sensitive 
to oxygen and encompasses the HIF-1β and HIF-1α sub-
units. HIF-1α is activated by post-translation modifica-
tions such as phosphorylation, acetylation, hydroxylation, 
and ubiquitination [32, 37]. HIF-1α also has a promi-
nent role in angiogenesis by affecting cellular metabo-
lism, tumor invasion, vascular endothelial growth factor 
(VEGF), cell survival, and metastasis [32, 33, 38–40]. 
HIF-1α expression is related to aggressive characteris-
tics of melanoma. Hence, the incorporation of HIF-1α 
as a promising prognostic indicator in melanoma may 
add growing value to current staging procedures [41]. 
Accordingly, along with post-translation modifications, 
some signaling pathways can activate HIF-1α, includ-
ing the RAS/RAF/MEK/ERK and MAPK/ERK signal-
ing pathways [42, 43]. The MAPK pathway was shown 
to induce the formation of the HIF-p300/CREB-binding 
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protein (CBP) complex and modulate the transactivation 
of p300/CBP [44]. The RAS/RAF/MEK/ERK pathway 
can be stimulated via mutations that occur in mem-
brane receptors and oncogenic genes, namely KIT and 
both N-RAS and B-RAF, respectively. Hypoxia condition 
could also be involved in activating the JAK⁄ STAT (signal 
transducer and transcription activator and Janus kinases) 
pathway in response to cytokines and growth factors [32, 
45–47]. This phenomenon can be triggered by HIF-1α in 
multiple cancer cell lines and animal models [47–49].

Src and STAT3 signaling
Obliterating the STAT3 pathway is demonstrated to 
block oncogenesis. It has been found that STAT3 sign-
aling disruption could lead to inducing both apopto-
sis and cell cycle arrest in sundry cancer cell lines. This 
condition occurs in the cases of prostate cancer, multiple 
myeloma, and breast cancer [50]. Cao et al. explored the 
involvement of STAT3 signaling in melanoma occur-
rence/development by evaluating the anti-melanoma 
activities of shikonin in cell and zebrafish xenograft 
models. It has been demonstrated that shikonin (a naph-
thoquinone pigment extracted from the dried root of 
Zicao (Lithospermum erythrorhizon, Onosma paniculata, 
or Arnebia euchroma, as a traditional Chinese herbal 
medicine) could block the phosphorylation of STAT3, 
decrease the levels of STAT3-targeted genes involved in 
melanoma survival and migration (Mcl-1, Bcl-2, MMP-
2), and finally suppress melanoma growth [51, 52]. In a 
different study, the inhibition of the viability and prolif-
eration of A375 and A2058 melanoma cells was shown by 
the dauricine via blocking the phosphorylation-mediated 
activation of STAT3 and Src in a dose-dependent man-
ner [34, 53–55]. Recently, Meng et al. have also evaluated 
the potent anti-melanoma activity of podocarpusflavone 
A (PCFA). This compound has been described to inhibit 
melanoma growth via inhibition of the JAK2/STAT3 
pathway [56]. These findings indicate that the JAK2/
STAT3 pathway plays a significant role in melanoma 
occurrence/development.

Ambra1 protein
Ambra1 is identified as a multifunctional scaffolding pro-
tein and pro-autophagy protein. It has been reported that 
functional deficiency in Ambra1 could induce hyperpla-
sia and impaired autophagy in neuro-epithelial cells of 
mouse embryos [57, 58]. Ambra1 can initiate autophagy 
via regulation of Unc-51 like autophagy activating kinase 
(ULK1) and Beclin1 [57, 59]. Autophagy can lead to drug 
resistance and progression in multiple cancers (e.g. mela-
noma, acute myeloid leukemia (AML), etc.) [60–62].

Ambra1 has also been found to have a key function 
in cell cycle progress and proliferation by affecting the 

stability of c-Myc, interaction with the protein phos-
phatase 2A (PP2A) and stability of Cyclin D1 (CCND1) 
through interaction with the E3 ligase DDB1/Cullin4 [63, 
64]. It was shown that concomitant loss of Ambra1 and 
expression of Loricrin in the peritumoral epidermis could 
be used as prognostic biomarkers for high-risk tumor 
subsets and early stages of melanoma [65, 66]. A list of 
onco-suppressor and oncogenic factors involved in mela-
noma is presented in Table 1.

Role of epigenetic in melanoma development 
and pathogenesis
Besides the signaling pathways and factors mentioned 
above, chromatin modification (through cytosine meth-
ylations), histone modification (such as acetylation, 
methylation, and phosphorylation leading to chromatin 
remodeling), and noncoding RNA (ncRNA) regulation 
are the epitome of epigenetic inheritance that have been 
identified in melanoma cases. Epigenetic mechanisms 
that are involved in melanoma cancer are summarized in 
Table 2.

Chromatin methylation during melanoma
The methylation commonly occurs at the fifth carbon 
atom Cs in cytosine phosphate-guanine (CpG) dinu-
cleotides [5]. DNA methylation is an essential epigenetic 
modification in many cancers [81]. The CpG dinucleo-
tides are distributed in the human genome [82] that can 
be either as a dinucleotide or clusters as CpG islands. 
The CpG islands have some unique properties due to 
their localization in the promoter region of genes [83] 
and methylation in neoplastic conditions [84]. It is worth 
noticing that the hypermethylation of CpG islands has 
been mostly spotted in the promoter zones of the specific 
genes inducing the tumor suppressor genes silencing, 
chromatin remodeling and influencing the transcrip-
tion, DNA repair, cell signaling, apoptosis, and cell cycle 
regulation of melanoma thus contributing to melanoma 
tumorigenesis [85]. In this line, DNA methyltransferases 
are the enzyme that adds methyl groups to the carbon 
atom of cytosine, culminating in the methylation of DNA 
[86]. In mammalian systems, DNA methylation is per-
formed by DNMT1 and DNMT3s (DNMT3A and 3B). 
DNMT1 is predominantly involved in the maintenance 
of DNA methylation during cell division, while DNMT3s 
are involved in establishing de novo cytosine methylation 
and maintenance in both embryonic and somatic cells 
[87]. Thus, melanoma pathogenesis is developed owing 
to epigenetic alterations. Infinium methylation technol-
ogy identified some CpG sites, associated with more than 
14,495 cancer-related genes with significant methylation 
differences (44 hypomethylated and 106 hyper-meth-
ylated CpG islands) [88]. Some of the biomarker genes 
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being modified through methylation are mentioned in 
Table 2.

