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Abstract: Due to their good absorption, satisfactory biocompatibility, and high safety, hydrogels have
been widely used in the field of biomedicine, including for drug delivery and tissue regeneration.
In this review, we introduce the characteristics and crosslinking methods of natural and synthetic
hydrogels. Then, we highlight the design and principle of intelligent hydrogels (i.e., responsive
hydrogels) used for drug release. Moreover, we introduce the application of the application of
hydrogels in drug release and tissue engineering, and the limitations and research directions of
hydrogel in drug release and tissue engineering are also considered. We hope that this review can
provide a reference for follow-up studies in related fields.

Keywords: responsive hydrogels; drug release; tissue engineering; synthetic polymer; natural polymer

1. Introduction

Hydrogel-based, sustained-release drug carriers are an emerging drug delivery sys-
tem (DDS). By using materials that are nontoxic, have a good biocompatibility, and are
biodegradable as carriers or media, the DDS can be chemically or physically bound to the
drug to create the corresponding drug dosage form. A DDS enters the body via chemical
diffusion or penetration; thus, drugs can be released slowly and continuously into the hu-
man body at a stable rate and an appropriate concentration to improve their efficacy, reduce
the drug dosage, and provide an optimal therapeutic effect [1]. As one of the important
components of a sustained-release system, the controlled-release drug carrier plays a very
important role in the curative effect of the drug. Different kinds of controlled-release drug
carriers or the same carrier under different conditions have different delivery characteris-
tics and slow-release performance; thus, the development of targeted slow-release drug
carriers is very important [2]. In recent years, a wide variety of hydrogels have been used
in biomedical applications, including drug delivery and tissue regeneration. The hydrogel
materials used for drug release can be divided into natural polymer materials (such as
chitosan, alginate, cyclodextrin, and collagen) and synthetic polymer materials (such as
N-isopropylacrylamide (NIPAM), acrylamide, polyvinyl alcohol (PVA), and polyethylene
glycol (PEG)) [3]. Hydrogels with various properties, such as water absorption, swelling,
and degradation effects, can greatly improve the utilization rate of drugs and help to
control their release [4]. Because of their advantageous properties, hydrogels based on drug
controlled-release systems in tissue engineering are the most notable. In this review, we
introduce the research progress made on the application of hydrogels as sustained-release
drug carriers in tissue engineering. Firstly, we introduce some raw materials that are com-
monly used for preparing hydrogels, including natural materials and synthetic materials,
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and also briefly introduce crosslinking methods that are commonly used for preparing
hydrogels from various materials. Secondly, we summarize the common characterization
methods of hydrogel materials, as it is often necessary to conduct characterization research
before the application of hydrogel materials, and the mechanisms of hydrogel materials
and their applications are discussed. Lastly, we summarize the current understanding of
intelligent (responsive) hydrogels and their applications in tissue engineering. In particular,
the limitations of hydrogels in sustained-release drug carriers and tissue engineering are
reviewed and discussed, which may be helpful for subsequent research using hydrogels as
sustained-release carriers for tissue repair.

2. Classification of Hydrogels

According to their source, the materials used to prepare hydrogels can be divided
into natural materials and synthetic materials. Natural hydrogel materials are from the
extracts of animals and plants, including collagen, chitosan, hyaluronic acid, alginate,
chitin, gelatin, and cellulose, and have good biocompatibility and biodegradable properties;
thus, they are widely used in the field of biomedical applications. Synthetic hydrogel
materials, such as polyacrylic acid, polyacrylic acid salt (ammonium), polyacrylamide
and its derivatives, PVA, polypeptide, and polyethylene oxide (PEO), can be industrially
produced and chemically modified, and they have the advantages of precision and con-
trol [5]. However, compared with natural hydrogels, their biosafety and biodegradability
are poorer due to the addition of initiators and crosslinking agents during the preparation
process [6]. In addition, hydrogels can be divided into chemically crosslinked hydrogels
and physically crosslinked hydrogels according to their crosslinking methods. Chemically
crosslinked hydrogels are made by dissolving substances containing reactive groups with
crosslinking agents in water under certain reaction conditions. Their structure is relatively
stable, and they are often referred to as “permanent” gels. Common chemical crosslink-
ing methods include ultraviolet radiation crosslinking, click chemical crosslinking, and
Schiff base crosslinking. Physical crosslinking refers to hydrogels produced by crosslinking
on the basis of noncovalent bonds, such as hydrogen bonds, ionic bonds, and van der
Waals forces, whose state may alter with changes in the external conditions. Therefore,
physically crosslinked hydrogels are often referred to as “reversible” hydrogels. Common
physical crosslinking modes include ion crosslinking, hydrophobic interaction, physical
entanglement, and hydrogen bonding [7] (Figure 1a).

2.1. Natural Hydrogels

Sodium alginate (SA) is a natural polysaccharide derived from brown seaweed that is
hygroscopic, soluble in water, and can produce sticky latex. Because SA has good biocom-
patibility with organisms and does not cause allergy or inflammation, high-purity sodium
alginate can exist in organisms; therefore, SA is often used to make sustainable-release
carriers for drugs. In terms of material degradation, SA can be degraded by acid hydrol-
ysis, enzymolysis, radiation degradation, and the addition of reducing substances [8,9].
The commonly used crosslinking methods of SA hydrogel preparations include enzyme
crosslinking, covalent crosslinking, and ion crosslinking. Ion crosslinking is physical
crosslinking. For example, a mixed SA–calcium salt gel can be formed after the SA hydro-
gel is combined with divalent cations such as calcium. However, the crosslinking process is
rapid and difficult to control; hence, the hydrogel prepared is uneven and has poor me-
chanical properties [9]. Covalent crosslinking refers to chemical crosslinking and includes
hydroxyl, carboxyl, Schiff base, and double-bond crosslinking. Although SA hydrogels
with better performance can be prepared via chemical crosslinking, chemical crosslinking
needs to be performed under harsh conditions, where toxic substances may be introduced,
reducing their biocompatibility [10,11] (Figure 1b).
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Copyright 2019, Fernando, I. P. S. (c) Schematic diagram of chitosan particle system prepared by 
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Dash, M. 
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thropods. Under weakly acidic conditions, some of the amino groups can be protonated 
and converted into quaternary ammonium salt, thus showing antibacterial activity. At 
the same time, due to its good biocompatibility, low toxicity, and hydrophilicity, it is also 
an ideal material for preparing hydrogels [11,12] (Figure 1c). In terms of biocompatibility, 
studies have shown that chitosan materials can cause nonspecific inflammatory reactions 
in the early stage of implantation, but as time goes by, the inflammatory reactions caused 
by chitosan materials gradually disappear. In terms of degradation, chitosan materials 
can be degraded by enzymatic hydrolysis, oxidation, acid hydrolysis, and other methods. 
The preparation methods of chitosan hydrogels include physical, chemical, and enzyme 
crosslinking methods, among which physical and chemical crosslinking methods are the 
most widely used. The physical crosslinking methods can be subdivided into ion cross-

Figure 1. Crosslinking methods of hydrogels and preparation technologies of partial hydrogels.
(a) Chemical and physical crosslinking of hydrogels. (b) Modification of alginate by furfurylamine
and hydrogel formation by crosslinking with bismaleimide. Reprinted with permission from Ref. [10].
Copyright 2019, Fernando, I. P. S. (c) Schematic diagram of chitosan particle system prepared by
emulsification crosslinking method. Reprinted with permission from Ref. [12]. Copyright 2011,
Dash, M.