The CDKN2A encoding for p16 tumor suppressor is 
either mutated or omitted in most melanoma cell lines. 
This gene could be transcribed in alternative reading 
frames, resulting in two separate gene products, p16 
and ARF that both of which can negatively regulate cell 
cycle progression [52, 89–91]. The p16 exerts its effects 
by competitive inhibition of cyclin-dependent kinase 4 
(CDK4) [92, 93]. So, p16 mutations increase the possibil-
ity of repair failure of DNA before cell division [94]. ARF 
is the second protein product of the CDKN2A locus, 
which regulates cell growth by affecting the p53 pathway 
[95]. The p16 mutation disables two separate pathways of 
cell growth control, which could indicate ARF role in cell 
growth [96, 97]. CDKN2A locus also encodes for the p14 
protein, which binds to MDM2 and inhibits p53 ubiqui-
tination and proteasomal degradation [97, 98]. Hyper-
methylation of p14 has been shown in approximately 
57% of human melanocytic nevi samples, while CDKN2A 
methylation has not been reported [99, 100]. On the 
other hand, hypermethylation of CpG islands could lead 
to modification of some genes such as the telomerase 
reverse transcriptase (TERT) gene, BRCA1-associated 
protein-1 (BAP1), microphthalmia-associated transcrip-
tion factor (MITF), and Ras association domain family 
1 isoform A (RASSF1A) [101–104]. Hypomethylation of 
specific CpG sites being close to the PRAME promoter 
and the deleted split hand/split foot 1 (DSS1) gene are 
other genes being regulated through DNA methyltrans-
ferases (DNMTs) [105, 106]. Overall, the identification of 
aberrant DNA methylation modifications in melanoma 
is considered a critical step toward comprehension and 
utilization of the methylation landscape in melanoma 
therapy [107].

Histone modifications during melanoma development
Histone modifications are critical epigenetic driv-
ers causing post-transcriptional modifications (PTMs) 
or altering the chromatin state proper for the cancer 
progression [108, 109]. Histones are characterized by 
positively charged and lysine-rich N tail regions [110]. 
Epigenetic modifications that happened mainly in tail 
domains can alter transcription and replication, or 
cause malignant transformations [5]. Multiple histone 
modifiers have been introduced and some of the histone 
modifiers are mentioned in Table 2. Ribosylation, phos-
phorylation, or histone ubiquitination has been involved 
in the regulation of various pathways in the development 
of melanoma.

The chromatin compaction and initiation of tran-
scription are influenced by the phosphorylation of his-
tones in mitosis and meiosis [111]. Additionally, histone 

phosphorylation of H1, H2B, and H3 can have a remark-
able impact on DNA repair and gene regulation [112]. 
Both cancer development and dysregulation of oncogenic 
kinases are shown to result from an aberrant function of 
histone phosphorylation. However, modification of his-
tone acetyl groups (via histone deacetylases (HDACs), 
histone acetyltransferases (HATs), methyl groups (via 
histone lysine methyltransferase (HKMTase), and histone 
demethylases (HMDs)) are of great importance and fre-
quency [113].

Modification of histones acetyl groups
The regulation of chromatin structure and remodeling 
can be triggered by both acetylation and deacetylation, 
which have been considered as post-translational modi-
fications (PTMs) identified in different developmental 
steps during cancers [109]. Histone acetyltransferases 
neutralize the positive charge of histones and diminish 
the tight-binding between the negatively charged DNA 
and the histone [114]. This acetylation changes a closed 
heterochromatin structure into open chromatin, thus 
promoting greater chromatin accessibility and gene tran-
scription [115]. Conversely, histone deacetylases change 
open chromatin to closed one and lead to the prevention 
of gene expression [115]. Histone deacetylase activity 
within the promoter region of cancer-related genes can 
lead to cancer [5]. In the case of melanoma, histone dea-
cetylases (HDACs) regulate the MAPK pathway. There-
fore, it could affect the cancer progress and modulate the 
response to anticancer drugs (Fig. 1).

The HDACs are well-studied histone modifier enzymes 
obliterating acetyl groups on the histone tails. They have 
critical roles in signaling pathways driving melanoma 
pathogenesis [116]. Moreover, HDACs are capable of 
modifying other proteins that lack any association with 
the chromatin environment [117, 118]. Many reports 
have highlighted the role of HDAC inhibitors (HDACi) 
in the prevention of tumor cells from proliferating exces-
sively through various mechanisms [119]. Although 
HDACi approved by FDA have been shown to have CR 
for treating cutaneous and peripheral T-cell lymphoma 
(CTCL and PTCL), the efficacy of these molecules 
remains to be fully elucidated [120].

In addition, the expression of programmed death-1 / 
programmed death-ligand 1 (PD-1/PD-L1) and the 
genes with crucial functions in immune evasion are 
regulated by HDACs [121, 122]. It has been demon-
strated that HDACs can reversibly deacetylate the 
lysine residues in local histones; as a result, they could 
decline the expression of tumor suppressor genes in the 
case of melanoma [123]. Booth et al. examined the ther-
apeutic behavior of HDACi in melanoma cells [124]. 
They proposed a melanoma treatment with HDAC 