Chitosan is a kind of natural amino polysaccharide isolated from the shells of arthro-
pods. Under weakly acidic conditions, some of the amino groups can be protonated and
converted into quaternary ammonium salt, thus showing antibacterial activity. At the
same time, due to its good biocompatibility, low toxicity, and hydrophilicity, it is also an
ideal material for preparing hydrogels [11,12] (Figure 1c). In terms of biocompatibility,
studies have shown that chitosan materials can cause nonspecific inflammatory reactions
in the early stage of implantation, but as time goes by, the inflammatory reactions caused
by chitosan materials gradually disappear. In terms of degradation, chitosan materials
can be degraded by enzymatic hydrolysis, oxidation, acid hydrolysis, and other meth-
ods. The preparation methods of chitosan hydrogels include physical, chemical, and
enzyme crosslinking methods, among which physical and chemical crosslinking methods
are the most widely used. The physical crosslinking methods can be subdivided into ion
crosslinking, hydrogen bond crosslinking, and polyelectrolyte complex crosslinking. The
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characteristics of the physical crosslinking preparation of chitosan hydrogels are that there
is no need to add a chemical crosslinking agent; thus, there are few impurities that can be
reused. Commonly used chemical crosslinking methods for the preparation of chitosan
hydrogels include amidation reactions, purple diplomatic linking reactions, Schiff base
reactions, and enzymatic crosslinking. Compared with hydrogels prepared by physical
crosslinking, chemically crosslinked chitosan hydrogels have stronger mechanical strength
and stability, as well as better performance in drug release and tissue engineering [13,14].

Hyaluronic acid (HA), a natural linear macromolecular polysaccharide, widely exists
in organisms [15]. Due to its unique properties, including good biocompatibility (such
as low cytotoxicity and weak immune response) and biodegradability (such as physical,
chemical, and enzyme degradation methods), HA has also been widely used in biomedical
fields in applications such as drug carriers and tissue engineering [16]. The preparation
methods of HA hydrogels include physical and chemical crosslinking methods. HA can
form hydrogels by temporary physical crosslinking through intermolecular physical forces,
such as hydrophobicity, hydrogen bonding, and electrostatic interactions, but hydrogels
prepared by intermolecular forces are very unstable. However, chemically crosslinked
hydrogels made using the hydroxyl and carboxyl groups of HA and bifunctional small-
molecule crosslinkers have better mechanical properties and quality. Commonly used
crosslinking agents include glutaraldehyde, epoxy compounds, multifunctional hydrazides,
and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) [17].

Agarose, the main component of galactan, is a natural plant polysaccharide with
the advantages of nontoxicity, low material cost, and a simple gel-forming method. It
also has good temperature sensitivity, is generally soluble in water at 90 ◦C, and can
form a stable hydrogel structure when the temperature drops to 40 ◦C. In addition, the
hydrogel prepared with agarose as raw material can be degraded by enzyme degradation
and chemical degradation, and it not only does not cause an immune response, but also
promotes the growth of tissue cells in the body. Therefore, it is widely used in biomedical
fields such as cell therapy, sustained drug release, and tissue engineering [18] (Figure 2a).
The crosslinking method of agarose is similar to that of other natural hydrogels. Agarose
hydrogels can also be formed through physical crosslinking and chemical crosslinking
methods, such as van der Waals forces, hydrophobic forces, and hydrogen bond forces.
Chemical crosslinking methods, such as click chemical reactions, Schiff base reactions, and
Michael addition reactions, show better performance than physical crosslinking [19].

Carrageenan, also known as carrageenan glue, is a hydrophilic polysaccharide ex-
tracted from seaweed horseradish. It generally exists as white or light-brown granules or
powder, and it is odorless and tasteless [20]. In addition to having rich sources, carrageenan
is also safe, bioinert, environmentally friendly, nontoxic, and biodegradable, and it has been
widely used in the food and medical fields [21]. In the field of controlled-release drug carri-
ers, hydrogels can be prepared from carrageenan through physical, chemical, and radiation
crosslinking. Pourjavdi et al. [22] introduced gold nanoparticles into a mixture contain-
ing carrageenan, chitosan, and polyisopropylacrylamide to form physically crosslinked
hydrogels. Hydrogels prepared in this way have temperature sensitivity and good biocom-
patibility. Liu et al. [23] used KCl as an ionic crosslinking agent of carrageenan to prepare
hydrogels with high toughness, recovery, and self-healing ability (Figure 2b). Kamalesh
Prasad et al. [24] obtained a blended hydrogel of carrageenan and polyvinylpyrrolidone
and found that its strength and swelling performance were significantly improved.

Chondroitin sulfate (CS), a natural acidic mucopolysaccharide, exists in the cartilage
tissues of mammals and has anti-arthritis properties, the ability to regulate body immunity
(including an increase in the weight of mouse immune organs, the function of mouse
immune cells, and the secretion capacity of IFN-γ of the body), anti-coagulation properties,
etc. [25]. In addition, CS can be degraded by enzymatic and chemical methods. In the
field of tissue engineering, CS hydrogels can promote the formation and differentiation
of cartilage and provide a biomimetic microenvironment without growth factors for the
growth of chondrocytes and the regeneration of cartilage tissues. In addition, CS hydrogels
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can also meet the mechanical requirements for cartilage tissue repair in the body [26].
CS hydrogels can be prepared by physical and chemical crosslinking methods, such as
hydrogen bond forces, hydrophobic forces, and van der Waals forces. Chemical crosslinking
methods involve the use of a Schiff base reaction or glutaraldehyde as the crosslinking
agent [19,27] (Figure 2c).
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Figure 2. Shape and internal structure of parts of hydrogels. (a) Schematic illustration of the
preparation of the peptide-agarose microgel scaffold for three-dimensional (3D) cell culture. Reprinted
with permission from Ref. [18]. Copyright 2020, Yamada, Y. (b) Different forms of carrageenan
composite hydrogel. Reprinted with permission from Ref. [23]. Copyright 2017, Liu, S. (c) Internal
structure diagram of chondroitin sulfate composite hydrogel. Reprinted with permission from
Ref. [27]. Copyright 2005, Dawlee, S. (d) Structure of dextran. Reprinted with permission from
Ref. [28]. Copyright 2020, Chen, F.

Glucan, also known as dextran, is a polysaccharide produced by bacteria such as
Candida intestinalis through sucrose fermentation. Due to different fermentation strains
and fermentation conditions, different glucans have certain differences in structure and
molecular weight, but generally have water solubility [28] (Figure 2d). In the field of tissue
engineering, glucan has the advantages of good histocompatibility, low inflammatory
response, and no obvious tissue lesions; thereby, glucan hydrogels can be used as sustained-
release carriers of drugs, which can realize the controlled release of drugs and can also
destroy the spatial structure of hydrogels through the degradation of glucanase in the
body to accelerate the release of drugs [29]. Glucan hydrogels can be prepared by physical
and chemical crosslinking. Although physical crosslinking can avoid the toxicity of the
crosslinking agent and the possible interaction between the crosslinking agent and the
drug such that the activity of the drug can be preserved to the maximum extent, it also
has the disadvantage of having the low strength of the hydrogels prepared. Although
glucan hydrogels prepared by chemical crosslinking involve toxic crosslinking agents, the
hydrogels produced by the chemical crosslinking method have better mechanical strength;
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hence, they are widely used. The crosslinking agents commonly used in the chemical
crosslinking of glucan hydrogels include epichlorohydrin, metaphosphate, and borax [30].