Page 9 of 23Karami Fath et al. Cancer Cell International          (2022) 22:313  

inhibitors. These inhibitors could rapidly diminish the 
expression level of various HDAC proteins, PD-L1, 
PD-L2, and ornithine decarboxylase (ODC). They also 
could increase the expression of Major Histocompat-
ibility Complex Class I A (MHCA) through modula-
tion of HDAC1, HDAC3, HDAC8, and HDAC10, and 
decrease the expression of PD-L1, PD-L2, and ODC on 
melanoma tumor cells. These properties indicate that 
pan-HDAC inhibition usage could be more impres-
sive than a specific HDACi. Previously, it was reported 
that the lethality of pazopanib could be significantly 
enhanced via knockdown of [HDAC6 + HDAC2] 
or [HDAC6 + HDAC10], while the knockdown of 
[HDAC6 + HDAC1] or [HDAC6 + HDAC3] is less 
effective in melanoma cells [125]. Emmons et  al. 
revealed that HDAC8 causes transcriptional plasticity 
in melanoma cells through direct deacetylation of c-Jun 
[126]. Other anticancer histone deacetylase inhibitors 
like valproic acid, trichostatin A, panobinostat, teno-
vin-6, and other HDACIs have been reported in mela-
noma by Moschos and Yeon [121, 127]. Altogether, 
four HDAC inhibitors approved by FDA are Vori-
nostat (hydroxamic acid family), Romidepsin (cyclic 
peptide family), Belinostat (hydroxamic acid family), 
and Panobinostat (hydroxamic acid family), which are 
prescribed in lymphoma patients [128]. Despite vari-
ous researches, no prosperous clinical trials involving 
HDACIs (even alone or in combination with immune 
checkpoint inhibitors) have been reported in melanoma 
cases yet. The expression levels of immune checkpoint 

molecules can also be regulated by HDACs, whereby 
this regulation is as an attractive method to domi-
nate the immune checkpoint blockade resistance in 
the treatment of melanoma [129, 130]. Unfortunately, 
the currently in use HDAC-selective inhibitors have 
off-target effects highlighting the need to improve the 
potency and selectivity of the HDAC inhibitors. This 
purpose could be achieved by HDAC-specific inhibitor 
design according to their unique structures [131, 132]. 
The identification of agents being capable of binding 
with individual HDACs could be helpful in the intro-
duction of new anti-melanoma therapies. On the other 
hand, identifying the complicated HDAC biology and 
unique cellular toxicity profile of HDACIs will allow 
the recognition of the most suited patient population 
for HDACI based treatments [133]. In addition to the 
importance of HDACs discussed above, gaining insight 
into the significance of histone acetylation for mela-
noma development has been disclosed using a zebrafish 
model. Kaufman et  al. developed a triple transgenic 
zebrafish model (p53/BRAF/crestin: EGFP) to investi-
gate molecular events beyond genetic changes causing 
melanoma progression [134]. Melanomas can reestab-
lish the crestin: EGFP expression, which indicates the 
ability of these cells to revert into a neural crest pro-
genitor state [135]. SOX10 expression is regulated by 
the acetylation of lysine 27 on histone 3 (H3K27Ac) 
and somatic inactivation of two subunits of the NURF 
complex (Brg1 and Bptf ). Thus, SOX10 dictates funda-
mental gene expression programs in melanoma cases. 

Fig. 1 HDACs remove acetyl groups from chromatins, which can be inhibited by HDACis. They act based on two strategies, including the direct 
inhibition of HDACs or indirect inhibition of HATs. Irrespective of strategy, HDACs are used to treat melanoma because they can induce various 
mechanisms leading to the prevention of tumor cells to develop, namely decreasing cyclins, AKT function, angiogenesis, and so forth. Additionally, 
HDACs increase autophagy, pro-apoptotic proteins, P21, ER stress, JNK activation, CD25, CD40, and CD80
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Notably, co-regulation of both transcription factors 
and chromatin remodeling with MITF and SOX10 also 
can result in the dictation of gene expression programs 
[135].

The other crucial histone acetylation process is the 
identification of chromatin modification by “reader” pro-
teins, which leads to the initiation of downstream regu-
latory processes. The bromodomain and extra-terminal 
domain (BET) proteins BRD2, BRD3, BRD4, and BRDT 
bind to acetylated lysine residues of histones and other 
master transcription factors to regulate gene expres-
sion. Both BRD2 and BRD4 are imperative for the main-
tenance of tumor cells which are overexpressed in the 
cases of melanoma compared to other BETs [116]. Gal-
lagher et  al. have introduced a bromodomain inhibi-
tor with the following features: 1) selective inhibition 
of cell cycle. 2) inhibition of pro and anti-inflammatory 
genes such as NF-κB, VEGF, and CCL-20. 3) downregu-
lation of IL-6 and IL-8 production through BRD2 dis-
placement. 4) excitation of caspase-dependent apoptosis 
[136]. BrDi was shown to bind effectively with BET fam-
ily members. Interestingly, it has been shown to have a 
cytostatic impact and G1 arrest properties. It is notewor-
thy that key cell cycle genes (SKP2,  ERK1,  and  c-MYC) 
and accumulating cyclin-dependent kinase inhibitors 
(p21 and p27)  are downregulated by BET displacement 
[137]. These findings suggest using BET family inhibi-
tors instead of BrDi would deteriorate in vitro and in vivo 
melanoma cell growth. Furthermore, based on transcrip-
tomic analysis of melanocytes exposed to the BET inhibi-
tor JQ1, a transmembrane protein named AMIGO2 was 
identified as a BET target gene crucial for melanoma cell 
survival [138].

Modification of histones methyl groups
Histone methylation that is triggered by histone methyl-
transferases (HMTs) has critical role in the adjustment 
of gene transcription and is essential for chromatin 
remodeling [139]. Histones are methylated on argi-
nine or lysine residues [140]. The position and degree 
of methylation (number of methyl groups added) are 
essential in this regulation [141]. For instance, trimeth-
ylation at lysine 9 (K9) of histone H3 leads to closed 
chromatin structure and silencing of the related genes. 
At the same time, demethylation and mono-methyla-
tion in the same position form the opened chromatin 
structure and activate the corresponding genes [5, 142]. 
Depending on the position of the modified residue, 
the methylation of histone can both suppress (H3K27, 
H3K9) and elevate (H3K4) the gene expression [143]. 
Demethylase plays a critical role in the disease progres-
sion and drug resistance in the case of melanoma [144]. 
Histone lysine methyltransferases, namely KMT2D, 

SETDB1, and EZH2, are the large classes of enzymes 
that catalyze site-specific methylation of lysine resi-
dues on histones and other proteins, playing significant 
functions to control transcription, chromatin architec-
ture, cellular differentiation, and melanoma progres-
sion (Fig. 2).