Gelatin, a natural biopolymer material derived from collagen, has the advantages
of biodegradability (such as chemical or enzymatic degradation methods), good biocom-
patibility (for example, there was no redness, swelling, and exudation at the implanted
site and no obvious inflammatory reaction was found at the site one week after surgery
when gelatin microspheres were implanted subcutaneously in mice), and low cost, with
a wide range of applications in the field of biomedicine, such as being used as a capsule
material, matrix, and sustained-release carrier of drugs [31]. Among them, gelatin hydrogel,
which can be used as a sustained-release carrier of drugs, has good water retention and
viscoelasticity. After being dehydrated by applying pressure within a certain range, it can
absorb water and swell again [32]. Current studies have shown that gelatin hydrogels
can be prepared by chemical crosslinking, temperature crosslinking, photo-crosslinking,
and enzyme crosslinking. However, due to the influence of various conditions, such as
ambient temperature, the properties of hydrogels prepared by temperature crosslinking
and photo-crosslinking are not ideal. Although gelatin hydrogels prepared by the chem-
ical crosslinking agent glutaraldehyde have good effects, there are some disadvantages,
such as the potential toxicity and biocompatibility of glutaraldehyde. However, hydrogels
prepared using gelatin and methacrylic anhydride under certain conditions have a more
stable performance [33] (Figure 3a).

Collagen, a structural protein of the extracellular matrix (ECM), is widely found in
the skin, connective tissue, bone, and cartilage of vertebrates. Because collagen is derived
from organisms, its immunogenicity is low, and it will not cause strong inflammation and
immune response when applied to body tissues [34]. Collagen hydrogel has a structure
similar to the ECM that is closer to a natural biological tissue structure and can be degraded
by collagenase in the body; thus, it can give full play to its biological function. Currently,
the methods available for gelatin hydrogel preparation include collagen self-assembly
and chemical crosslinking [35]. Collagen self-assembly is a hydrogel formed by the self-
assembly of collagen fibers, which are connected end-to-end in a quarter dislocation
of collagen molecules, whereas the solvent in the solution is bound to its interior so
that it cannot flow freely. This method mainly involves the preparation of hydrogels by
noncovalent action; thus, its performance is poor [36]. Chemically crosslinked collagen
hydrogels are formed through covalency. For example, small-molecule aldehydes and
epoxides are commonly used as crosslinking agents, and the collagen hydrogels prepared
have good elasticity but poor softness [36] (Figure 3b).

Silk fibroin (SF) is a protein existing in silk that is very similar to collagen in the body,
therefore SF has good histocompatibility and low immunogenicity, is not able to easily cause
an immune response of the body, and has certain biodegradability (it is usually degraded
to amino acids or oligopeptides). In addition, its degradation products have no side-effects
on the body and have nutrition and repair functions for surrounding tissues; thus, they are
widely used in the field of tissue engineering [37]. SF hydrogels can be made via physical
and chemical crosslinking. The physical crosslinking mechanism uses the sensitivity of the
silk protein to molecular conditions such as pH value, shear, and vibration environment,
inducing the formation of the beta folding structure to form a hydrogel. The commonly
used physical crosslinking methods have a higher temperature and an adjustable pH
value involving cyclone processing or ultrasonic processing. Although the strength of SF
hydrogels achieved by physical crosslinking is high, they have some disadvantages, such
as a long crosslinking time and a brittle texture. The mechanism of chemical crosslinking
to prepare SF hydrogels involves the polymer chains in the formation of hydrogels being
crosslinked through covalent bonds. Commonly used chemical crosslinking methods
include crosslinking agents, light, and enzymes [38,39] (Figure 3c).

Sericin, like SF, is a protein existing in silk that is wrapped in the outer layer of
SF and has a protective effect on SF. The obvious difference between SF and sericin is
that SF can only swell in water but not dissolve, whereas sericin can dissolve in hot
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water [40]. As research on sericin has deepened, it has shown great advantages as a
biomaterial due to its advantages of a stable source, strong processability, hydrophilicity,
low immunogenicity, promotion of cell proliferation, inhibition of tyrosinase activity, and
controllable degradation [41]. In the field of sustained-release drug carriers, sericin can
form hydrogels through physical, chemical, and photo-crosslinking methods, and the most
common chemical crosslinking method is to prepare sericin hydrogels with glutaraldehyde
as a crosslinking agent [42]. For example, by taking advantage of the fact that proteins
do not dissolve in ethanol, pure sericin hydrogel containing no other substances can be
prepared via the ethanol precipitation method and the ultrasonic method [43]. Photo-
crosslinking can also be employed, as Qi et al. [44] reported when they formed an in situ
hydrogel by photo-crosslinking sericin functionalized into methylacryloylsericin under
UV irradiation.

Cellulose is a kind of natural polymer compound formed by the dehydration of
multiple glucose monosaccharide molecules and glycosidic bonds. It is an important
component of the plant cell wall and the most abundant biological material in nature.
In addition, cellulose also has the characteristics of high mechanical strength and good
chemical stability. Therefore, it is widely used in biomedicine, food chemicals, and other
fields. In the actual preparation process, inflammation can be still induced by some other
substances that are released from the cellulose-based hydrogels during the process of them
contacting with the body, although cellulose itself can be biodegraded by biomolecular
interactions in the body [45]. In the field of sustained-release drug carriers, cellulose can
form hydrogels through physical and chemical crosslinking. The mechanism of physical
crosslinking is as follows: cellulose has many hydroxyl groups, which can be connected
into a network structure by forming hydrogen bonds [46]. The mechanisms of chemical
crosslinking to form hydrogels can be divided into two categories: crosslinking through
chemical crosslinking agents (such as propylene oxide and divinyl sulfone) or covalent
crosslinking between cellulose molecules by forming free radicals [47].

Starch is a kind of plant polysaccharide that widely exists in plant seeds, fruits, and
roots. It is characterized by its abundant sources, low cost, biodegradability, nontoxicity,
and harmlessness, and it has been widely used in many fields [48]. Currently, cassava
starch hydrogel is the most studied starch hydrogel and has many advantages such as high
hydrophilicity, a high swelling degree, and a three-dimensional structure conducive to drug
delivery. In addition, the nano-modified starch also has the advantages of small particle
size, nontoxicity, biodegradability, nonimmunogenicity, and histocompatibility; thus, it is a
material with great potential for development [49]. Cassava starch can form hydrogels via
physical and chemical crosslinking. Although hydrogels prepared using physical methods
have the advantages of no environmental pollution and high yield, they also have the
disadvantages of high energy consumption in the preparation process and poor structural
stability; thus, the application of cassava starch hydrogels prepared by physical methods
is poor. Currently, the commonly used cassava starch hydrogel is prepared by modified
grafting of cassava starch (using a grafting agent such as acrylamide) [50] (Figure 3d).

2.2. Synthetic Hydrogels

NIPAM is a white crystal with a melting point of 60 ◦C, a boiling point of 90 ◦C,
and a minimum critical phase transition temperature of 32 ◦C that can be used for the
synthesis of heat-sensitive materials and expansive macromolecular hydrogels [51]. In
the field of controlled-release drug carriers, NIPAM can form a hydrogel using a double
bond, which is an initiator that triggers the NIPAM monomer or crosslinking agent to
initiate polymerization by chemical crosslinking (such as free-radical polymerization). This
method is relatively simple, but the initiator and crosslinking agent that remain in the
hydrogel and other substances may influence the performance of the hydrogel. Physical
crosslinking (such as illumination, ultrasound, and radiation) is a way to physically induce
the polymerization of the NIPAM monomer to form a hydrogel without the addition of other
substances. Hydrogels prepared via this method have attracted much attention this year



Gels 2022, 8, 301 8 of 31

because there is no interference from other substances [52]. In addition, NIPAM hydrogel
not only has the characteristic of biodegradability, but also can generate an effective immune
response via the proinflammatory fragments that are produced by acidification degradation
in the body; thus, it has a wide range of applications in biomedicine, human tissue materials,
and other fields.
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PEG, a synthetic polymer with advantages of good biocompatibility, low toxicity,
and degradability, has been widely used in nerve, cartilage, bladder, and other tissue
engineering fields [53] (Figure 4a). As a hapten, when PEG material is used alone, its
immunogenicity is very low and usually does not cause an immune response of the body.
However, when PEG material is modified to form a conjugate, its immunogenicity will be
improved and there is a certain probability of causing the immune response of the body to
produce specific antibodies against PEG. In the field of tissue engineering, PEG often plays
a role in the formation of hydrogels. The crosslinking methods for preparing hydrogels
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include high-energy radiation, functional group reactions, and free-radical polymerization.
According to their action form, hydrogels prepared via the high-energy radiation method
can be classified as physically crosslinked. The advantage of hydrogels prepared using this
method is that the crosslinking condition is mild, whereas the disadvantage is that there
are unreacted free radicals in the resulting hydrogels. Free-radical polymerization refers
to the use of the PEG monomer as the polymerization initiator to form a hydrogel. The
disadvantage of this method is that there will be some initiator residue in the hydrogel,
which may affect its performance. The functional group reaction method refers to the
preparation of a hydrogel by forming covalent crosslinking of the reaction between the
terminal functional groups of derivatives of PEG and the terminal functional groups of
another derivative of PEG (they are complementary). The advantage of this method is that
there is no additive; hence, it is relatively safe [54].

PVA, obtained from the hydrolysis of polyvinyl acetate, is a water-soluble, nontoxic,
and nondegradable polymer. It contains a large number of hydroxyl groups in its molecules
and has good mechanical properties and biocompatibility. It has been widely used in the
field of biomedicine [55]. Pharmacological experiments have proven that PVA is nontoxic,
odorless, and nonirritating to the skin and does not cause allergic reactions; therefore, it
is widely used in the field of drug carriers. In the field of sustained-release drug carriers,
PVA mainly uses hydrogels to exert its effect. PVA can form hydrogels through physical
and chemical crosslinking methods, and glutaraldehyde is usually used as the crosslinking
agent. This method is simple and has a short cycle. However, the use of glutaraldehyde
affects the cell affinity of PVA hydrogels. Physical methods are commonly used to prepare
PVA hydrogels via cyclic freeze-thawing technology, which is characterized by its high
efficiency, simplicity, and absence of chemical residue [55,56] (Figure 4b).

PEO is a high molecular weight polymer produced by ring-opening polymerization of
ethylene oxide with high viscosity, water solubility, low chemical toxicity, good histocom-
patibility, and immunologic unresponsiveness, which has been widely used in medicine,
agriculture, and other fields [57]. In terms of biodegradation, PEO hydrogel with a low
relative molecular weight can be biodegraded in the body and its degradation products
can be discharged out of the body, but when the relative molecular weight of PEO reaches
a certain value, it cannot be biodegraded in the body. In the field of tissue engineering,
PEO often plays a role in the formation of hydrogels. Studies have shown that PEO hydro-
gels can be prepared by physical crosslinking (such as photo-crosslinking and radiation
crosslinking) and chemical crosslinking (such as by adding a crosslinking agent) [58,59]. At
present, it is a new hot spot in the research of drug carrier hydrogels to prepare composite
hydrogels using synthetic polymer materials such as PEO. For example, Norizah et al. [60]
prepared composite hydrogels of hydroxylmethyl cellulose and PEO using citric acid as a
crosslinking agent and hydroxylmethyl cellulose and PEO as materials. This composite
hydrogel had better water coagulation performance than the single material (Figure 4c).

Acrylamide (AM) is a white crystal that is soluble in water, methanol, ethanol, and
other polar solvents. AM can easily decompose in alkaline solutions, but it can be stable
in acidic solutions. When heated to the melting point or under ultraviolet radiation, AM
can easily polymerize. In addition, AM has slight toxicity and can produce neurotoxic
effects on various animals to different degrees [61]. Nevertheless, it is still widely used in
sewage treatment, the construction industry, the paper industry, bioengineering, and other
fields due to its good adhesion, dispersity, and biocompatibility [62]. In the field of tissue
engineering, polyNIPAM, a derivative of AM, has been widely studied and can be prepared
by physical crosslinking (such as radiation crosslinking) and chemical crosslinking (adding
crosslinking agents such as nanostructure particles) to form a single hydrogel or a composite
hydrogel prepared by mixing polyNIPAM with other substances [63,64] (Figure 4d).
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diagram of some synthetic hydrogels. (a) The schematic illustration of synergistic antitumor effects
of combination treatment of ME and 5FU released from the PFA/PPLL hydrogels. Reprinted with
permission from Ref. [53]. Copyright 2016, Wu, X. (b) Swelling ratio of the dried PVA hydrogels
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Kanafi, N.M. (d) Schematic diagram of covalent bonding mechanism of PAM composite hydrogel.
Reprinted with permission from Ref. [64]. Copyright 2011, Zhou, C.

3. Characterization Techniques for Hydrogels

As a material widely used in many fields and with the continuous expansion of
the application of hydrogels, the industry is putting forth higher requirements for their
performance. In order to meet the application needs of various fields, hydrogels that can be
used as sustained-release drug carriers need to be subjected to advanced characterization
before application. The present study describes the following characterization methods of
hydrogel materials: spectroscopic analysis, scanning electron microscopy (SEM), swelling
detection, and differential scanning calorimetry (DSC).

Current spectroscopic analysis methods for hydrogel characterization include Fourier-
transform infrared (FTIR) and nuclear magnetic resonance spectroscopy (NMR). The role
of spectroscopic analysis in hydrogel characterization is mainly to detect the chemical
composition of the hydrogel. Thus, it can be determined whether the molecular chains of
hydrogels are connected via chemical bonds by observing the variation of absorption peaks
of chemical groups and the deviation of characteristic peaks, allowing the crosslinking mode
of the hydrogel prepared to be determined. Arndt et al. [65] characterized the crosslinking
mode of a hydrogel prepared by a mixture of polyacrylic acid and polyacrylic alcohol
through FTIR, and the research results showed that the crosslinking mode of the mixed
hydrogel was chemical crosslinking, which mainly depended on ester bond interactions to
form the hydrogel.
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SEM, whose main principle is to use an electron beam to penetrate the sample to be
tested followed by focused imaging, can be used to detect the fine structure of the sample
to be tested. Because of its high resolution and magnification, it is often used to detect the
surface morphology and internal fine structure of the hydrogel in the characterization of
hydrogel materials. For example, Kim et al. [66] observed methacrylate anhydride–glucose
hydrogel samples prepared by light crosslinking after freeze-drying and natural drying
by SEM, and the observation results showed that the freeze-drying hydrogel samples had
an obvious pore structure, whereas the samples dried in a natural state had a less evident
pore structure.