It is worth mentioning that gene expression silenc-
ing can be controlled by the H3K9me3-specific histone 
methyltransferase SET domain bifurcated 1 (SETDB1), 
which is catalyzed by the methylation of lysine 9 on the 
histone 3 [145]. Most importantly, SETDB1 is amplified 
among the cases of human melanoma in comparison 
with nevus or normal skin. Moreover, it can exacerbate 
tumor cells in animal models, known as an encourag-
ing therapeutic target in melanoma [146]. Orji et  al. 
unraveled that SETDB1 may act on regulating H3K9me3 
distribution and add epigenetic marks such as activa-
tion of thrombospondin -1 (THBS1) [142]. The EZH2, 
H3K27me3-specific histone methyltransferase enhancer 
of zeste 2 polycomb repressive complex 2 subunits, is 
the other deregulated histone-modifying enzyme during 
the melanoma initiation and progression. Increasing the 
level of both EZH2 and H3K27me3 have been reported 
in aggressive melanoma cell lines, whereby tumor sup-
pressors RUNX3 (RUNX family transcription factor 3) 
and E-cadherin expression are suppressed via enabling 
senescence evasion [147]. The capability of EZH2 to 
recruit histone deacetylases was found by some studies, 
hence showing functional synergy with H3K27me3 to 
silence genes [148]. Based on reports, the non-canonical 
NF-kB pathway could be regulated by EZH2 expression 
through NF-kB2 direct binding with the EZH2 pro-
moter. Therefore, pharmacological inhibition of EZH2 is 
an engrossing target in various cancers including mela-
noma [149–151]. The other new epigenetic mechanisms 
that have been detected are exerted by KDM6B. This 
protein triggers epigenetic mechanisms by upregulating 
various targets of both NF-κB and BMP (Bone Morpho-
genic Protein) signaling to exacerbate the emigration of 
melanoma cells provoking tumor cell metastasis [152]. 
It should be noted that inhibition of the MAPK pathway 
reduces the H3K4me3 and H3K9ac in the mutant TERT 
promoter region. These changes result in a noticeable 
decline in TERT transcription and RNA polymerase II 
(Pol II) recruitment. Notably, TERT transcription can be 
activated by binding between ERK2 with TERT promot-
ers and inhibiting the HDAC1 repressor complex recruit-
ment [153]. As shown, reduction of histone acetylation 
marker such as H3K27Ac, H2BK5Ac, and H4K5Ac can 
characterize chromatin state transitions. Moreover, di-/
tri methylation of H3K4 is strongly linked with mela-
noma being relevant to signaling pathways such as PI3K, 
IFNγ, LKB1, TRAIL, and PDGF. Therefore, epigenetic 
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alterations and melanoma progression are highly corre-
lated [116].

The Role of micro RNAs /noncoding RNAs in pathogenesis 
of melanoma
MicroRNAs (miRNAs), single-stranded short noncod-
ing RNAs, play a vital role in expressing nearly 60 percent 
of human  protein-coding genes that their dysregula-
tions lead to several disorders such as cancer [55, 154]. 
In Melanoma cancer, miRNAs are involved in numerous 
cellular events, including melanoma genesis, cell cycle 
regulation, tumor growth and proliferation, cell migra-
tion and invasion, drug resistance, and apoptotic induc-
tion. Accordingly, the biological processes of melanoma 
cancer cells are potentially affected by downregulated 
miRNAs, including miR-211, miR-196a, miR-21, miR-
124, miR-29c, and miR-210 [155, 156]. Interestingly, 
miR-211 has been identified as differentially expressed in 
the melanoma cell lines among various types of miRNAs 
affecting numerous targets like TGFBR2 (transforming 
growth factor beta receptor 2), RUNX2, IGF2R (insulin 
like growth factor 2 receptor), and NFAT5 (nuclear factor 
of activated T cells 5). Moreover, the ectopic expression 
of miR-211 involves the inhibition of migration and inva-
sion in melanoma cells. This property suggests the tumor 
suppressor activities of miR-211 [157, 158]. Notably, 
the expression of miR-196a, miR-200c, and miR-205 

could lead to extensive  down-regulation  of  malignant 
melanoma cell lines and act as the tumor suppressors 
[159]. In contrast, numerous miRNAs such as miR-210, 
miR30b, and miR-30 are  overexpressed  in  melanoma 
and associated with up-regulation of cancer cells lead-
ing to melanoma metastasis through promoting inva-
sion and immunosuppression induction [160]. MiR-149 
is another overexpressed miRNA in melanoma targeting 
GSK3a leading to apoptosis resistance in melanoma cells. 
So, non-coding RNAs (mainly miRNA) deletion can/
state control both normal and melanoma cells generally 
affecting  cell cycle regulation [161]. For instance, let-7b 
is a type of miRNA that inhibits the cell cycle progression 
by decreasing the CCND1, D3, and CDK4 expressions 
and it functions as a cancer cell growth [162]. Moreover, 
miRNA-193b downregulates CCND1 and CCND2 genes, 
which results in the promotion of melanoma cell prolif-
eration and invasion [163]. Downregulation of miR-206, 
miR-143, or miR-106b inhibits CCND1 via affecting G1 
cell cycle causing decrease in melanoma cells invasion or 
migration. Several other miRNAs have been documented 
as the significant cell cycle  regulators in a cyclin-inde-
pendent manner, including the miR21, miR203, miR205, 
miR18b, miR149, and miR26a [164]. Apoptosis induc-
tion by some microRNAs, including miR-155, miR-205, 
miR-21, miR-26a, miR-15b, and miR-149 have been high-
lighted in various reports[165]. Alteration in methylation 