Swelling detection is also one of the common methods for characterization of hydrogel
materials. Its purpose is to test the absorption or release ability of hydrogel materials as a
sustained-release drug carrier matrix. The specific detection method is to test the swelling
rate of hydrogel materials by controlling temperature, pH, or time in a specific solution
condition. For example, Khurma et al. [67] measured the expansion curve and swelling
rate of a chitosan–PEG semipermeable hydrogel under different pH, temperature, and PEG
content through a swelling test experiment.

The principle of DSC is based on evaluating the physical changes in a stable material
according to the temperature. DSC is often used to characterize the phase transition
temperature of hydrogel materials and the influence of polymers on the phase transition
temperature in the characterization of hydrogel materials. For thermosensitive hydrogels,
when the ambient temperature reaches the phase transition temperature, water will be
separated from the hydrogels, followed by a certain phase transition behavior. This process
is accompanied by a certain thermal effect; therefore, the DSC method can be used for
detecting the phase transition of thermosensitive hydrogels. For example, Kim et al. [68]
used DSC to characterize the existence state of water in a hydrogel prepared with PVA and
chitosan, and the experimental results showed that water in the hydrogel could be divided
into bonded water and free water.

4. Responsive Hydrogels

A hydrogel is a kind of three-dimensional network polymer that contains hydrophilic
groups in its interior and does not dissolve when swollen by water. Hydrogels can be
divided into traditional hydrogels (insensitive to external stimuli) and sensitive hydrogels
(sensitive to external stimuli) according to their different responses to external stimuli; the
latter are also known as intelligent or smart hydrogels [69,70]. External environmental
stimulation includes temperature, pH value, temperature-pH, ionic strength, organic
compound concentration, magnetic fields, electric fields, and light. When these external
factors change to a certain critical point, smart hydrogels usually undergo a discontinuous
sudden change or volume phase transformation [71]. Intelligent hydrogels have not only
high biocompatibility and flexible synthesis methods but also the advantages of high
stability and few side-effects; therefore, they have been widely used in the field of clinical
treatment. They can not only transport drugs for targeted release (Figure 5a) to achieve the
purpose of targeted therapy, but also embed cells and serve as scaffolds for tissue repair.

4.1. pH-Responsive Hydrogels

In external stimulation, pH is widely used; thus, one of the most widely researched
intelligent-responsive hydrogels is the pH-responsive hydrogel. Generally, this type of
hydrogel contains pH-sensitive acidic and basic groups, including carboxyl and amino
groups, or pH-sensitive dynamic covalent bonds, relying on these groups or chemical
bonds to achieve controlled drug release [72] (Figure 5b). Under pathological conditions,
the pH of body tissues changes, leading to ionization of acidic and basic groups capable
of dissociation, hydrogen bond dissociation between macromolecular chains in the gel
network [73], and electrostatic interaction, ultimately shrinking or swelling the hydrogel
to achieve the purpose of controlled drug release. The second condition that leads to the
degradation of hydrogels is the dissociation of dynamic covalent bonds in the hydrogel
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system, thereby controlling drug release. Hydrogels for the controlled release of drugs in
this manner are often used for the treatment of body parts with obvious pH differences, such
as the gastrointestinal tract [74], as well as for cases where pH values in pathological states,
such as bacterial infections and cancer cell lesions, differ greatly from the normal state [75].
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pH-responsive hydrogels can be divided into anionic, cationic, and amphoteric pH-
responsive hydrogels, according to the different groups in the hydrogel that respond to
pH [76]. The anions contained in the anionic photo-responsive hydrogel network are
usually carboxyl groups [77], and the presence of carboxyl groups reduces the dissociation
degree of ionizable groups. At this time, hydrogen bonding does not occur between the
carboxyl group and water molecule, but is largely concentrated between the polar groups
of large molecules; thus, water molecules do not easily enter the hydrogel, and the hydrogel
shrinks. Cationic photo-responsive hydrogels usually contain amino groups or amino
groups replaced by hydrocarbon groups. Protonation or deprotonation of amino groups
can occur in different pH environments. When in an alkaline environment, the presence of
amino groups reduces the degree of dissociation of ionizable groups, and hydrogen bonding
is mainly manifested as hydrogen bonding between amino groups rather than between
amino groups and water molecules. In this case, water molecules do not easily enter the
hydrogel, and the swelling of the hydrogel is reversed. Zwitterionic photo-responsive
hydrogels contain both acidic groups (such as carboxyl groups) and basic groups (such as
amino groups), and the comprehensive application of zwitterionic group ionization makes
hydrogels responsive to pH.
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4.2. Temperature-Responsive Hydrogels

Temperature-responsive hydrogels control drug release according to changes in the
ambient temperature. These kinds of hydrogel networks usually contain polymers with
a “dissolved-insoluble” phase transition within a certain temperature range. This phase
transition is usually divided into two situations. The first situation has the lowest critical so-
lution phase transition temperature (LCST) [78–81]. The main and side-chains of polymers
in such hydrogels usually contain hydrophobic groups, such as methyl, ethyl, and propyl
groups, as well as some hydrophilic groups, including ether bonds or amide bonds. When
the temperature rises to the critical temperature, phase separation occurs in thermosensi-
tive polymers (i.e., the transformation from the dissolved state to the insoluble state). The
second type has the highest critical solution phase transition temperature (UCST). The main
and side-chains of the polymers in this type of hydrogel usually contain associative polar
groups dominated by amphoteric polyelectrolytes [82,83]. When the temperature rises to
the critical temperature, the polymer undergoes phase separation (i.e., transformation from
an insoluble state to a dissolved state).

At present, the developed temperature-responsive hydrogels that respond to human
body temperature changes are mainly divided into three categories: positive thermal-
sensitive type, negative thermal-sensitive type, and heat-reversible type. Thermosensitive
hydrogels have the highest critical solution phase transition temperature, and the main
force at low temperature is intramolecular electrostatic or hydrogen bonding in hydrogels.
Hydrogen bonding between hydrophilic groups in the hydrogels and water molecules
is weak, whereby water molecules do not easily enter the hydrogens, and the hydrogels
shrink [84]. Negative thermosensitive hydrogels have the lowest critical solution phase
transition temperature, whereby the hydrogen bonds between hydrophilic groups in
hydrogels and water molecules are stronger; thus, water molecules are more likely to
enter the hydrogels, and the hydrogels swell. Thermally reversible hydrogels are mainly
prepared by physical crosslinking methods, such as van der Waals forces and hydrogen
bonding. Phase transformation can be achieved under certain conditions, and the volume
usually does not change [76,85].