Fig. 2 Histone lysine methyltransferases, namely KMT2D, EZH2, and SETDB1 can affect the advancement of melanoma cases. KMT2D can act as 
a regulator of IGFBP5 transcription to repress IGF1, thus inhibiting tumorigenesis. The SETDB1 can be triggered by Ret as a result of Src and PI3K 
pathway activation thenceforth, which affects AKT binding with SETDB1. This event leads to inhibiting pro-apoptotic genes such as Bim and 
Puma, and transcription blockade. EZH2 is involved in sundry signaling pathways such as Wnt/β-catenin, Ras, Notch, NF-KB, and β-adrenergic that 
deregulation of which can lead to tumorigenesis
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of CpG islands regulate the expression of miR-375, miR-
34b, miR-182, miR-148a, miR-203, miR-29, and miR-26 
demonstrating the epigenetic regulation of miRNAs in 
melanoma [166]. As aforementioned, some miRNAs 
function as anti-melanoma in combination with HDACIs 
and immune checkpoint inhibitors. For example, down-
regulated miR-589 promotes melanoma malignancy 
through accelerating PD-L1 expression level [167]. Fur-
ther, combinatory inhibition of a miR-146a and PD-L1 
promotes the survival in a melanoma mouse model 
[168]. Although the down/upregulation of miRNAs in 
melanoma cells and the consequences of such dysregu-
lations have been vastly reported. Although, the related 
mechanisms of these dysregulations are not entirely 
understood. Some of the miRNAs affecting apoptosis, 
migration, and proliferation of melanoma cells through 
different mechanisms are presented in Fig.  3. Overall, 
miRNAs can be beneficial in scientific research, the diag-
nosis of melanoma, and also it can be used to predict the 
patient’s reactions to treatments. Therefore, the develop-
ment of miRNAs is considered as critical epigenetic fac-
tor in melanoma which could greatly increase the clinical 
management of melanoma.

Epigenetic impact on drug resistance in melanoma
Differences among patients are the key reason which 
leads to different effectiveness and toxicity of treatments 
and specific roles that are played by drugs. It is of note 
that some features of medicines such as their uptake, 

process, and metabolism in specific tumor cells are dis-
tinct among different patients who have sundry genetic/
epigenetic underlying [169]. It should also be noted 
that tumor cells are capable of tolerating drug impacts 
via enhancing new molecular mechanisms and activat-
ing alternative compensatory pathways to bypass the 
treatment effects. Hence, gaining knowledge about the 
mechanisms and pathways triggered by anticancer drugs 
seems imperative [170].

Epigenetic alterations have also been shown to rewire 
the chromatin landscape of melanoma cells to tolerate 
the current therapies. This event is because the chroma-
tin-mediated alterations are shown to be reversible [171]. 
In another study, Sharma et al. identified tumor cells that 
survived in the presence of a 100-fold drug concentration 
more than the IC50 used in other tumor cell lines [172].

Several studies have found that H3K4me3/2 histone 
modification can be declined by a histone demethyl-
ase named KDM5A (JARID1A). KDM5A is vital for the 
reversible drug-tolerant state due to the RNAi-mediated 
knockdown. The expression of this enzyme was found in 
BRAFi treatment which is relevant to the drug-tolerant 
state phenotype [172]. Accordingly, induced drug-toler-
ant cells (IDTCs) can occur under external stress condi-
tions, namely hypoxia and nutrient starvation. This event 
leads to increased expression of both the H3K4 demethy-
lases (KDM1B, KDM5A, and KDM5B) and the H3K27 
demethylases (KDM6A and KDM6B) [173]. In addi-
tion, a noticeable decline in the number of melan-A and 

Fig. 3 Some of the miRNAs affect migration, apoptosis, proliferation, and survival of melanoma cells via various mechanisms
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tyrosinase (as differentiation markers and MITF target 
genes) has been reported in IDTCs. Hence, the cell tran-
sition into an undifferentiated state pertains to elevated 
aggressiveness [174]. Therefore, it could be deduced 
that histone demethylases and cancer cell dedifferentia-
tion have essential roles in the epigenetic regulation of 
distinct drug resistance mechanisms following BRAF 
inhibitor treatments. These effects are exerted via chro-
matin remodeling mechanisms, including either loss or 
gain of histone post-translational modifications [175]. 
Shalem et al. found that the STAGA HAT complex mem-
bers (TADA2B and TADA1) can induce histone acetyla-
tion when melanoma drug resistance has occurred [176]. 
Recently one study in melanoma indicated that inhibition 
of SIRT1 declines melanoma cell growth and increases 
their sensitivity to PLX4032 [177]. Moreover, SIRT2 inhi-
bition showed the resistance of melanoma cells to MAPKi 
via ERK reactivation [178]. CRISPR-Cas9 screen method 
in drug resistance melanoma has also revealed that chro-
matin-associated with histone deacetylase SIRT6 can 
be considered a regulator of resistance to BRAFi (dab-
rafenib) and BRAFi + MEKi (dabrafenib + trametinib). 
HATs such as KAT1 (HAT1) and KAT2B (PCAF) have 
been identified to confirm the epigenetic impact in mela-
noma [179, 180], So that increasing the activation of the 
AKT signaling pathway gives rise to MAPKi resistance 
[181, 182]. This resistance can be triggered by IGFBP2, 
as it is a part of a gene signature to respond to MAPKi 
“drug-tolerant persisters” [183]. Notably, both MAPK 
and IGF-1R pathways in tandem with each other can 
block/delay resistance processes to targeted MAPKi ther-
apies, specifically for cases with great levels of IGFBP2.

It also was reported that a high level of lipogenesis is 
a noticeable metabolic characteristic of cancer cells for 
membrane biogenesis and energy metabolism. Accord-
ingly, ACLY expression, the critical rate-limiting enzyme 
in lipogenesis, is significantly increased in melanoma as 
an oncogenic factor. This enzyme regulates the MITF–
PGC1a transcriptional axis to enhance melanoma 
growth. In this line, ACLY increases histone acetylation 
at the MITF locus, and facilitates transcriptional activa-
tion of the MITF–PGC1a axis. Therefore, the combina-
tion of MAPK and ACLY can be efficient in melanoma 
treatment [184].

Another concern is the acquisition of resistance to 
alkylating agents that are effective in 10–20 percent of 
cases in monotherapy [185]. These agents can dump the 
cells to death via binding to DNA. Specific DNA repair 
machinery types such as mismatch repair (MMR) will 
therefore recognize modified nucleotides. That is why 
activated DNA repair enzymes such as O6 -methyl-
guanine-DNA methyltransferase (MGMT) decrease 
the drug effects [186]. Esteller et  al. have found that 40 

percent of gliomas treated with alkylating agents lead to 
MGMT inactivation by hypermethylation in its promoter 
[187]. This finding also was shown in other tumor types, 
including glioblastoma, melanoma, and colorectal cancer 
[188]. In melanoma patients, reactivation of MGMT was 
demonstrated via hyper-methylation or SNPs in its corre-
sponding gene. Hence, fotemustine resistance and more 
tolerance to temozolomide treatment could occur [189]. 
Additionally, the expression level of proteins involved in 
DNA damage recognition and its repair can be associated 
with resistance to alkylating agents [190].

Epigenetic impact on targeted therapy efficiency 
in melanoma
Since the epigenetic marks are reversible and targeted 
immunotherapies are adaptable and widespread, numer-
ous anticancer strategies to rebalance the epigenome 
return to the normal state are under development. As 
previously mentioned, drug holiday is one of the most 
common concepts of non-genetically regulated drug 
resistance. For example, it was reported that patients re-
treated with BRAF or BRAF/MEK inhibitors had shown 
great responses [171]. Moreover, intermittent dosing 
schedules can lead to the delayed occurrence of vemu-
rafenib resistance in melanoma xenograft mouse models, 
compared to those who commit to continuous treatment 
[191]. Nevertheless, studies carried out regarding vemu-
rafenib sensitivity showed that chromatin assembly factor 
1 (CAF-1) plays an essential role in retaining vemurafenib 
sensitivity. To verify the CAF-1function, it has been dem-
onstrated that obliteration of CAF-1 gives rise to a dimi-
nution in genome-wide H3K9me3 and BRAFi resistant 
cells. The CAF-1 can therefore facilitate the integration of 
H3-H4 tetramers at the DNA replication fork during the 
S phase of the cell cycle, and lead to H3K9 methylation 
[192]. It is worth mentioning that a high level of KDM5B 
could lead to drug resistance. Thus shRNA-mediated 
knockdown of KDM5B gene can increase the sensitivity 
of different drugs [173]. Owing to the dynamic features 
of KDM5A and KDM5B, long-time exposure to exter-
nal stressors could lead to an innate cellular response 
and hence a multidrug-resistant phenotype [174]. Con-
tinuous exposure of melanoma cells to IDTCs makes 
them unresponsive to the 20-fold dose of taking BRAFis, 
MEKis, trametinib, and cisplatin. Additionally, IDTCs 
(hypoxia and nutrient starvation) retrieve drug sensitivity 
after seven days of ceasing drug activation.

It has been shown that the expression of melanoma 
stem cell markers including CD44, NGFR, SOX10, 
SOX2, and SOX4 was increased by IDTCs. The expres-
sions of ABCB5, ABCA5, ABCB8, and ABCB4, were 
escalated likewise. These events give rise to an undif-
ferentiated state [174], and can affect histone marks; 
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for instance, H3K4me3 and H3K27me3 are diminished, 
while H3K9me3 is increased [174]. These observations 
suggest that drug-independent generic stress responses 
can be regulated epigenetically in environmental condi-
tions [174]. These findings implicate strategies, which 
target the slow-cycling drug-tolerant phenotype, which 
will be beneficial. Sharma et al. demonstrated that HDA-
CIs have a noticeable impact on the subpopulation with 
high KDM5A expression, which is appeared after expo-
sure to large drug concentrations [172]. This observa-
tion results from the link between KDM5A, and histone 
deacetylates during the removal of methylation patterns 
for lysine 4 and 9 on histone 3 [193]. Moreover, HDACIs 
induce apoptosis, while the combination of HDACs could 
lead to improved drug resistance in the subpopulation 
[172]. Roesch et  al. have indicated that enrichment of 
the cells with high KDM5B expression during drug treat-
ment of melanoma cells is dependent on high levels of 
expression for oxidative phosphorylation enzymes of the 
electron transport chain, such as ubiquinol cytochrome 
c reductase, NADH dehydrogenase, cytochrome c oxi-
dase, and ATP synthase [173]. Therefore, inhibition of the 
mitochondrial respiratory chain via rotenone, oligomy-
cin, or phenformin can decrease KDM5B expression, and 
subsequently, drug resistance. Noteworthy, a remarkable 
decline in drug resistance was shown due to combination 
therapy with phenformin (NADH dehydrogenase inhibi-
tor), vemurafenib, and BRAF inhibitor [194]. Accord-
ing to obtained evidence, the expression of endogenous 
PGC1a depends on the growth of the mitochondrial 
function. Moreover, it is tolerant of oxidative toxicity in 
a subset of melanomas. Therefore, mitochondrial homeo-
stasis is critical in the progress of melanoma. The MITF is 
shown to be highly expressed in melanoma cases. MITF 
manages the transcription of PGC1a and mitochondrial 
biogenesis. It is of note that BRAF is capable of inhibiting 
MITF–PGC1a axis of transcription and subsequently the 
mitochondrial function. Simultaneous expression of both 
MITF and PGC1a and inhibition of BRAF or MEK could 
promote oxidative phosphorylation. Therefore, inhibition 
of MITF–PGC1a axis and mitochondrial function is a 
potential therapeutic strategy to avert melanoma devel-
opment and boost the efficacy of MAPK inhibition [184, 
195].

The IDTC phenotype of melanoma cells is not suscepti-
ble to certain treatments, such as a combination of BRAF 
inhibitors with oligomycin, HDACIs, and AKT inhibitors 
[174]. For instance, KDM5B gene elimination sensitizes 
melanoma cells to BRAF blockage, despite the fact that 
survived cells display the IDTC phenotype. Taking dif-
ferent drugs such as MEK, AKT, and HDAC inhibitors 
in IDTCs condition to suppress their target pathways 
over three days of therapy was shown to be remarkably 

effective. However, adaption to these drugs of melanoma 
cells can be seen after 12 days of treatment [196]. None-
theless, 90 days of exposure of melanoma cells to BRAF 
inhibitors displays no multidrug resistance, leading to 
the elimination of IDTC markers such as NGFR and 
KDM5B and permanent resistance [174]. According 
to what has been discussed so far, multiple epigenetic 
changes, mainly histone modifications, variation in 
miRNA expression levels, and hypo/hypermethylation of 
oncogenes or tumor suppressor genes, are well character-
ized to be related to melanoma tumorigenesis like many 
other cancers. Further studies are expected to elucidate 
the generation and regulation mechanisms of these epi-
genetic changes in the development of cancer cells.