4.3. Electric Field-Responsive Hydrogels

Electric field-sensitive hydrogels (EFSHs) have ionized groups (such as sulfonic groups,
amide groups, and sulfa groups) in the network, which is an important condition for poly-
mer materials to have electrical stimulation-responsive behavior [86]. Electric field-sensitive
hydrogels are usually composed of polyelectrolytes. When stimulated by an electric field,
the gel in the electrolyte solution changes in shape or volume, which mainly includes
swelling elimination, as well as swelling and bending deformation of the gel, thus realizing
the conversion of electric energy to mechanical energy. Positive groups in the hydrogel
generate water at the anode, and negatively charged groups generate water at the cath-
ode [87], resulting in changes in the internal and external osmotic pressures of the hydrogel
due to differences in internal and external ion concentrations and ultimately leading to
morphology changes and achieving the purpose of drug release control [88] (Figure 6a). At
the same time, because of the various deformation characteristics of electric field-responsive
hydrogels in electric fields, they have broad application prospects in artificial muscles and
controlled drug release, including as bionic actuators, artificial muscles, and chemical
valves [71]. Regarding bionic actuators, Nagata et al. [89] developed an artificial reptile in
1992, which was the first successful experiment to achieve flexible movements of animals
using gel as a material. The artificial reptile was made of PAMPS electrolyte gel soaked
in a salt solution containing surfactants. When the solution was energized, the gel could
stretch, bend, and move forward. Regarding artificial muscle, Hamlen et al. [90] proposed
in 1965 that electric field-responsive hydrogels could be developed into artificial muscle.
They found that the gel fibers made of PAANa and PVA shrank and swelled in response
to direct current for several minutes. Later, Moschou et al. [91] added a mixture of con-
ductive properties to PAA/PAM hydrogels and developed a new type of artificial muscle
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material, which has the advantages of fast electric braking and electric responsiveness in
medium-and small-voltage environments in neutral solutions.

4.4. Ion-Responsive Hydrogels

When ion-sensitive hydrogels are under the condition of low ion concentration,
counter ions have difficulty entering the gel and the ionization degree of ionizable groups is
low. The ionization degree increases when the ion concentration increases, the gel swelling
increases, and then the gel ionization degree reaches the maximum. At this time, the
ionic osmotic pressure between the gel and the solution decreases, and the gel swelling
decreases [92]. Many metal ions play important roles in the human body, such as regulating
protein function and nerve conduction, maintaining acid-base balance in the internal envi-
ronment, mediating muscle contraction, functioning as enzyme active components, and
participating in the regulation of intracellular osmotic pressure. These activities involve the
macro metal elements Na+, K+, Ca2+, and Mg2+, the trace elements Fe2+, Zn2+, etc., and the
ultramicro metal elements Mn2+, Cr3+, etc. In different body fluids, the types and contents
of metal ions are also different, and each organ also has a specific ionic strength [93,94]. In
today’s society, there are many heavy-metal pollution problems, such as excessive heavy
metals in water leading to excessive heavy metals in rice and metal pollution throughout
the environment, which results in the enrichment of heavy-metal ions in the food chain
and causes a major public security problem. Sun et al. [95] developed a new multistimulus-
responsive hydrogel in 2015 (Figure 6b). By mixing chitosan with multiple metal ions in an
appropriate pH environment, a series of transparent and stable hydrogel complexations
through supramolecular interactions could be observed in a very short time (most of them
occurred in approximately 2 s). If other high-valence metal ions are introduced into a
supramolecular gel, the original complexation of metal ions on chitosan will be broken,
and the hydrogel will be converted into a sol.

4.5. Magnetic Field-Responsive Hydrogels

The volume of magnetic field-sensitive hydrogels can expand and contract under the
action of a magnetic field. Such materials usually contain inorganic magnetic nanopar-
ticles in the gel, and the nanoparticles can be fixed in a three-dimensional crosslinked
network of the hydrogel by chemical bonding or physical embedding methods. When
affected by the magnetic field effect, magnetic particles immediately gather, the hydrogel
network contracts, and the solvent is “crowded out”, making the hydrogel shape change
rapidly [96,97] (Figure 6c). A large number of scholars have shown that almost all organ-
isms contain magnetic ions, such as Fe2+ in hemoglobin and Cu2+ in hemocyanin, which
can respond to an external magnetic field. Therefore, magnetic field-responsive hydro-
gel controlled-release drug systems have attracted great attention in the academic world.
The preparation of magnetic field-responsive hydrogel controlled-release drug systems
is usually based on temperature-responsive hydrogels, on which a variety of magnetic
materials containing iron metal oxides, such as Fe3O4, Fe2O3, and other ferrite materials,
are embedded. When a magnetic field is added to the external environment, drugs will
move in the body, oriented under the guidance of the environmental magnetic field, and,
when the magnetic field-responsive hydrogels loaded with concentrated drugs are fixed to
a body tissue that is in a pathological state, the drugs will be released to achieve targeted
controlled release [98]. Under the action of an external magnetic field, these magnetic
materials can realize the conversion of energy from magnetic field energy to internal energy
such that the temperature of the controlled-release system of the magnetic field-responsive
hydrogel drug increases, causing swelling and a volume change, which may also realize the
transformation of the “sol-gel” phase. Hawkins et al. [99] embedded magnetic materials
and a drug model, lysozyme, in a temperature-responsive hydrogel controlled-release
system to prepare a magnetic field-responsive hydrogel controlled-release system. An
alternating magnetic field is applied outside the body to produce a thermal effect of the
material by using internal energy transformed from magnetic field energy; then, the hy-
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drogel controlled-release drug system responds to the temperature in a sol state, and the
lysozyme is released. When the external magnetic field supply is stopped, the thermal
effect of the material also disappears and the controlled release system of hydrogel drugs
presents a “sol-gel” phase transformation, thus preventing the continued release of drugs
and achieving the purpose of controlled drug release.

4.6. Pressure-Responsive Hydrogels

Pressure-responsive hydrogel volume phase transformation occurs when the external
environmental pressure changes [100,101]. The pressure-response property of the hydrogel
was initially obtained through theoretical calculation, which is usually manifested as
hydrogel contraction at low pressure and hydrogel swelling at high pressure [102], and
usually accompanied by temperature sensitivity. When the temperature is constant, the
LCST of the hydrogel increases with increasing pressure, presenting a state of swelling [103].
Pressure-sensitive hydrogels, as drug carriers, can act on tissues with dynamic mechanical
environments, such as bone, blood vessels, and muscle [104,105]. Hosseinifar et al. [106]
(Figure 6d) prepared a pressure-responsive nanohydrogel using modified β-cyclodextrin
and alginate to deliver drugs as a controlled-release system, and they selected 5-fluorouracil
as a hydrophobic drug model. The model carrying drugs using this kind of hydrogel can
release the drugs under the condition of blood pressure stimulation. In addition, the
controlled-release drug systems can be compatible with various cells, such as small-volume
colon cancer cells, and they have many other advantages. Pressure-responsive hydrogels
have wide application prospects, but research on stress responsiveness is less common.