Combination of immunotherapy compounds 
with epigenetic drugs in melanoma
Cancer cells bypass the immune system via different epi-
genetic mechanisms. Downregulation of genes, which are 
involved in the presentation of tumor antigens, is an epit-
ome of such mechanisms. In this regard, many pharma-
cological agents/therapies have been developed to inhibit 
these mechanisms and reprogram post-translational his-
tone modifications [197]. It also was found that immune 
or inflammatory-related genetic factors have been esca-
lated due to the combination of these therapeutic agents 
with immunotherapy during the inhibition of the epige-
netic mechanisms.

Epigenetic drugs based on histone and/or chromatin 
modifications
Based on reports, cancer patients treated with either 
HDACIs, DNMT, or PD1/PD-L1 immune checkpoint 
inhibitors experienced potent treatment responses. 
These studies suggest that these epigenetic inhibi-
tors may escalate the efficacy of immunotherapy via [1] 
enhancing the antigenicity, [2] counteracting immuno-
suppressive mechanisms by the tumor microenviron-
ment, and [3] reversing cytotoxic T cell exhaustion [198]. 
It is reported that patients suffering from melanoma with 
the expression of PD-L1 are divided into four groups 
based on the number of tumor-infiltrating lymphocytes 
(TILs). Group 1 patients respond to treatment, which is 
responsive against their tumor cells. Group 2 patients 
have a low number of TILs and negligible or no PD-L1 
expression, thereby not responding to PD1 monother-
apy. Group 3 patients have TILs, albeit low or no PD-L1 
expression. Eventually, Group 4 patients who have few 
or no TILs, albeit having PD-L1 expression [138, 139]. 
It is of note that PD-L1 expression can be increased in 
epithelial cancer cell lines, which are under treatment 
with DNMT inhibitors (DNMTis). Moreover, Illumina 
450  K arrays revealed that low or no PD-L1 expression 
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is strongly linked with high DNA methylation. This 
property reveals the role of chromatin methylation to 
suppress PD-L1 expression. Transcription factors or epi-
genetic regulators including the EZH2 and SUV39H1 
methyltransferases are capable of direct interaction with 
binding domains (ATRX-DNMT3-DNMT3L (ADD)) 
of DNMT3A. Therefore, DNA hypomethylation regu-
lates the PD-L1 expression, and it plays a pivotal role 
in the modulation of responsiveness to PD1 inhibitors 
[199]. DNA methyltransferase 1 (DNMT1) locates on 
the daughter strand cytosine at the complementary CpG. 
This process enforces gene silencing simultaneously to 
the mammalian cell division [200, 201]. DNA methyl-
transferase inhibitors (DNMTis), namely 5-azacytidine, 
decitabine, and guadecitabine, are approved for DNA 
histone hypo-methylation in patients suffering from 
the myelodysplastic syndrome or leukemia to reactivate 
tumor suppressor genes. These Aza nucleosides irrevers-
ibly bind to DNMT1 and degrade them by substituting 
nitrogen with carbon at the C-5 position of the pyrimi-
dine ring. This substitution results in the loss of DNA 
methylation, expression of genes pertaining to immu-
nomodulatory pathways, and induction of tumor antigen 
presentation [202]. For instance, NSCLC cell lines under 
treatment with 5-azacytidine can activate the JAK/STAT 
signaling pathway and provoke the expression of genes 
with a role in antigen presentation. This event per se cul-
minates in the expression of PD-L1, considered a vital 
ligand-mediator of immune tolerance. Moreover, DNMTi 
has been shown to be linked with the activating of 
expression for hyper-methylated endogenous retroviral 
double-stranded RNAs (EVs). This property of DNMTi 
could lead to the induction of type I interferon response 
and MHC I expression [203]. Researches in tumor-bear-
ing mice models indicated that previous treatment with 
decitabine (as a DNMTi) affects either the tumor cells or 
antigen-specific CD8 + T cells. This treatment accompa-
nied by anti-PD-L1 agents can prevent the acquisition 
of exhaustion-associated methylation programs. This 
event makes the T cells become more potent for expan-
sion after immune checkpoint blockade [204, 205]. In a 
murine ovarian cancer model, anti-CTLA-4 treatment 
became more potent via its combination with decitabine. 
This combination increased the differentiation of naive T 
cells into effector T cells [205].

Epigenetic drugs based on ncRNAs suppressing/activating
Aside from the aforementioned, non-coding RNA mol-
ecules (ncRNAs), miR-125a, miR-28, miR-125b, miR-100, 
miR-200c, miR-211, MELOE, SAMMSON, and HOTAIR 
have been found to play a crucial role in treatment resist-
ance [206]. miRNAs promote the melanoma to second-
ary sites via several mechanisms, including (A) regulation 

of MITF-M expression, (B) alteration of the extracellular 
matrix (ECM), (C) enhancement of reciprocal epithe-
lial-to-mesenchymal transition (EMT), mesenchymal-
to-epithelial transition (MET), and (D) preparation of 
pre-metastatic niche formation [207]. However, some 
mRNAs such as miR-182, miR-137, miR-211, and miR-
107 reduce the MITF-M expression in melanoma cells, 
leading to an invasive phenotype [208]. For instance, 
melanoma cell invasion and migration are provoked as a 
result of miR-182 upregulation which is triggered by the 
downregulation of both expressions of MITF and FOXO3 
[158]. On the other hand, miR-211 can block the inva-
sion and migration of melanoma cells [156], and repress 
POU3F2 (POU-domain class 3 transcription factor 2, 
also known as brain-specific homeobox 2 (BRN2)) which 
acts as a MITF suppressor. Zhao et  al. have indicated 
that downregulation of miR-107 (a tumor suppressor) 
represses melanoma cell invasion through POU3F2 tar-
geting [209].