4.7. Photo-Responsive Hydrogels

The size of a photosensitive hydrogel can change due to radiation, as its interior
contains light-sensitive groups. These groups undergo light fracture, isomerization, and
light dimer formation under different light conditions. The dipole moment and group
conformation changes make the gel swell and shrink, moving between a colloidal state and
a solution state. When the volume of the hydrosol changes due to the light response, the
structure of the controlled polymer network may change, releasing the substances loaded
in it. The current research shows that, in light-responsive hydrogels, the controlled-release
mechanism can be divided into two kinds: photochemical mechanisms and photothermal
mechanisms. In the photochemical mechanism, photosensitive groups in sustained-release
systems undergo a chemical reaction of polymerization and isomerization through an effect
of light, causing changes in macromolecular chain conformation, dipole moments, electrical
conductivity, or ion concentrations in the slow-release system. Then, the swelling volume
of the hydrogel changes, and drug release is achieved. In the photothermal mechanism,
when there is light irradiation, the photosensitive groups in the hydrogel are converted into
heat energy under the action of light, which increases the local temperature of the hydrogel.
When the temperature reaches the phase transformation temperature of the hydrogel, the
hydrogel undergoes phase transformation to achieve controlled drug release. According to
different response wavelengths, photo-responsive hydrogels can be further divided into
visible, ultraviolet, and infrared photo-responsive hydrogels [107–109] (Figure 7a).

4.8. Biomolecule-Responsive Hydrogels

Biomolecule-responsive hydrogels refer to hydrogels that can have corresponding re-
sponses to specific molecules of organisms (such as glucose, enzymes, and DNA). Currently,
bio-responsive hydrogels are widely studied, including glucose-responsive hydrogels and
enzyme-responsive hydrogels. The glucose response of the hydrogel preparation mech-
anism mainly occurs through the presence of glucose oxidase (GOD) in pH-responsive
hydrogels. Its action mechanism involves converting glucose molecules into gluconic
acid using a hydrogel containing GOD and changing the pH of the environment where
hydrogels are used to achieve the release of drug particles by using the sensitivity of pH
hydrogels to environmental acid-base changes. Such hydrogels are sensitive to changes
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in blood glucose concentration in the body and have broad prospects in the treatment of
diabetes and diseases related to blood glucose [72,110,111]. The mechanism of action of
enzyme-responsive hydrogels involves breaking polypeptides and their derivatives which
can be cleaved by specific enzymes. When these enzymes are introduced into the hydrogel,
failure of the hydrogel structure occurs. The current specific enzymes that can be used to
destroy hydrogels mainly include glutamic aminotransferase, protease, lysine oxidase, and
esterase [112,113] (Figure 7b). For example, Kalafatovic et al. added the amphiphilic pep-
tide GFFLGL-DD to a breast cancer cell line and the cell matrix released metalloproteinase
MMP-9, catalyzed the amphiphilic peptide to break and release the self-assembly unit,
transformed the self-assembly morphology from spherical micelles to fibers, and released
the antitumor drug doxorubicin [114].
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Figure 6. Partial intelligent-response hydrogel controlled-release system. (a) Proposed mechanism of
FA release from zeolite FAY/alginate hydrogel. Reprinted with permission from Ref. [88]. Copyright
2015, Paradee, N. (b) Chemical structures of chitosan and their interwoven networks driven by
the complexation between metal ions and OH and NH2 groups in the chitosan chains. Reprinted
with permission from Ref. [95]. Copyright 2015, Sun, Z. (c) Mechanism of “close” configuration
of the ferrogels due to the aggregation of Fe3O4 nanoparticles under a magnetic field causing the
porosity of the ferrogels to decrease. Reprinted with permission from Ref. [97]. Copyright 2006,
Liu, T. (d) Schematic of proposed device used for measuring the drug release from nanoparticles
under pressure. Reprinted with permission from Ref. [106]. Copyright 2017, Hosseinifar, T.

4.9. Redox-Responsive Hydrogels

The theoretical basis for the design of redox hydrogels is that in-depth research on the
difference in redox potential between tissues of cancer lesions and normal tissues in recent
years has found that, in normal tissues, due to the reduction in NADPH and glutathione
reductase, the concentration of reduced glutathione (GSH) in the cell solute and nucleus
can reach 10 mmol/L, whereas the concentration of extracellular GSH is only 2–20 µmol/L.
However, the concentration of GSH in the cells of cancerous lesions is approximately four
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times that of normal tissue cells; hence, they are in a reduced state, whereas outside of the
cancer cells there is an excess of reactive oxygen species, which produces an oxidized state.
Due to these differences, scientists have been prompted to explore how to take advantage
of this condition. A drug can be designed that can target therapy according to the difference
in the redox state of cells. Currently, disulfide bonds are the main groups used in the study
of drug sustained release according to the differences in redox states of cells, as disulfide
bonds can exist stably in an oxidizing environment, whereas disulfide bonds break and
are reduced to sulfhydryl groups (–SH) when in a reducing environment. For example,
Chen et al. [114] prepared an oxidation-reduced prototype hydrogel that can respond to
both ROS and GSH using the antioxidant lipoic acid (LA) to synthesize ketal oligomers
through the disulfide bonds formed through sulfhydryl groups (–SH) at both ends of the
ketal oligomers (Figure 7c).

4.10. Multi-Responsive Hydrogels

A single response of a hydrogel controlled-release drug carrier often cannot achieve
the ideal treatment effect because of the complexity of the human physiological environ-
ment and the diversity of the lesion site environment; thus, scientists have begun to study
a new kind of intelligent hydrogel in which several response performances can converge
on the same carrier. The gel can choose the right means of response according to the
characteristics of the environment to achieve the ideal effect, which has huge development
prospects [115,116] (Figure 7d). At present, scientists have developed hydrogel slow-release
systems with double and triple corresponding properties. For example, Chen et al. [117]
prepared pH/temperature dual-responsive hydrogel controlled-release drug systems using
UV light-induced poly(N-isopropylacrylamide), carboxymethyl chitosan (CMCT), and
arginine branch crosslinking. Mahdavini et al. [118] introduced magnetite nanoparticles
into a hydrogel prepared from carrageenan and sodium alginate and developed a mag-
netic/pH dual-responsive hydrogel controlled-release drug system. Wang et al. [119]
prepared a core-shell complex hybrid magnetic field/near-infrared dual-responsive hydro-
gel controlled-release drug system using poly (N-isopropylacrylamide-acrylamide) with a
thermal response, fluorescent carbon points embedded in porous carbon shells, and super-
paramagnetic iron clustered in the core center. In addition, Eskandari et al. [120] developed
a triple-responsive hydrogel controlled-release drug system with pH/temperature/ion-
responsive properties that could regulate drug release by adjusting pH, temperature, and
ion strength when loaded with drugs to achieve the best clinical effect.
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5. Application of Hydrogels in Tissue Engineering

Because of their unique structure, hydrogels indirectly determine their good perfor-
mance. For example, gel prepolymers in solution can uniformly wrap cells or drugs, thus
realizing the loading and transportation of cells or drugs. In addition, the water environ-
ment inside the hydrogel can accurately mimic the three-dimensional microenvironment of
tissue cells. Lastly, some hydrogels are injectable and can achieve in situ regeneration and
reorganization of tissues. Because of these excellent properties, hydrogels are widely used
in tissue engineering fields such as skin trauma, bone defects, arthritis, cartilage defects,
and tumor treatment [121].