miRNAs have conflicting functions, such as enhancing 
either tumor migration or suppression. For example, the 
miR-224/miR-452 cluster is directly activated by E2F1, 
which facilitates the cytoskeletal rearrangement of less 
aggressive cells and thereby increases the migration and 
invasion of melanoma cells. Notably, the miR-200 family 
(miR-200a, miR-200b, miR-200c, and miR-141) induces 
EMT-like processes via upregulation of Bmi-1 oncogene 
expression. Thus, the PI3K/AKT and MAPK pathways 
can be activated. Activation of these pathways negatively 
impresses the expression of ZEB1 (zinc finger E-box-
binding homeobox  1) and E-cadherin, which provokes 
the expression of vimentin and N-cadherin [209]. Per-
taining to IncRNA effects on melanoma cells, it is of note 
that SPRY4-IT1 was the first lncRNA, which was char-
acterized to be originated from an intron of the SPRY4 
gene. Recent studies have found that the expression of 
SPRY4-IT1 is escalated in cases of melanoma [210]. Siena 
et al. have identified a remarkable upregulation of ZEB1 
antisense RNA 1 (ZEB1-AS1) in metastatic melanoma 
linked with hotspot mutation in both BRAF and RAS 
family genes [211]. Their analysis showed that ZEB1-
AS1 could function by activation of expression for zinc 
finger E-box binding homeobox  1 (ZEB1). Activation 
of EB1 could influence the invasiveness and phenotype 
switching melanoma cases [211]. GAS5 is a lncRNAs, 
which diminishes the expression of MMP2. This pro-
tein is involved in ECM degradation and can reduce the 
migration and invasion of human MM cells [212, 213]. 
Nonetheless, deregulation of the expression for some 
miRNAs could give rise to drug resistance, particularly in 
BRAFi or MAPKi-based melanoma therapies. As a good 
example, miR-31a, miR-100, and miR-125b are shown 
to stimulate tumor cell proliferation, apoptosis escape, 
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and decline in drug sensitivity among patients who took 
vemurafenib. Additionally, inhibition of miR-125a causes 
drug re-sensitization in a subset of BRAFi-resistant cell 
lines of melanoma. miR-204 and miR-211 could also 
lead to resistance against vemurafenib in melanoma cells 
[214–218].

Epigenetic drugs in clinical trial to treat melanoma
Histone deacetylases are known to play a pivotal role in 
the transcriptional machinery for regulating gene expres-
sion, inducing histone hyperacetylation, and affecting 
gene expression. Therefore, they represent the target of 
therapeutic or prophylactic agents, HDACis, for diseases 
caused by abnormal gene expression.

HDACi have manifold biologic effects resulting from 
alterations in patterns of acetylation of histones and 
many nonhistone proteins, which include proteins 
involved in the regulation of gene expression, cell cycle 
progression, pathways of extrinsic and intrinsic apopto-
sis, redox pathways, mitotic division, angiogenesis DNA 
repair, and cell migration.

Valproic acid (VPA) and pivaloyloxymethyl butyrate 
(Pivanex, AN-9), two short-chain fatty acids, are sup-
posed to be use in the treatment of melanoma. Phase I/
II clinical trials tested VPA alone or in combination treat-
ment for melanoma, and the conclusion was that VPA 
potentiates KTN-induced DNA strand breaks and cyto-
toxicity [255]. VPA also was examined in another phase 
I/II clinical trial which combined with standard chemo-
immunotherapy in patients with advanced melanoma. 
On the contrary, the combination of VPA and chemoim-
munotherapy did not produce results overtly superior 
to standard therapy [256]. Two serious adverse events 
stemmed from taking VPA—a grade 3 neurological toxic-
ity and a grade 4 bleeding of a cerebral metastasis—were 
shown in this study [256]. Pivaloyloxymethyl butyrate 
(Pivanex, AN-9) is the other short-chain fatty acid that 
is in phase I/II clinical trials for malignant melanoma, 
and AN-9 exhibited antimetastatic and antiangiogenic 
activities via decreasing vascularization, bFGF expres-
sion, and HIF-1α [257]. Mild to moderate nausea, vomit-
ing, hepatic transaminase elevation, hyperglycemia, fever, 
fatigue, anorexia, injection site reaction, diarrhea, and 
visual complaints were side effects observed in sundry 
studies in the treatment of patients afflicted with solid 
malignancies [258].

Benzamides are a class of drugs composed of HDACi 
containing a characteristic 20-aminoanilide moiety able 
to contact specific amino acids in the tube-like active 
site of the HDAC core, with or without coordination/
chelation of zinc ions [259]. MS-275 (SNDX-275, Enti-
nostat) is a class I selective inhibitor of benzamides in 
phase II in patients with melanoma in a clinical trial 

with NCT00185302. Reported dose-limiting toxici-
ties associated with entinostat include neurotoxicity, 
fatigue, hypophosphatemia, anorexia, and vomiting 
[260].

Conclusion and future directions
Chromatin remodeling, histone modifications, DNA 
methylation, and microRNAs are considered as epige-
netic mechanisms, which could be exploited to predict 
treatment outcomes via regulating the expression of sev-
eral functional genes. This review has abridged a notable 
topic regarding the genetic and epigenetic changes that 
have remarkable roles in the enhancement and progres-
sion of melanoma. Cancer-based researches are about 
changes from a histology-based standpoint in genomic 
subjects of neoplastic disease. The treatment methods are 
also shifted to pharmacogenomics and particular genetic 
and epigenetic profiles. Such perspectives are impera-
tive to promote the outcomes of treatments in melanoma 
patients and escalate the efficacy of drugs against lethal 
cancers. To understand the dynamic transcriptional con-
trol of gene expression, it is crucial to gain knowledge 
about the functions of MITF and SOX10. Shifting to per-
sonalized treatment is in its beginning steps in melanoma 
treatment. Novel epigenetic medicines are expected 
to decline systemic toxicities by particular impacts. A 
comprehensive standpoint, which considers the pheno-
types, genotypes, and epi-genotypes of melanoma cells, 
would be beneficial to understanding the sundry clinical 
behaviors and may aid us in developing novel therapeutic 
approaches. Despite the fact that epigenetic therapy for 
melanoma is still in its infancy, it is likely that their use 
will increase significantly in the future as single agents, 
combined with each other, or in combination with con-
ventional chemotherapy. Therefore, we suggest that more 
investigations in the future will be valuable for examining 
the effects of the combination of epigenetic therapy with 
conventional and unconventional therapeutic approaches 
for the treatment of melanoma.
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