5.1. Skin Trauma

Skin trauma refers to the structural damage of skin tissue caused by various exter-
nal factors, which can be divided into bruising, stabbing, laceration, and slashing. The
common symptoms of trauma are bleeding, oozing of blood, epidermal shedding, etc.,
whereas certain inflammatory reactions and infections generally occur during the repair
process [122]. Skin injury is generally treated through the body’s self-repair mechanism,
but when the skin wound exceeds a certain level and the regenerative epidermis cannot
cover the wound, skin grafting is used for treatment [123]. Current research shows that,
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when hydrogels are used as skin wound dressings, they can not only effectively prevent
the infection of exogenous microorganisms but also prevent the loss of wound fluid and
provide a moist microenvironment for wound healing. Hydrogels also have good oxygen
permeability, which is conducive to wound healing [124]. Although hydrogels as wound
dressings have played positive roles in treating injuries, the load of a bioactive hydrogel
can further promote the healing of wounds. As reported by Zeng et al., a thermosensitive
hydrogel was prepared by combining agarose with SA and bioclasts. This hydrogel could
be gelated by the interaction between agarose and SA at approximately 37 ◦C, and the
bioglass could make the previously formed secondary crosslinked gel by releasing ions
itself. Studies have shown that hydrogels can promote the proliferation and migration of
fibroblasts and endothelial cells, thus improving the ability of blood vessel formation and
promoting wound healing [125] (Figure 8a).

5.2. Bone Defects

Bone defects refer to the structural incompleteness of bone tissue caused by trauma,
infection, congenital malformation, tumor, etc. When bone defects reach a certain range, it
is difficult for the body to heal by itself. At present, the commonly used treatments for bone
defects are self-healing or bone defect material implantation to promote bone repair [126].
In the treatment of bone defects, hydrogels are mainly made into scaffolds or injectable
gels, and their excellent histocompatibility is used to promote cell adhesion to repair bone
defects. For example, Ding et al. [127] used SF nanofibers as the main material, as well as
hydrophobic hydroxyapatite particles imitating the extracellular matrix of bone, to prepare
a composite scaffold of SF and hydroxyapatite, and they loaded it with controlled bone
morphogenetic protein-2 (BMP-2) to promote bone formation. The microenvironment of the
bone defect was optimized successfully. The team also used an injectable nano SF/irregular
hydroxyl apatite compound hydrogel to repair bone defects in subsequent experiments.
The experimental results showed that new bone tissue and bone defect healing were
detected in the model rats, and the repair effect of composite hydrogel was better than
that of the single nano SF hydrogel [128] (Figure 8b). Zhao et al. [129] studied embedded
human umbilical cord mesenchymal stem cells in alginate saline gel microspheres and
mixed such microspheres with a calcium phosphate/chitosan/fiber composite paste to
prepare a new composite material for bone defects. Studies showed that the mechanical
properties of the composite material could match the cancellous bone of the body. At the
same time, it could maintain the vitality of human umbilical cord mesenchymal stem cells
and promote osteogenic differentiation. Kim et al. [130] added polysulfonates that could
mimic heparin to chitosan hydrogels so that BMP-2 could maintain stable biological activity.
In this hydrogel, bone marrow mesenchymal stem cells (BMSCs) showed a tendency to
differentiate into the osteogenesis pathway.

5.3. Arthritis

Arthritis refers to inflammatory changes in the joints and surrounding tissues caused
by infection, trauma, inflammation, or other factors. Clinical manifestations include joint
redness, swelling, pain, and dysfunction. Clinically, arthritis can be roughly divided into
rheumatoid arthritis, gout arthritis, osteoarthritis, and infection-related arthritis [131]. The
current treatment methods for arthritis diseases mainly include drug therapy, surgical
therapy, new drug-targeting therapy, and emerging nanodrug delivery therapy [132].
Hydrogels with good biocompatibility play a very important role in drug treatment; for
example, the polyethylene glycol–polylactic acid–glycolic acid copolymer can be used as a
gel matrix to carry triamcinolone acetonide, which is commonly used to treat rheumatoid
arthritis. A study confirmed the obvious advantages, including the gel system’s stable
quality, durability, ability to effectively inhibit inflammation, and slow-release effect [133].
PEG–poly(lactic acid)-glycolic acid (PLGA) can also be used as a carrier for the treatment
of rheumatoid arthritis via intra-articular injection. This sustained-release drug delivery
system has the advantages of high drug utilization and few side-effects [134]. Scholars
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such as Liu et al. [135] also attached bone marrow mesenchymal stem cells to a hydrogel
material for the treatment of rheumatoid arthritis, and they used fiber gel and hydrogel as
carriers of bone marrow mesenchymal stem cells for the treatment of rheumatoid arthritis,
achieving good therapeutic effects in an experimental model (Figure 8c).

5.4. Cartilage Defects

Cartilage defects are caused by inflammation and degeneration due to the trauma of
irreversible cartilage injury and represent a clinically common bone disease. Because there
are no blood vessels, innervation, and lymphatic reflux in cartilage tissue, the cell composi-
tion of cartilage tissue is relatively singular; thus, once cartilage injury occurs, it is difficult
to fully repair by regeneration. Symptomatic osteochondral defects of the current treatment
methods include bone marrow stimulation, osteochondral transplantation, chondrocyte
transplantation, and cartilage tissue engineering repair, which have emerged in recent
years [136]. Natural and synthetic polymers and composite materials play important roles
in cartilage tissue engineering repair. Since these materials have good biocompatibility,
they can be used as carriers of chondrocytes, which can be inoculated into hydrogels made
of natural polymer materials and then transplanted into cartilage defects after the forma-
tion of tissue-engineered cartilage [137]. For example, Chen et al. [138] embedded rabbit
chondrocytes in glycol hydrogel scaffolds for the repair of rabbit knee cartilage defects.
Studies showed that scaffolds could maintain the morphology of chondrocytes in vitro and
cause the cells to proliferate for more than 21 days. The hydrogel could provide attachment
for the proliferation of carried chondrocytes in vivo; the expression of type II collagen in the
cartilage defect was high, and the cartilage defect was significantly improved. In addition,
the scaffold can also be made of these materials and loaded with chondrocytes carrying car-
tilage cells to repair cartilage defects. For example, Man et al. [139] used mineralization of
a bone matrix-chitosan hydrogel scaffold carrying cartilage cells to repair a rabbit cartilage
injury. Twenty-four weeks after surgery, the stent group had no obvious inflammation, and
the cartilage defect was repaired successfully. The repair effect was significantly better than
that of the control group (Figure 8d).

5.5. Corneal Injury

Corneal injury refers to perforated or nonperforated corneal injuries caused by trauma,
corrosion, heat injury, etc. The repair of corneal injuries is a very complex process involv-
ing cytokine regulation between epithelial cells, corneal nerves, lacrimal glands, stromal
corneal cells, immune cells, and other cells [140]. Current treatments for corneal defects
include anti-inflammatory agents, lamellar corneal transplantation, corneal healing promo-
tion, and amniotic membrane transplantation [141]. Hydrogels as sustained-release carriers
of therapeutic drugs have great development prospects. For example, Colter et al. [142]
developed a new HA hydrogel that can transport loaded drugs to the ocular surface and
place them in the lower dome of the eye. Therefore, the hydrogel can be used sustainably
for ophthalmic diseases such as local corneal injury. In addition, research shows that SF hy-
drogels loaded with a UV-crosslinked retinoid can promote the growth and differentiation
of human corneal stem cells. These hydrogels also feature high transparency, good elasticity,
and tight contact with the cornea; therefore, they are expected to be used as artificial corneas
for defect treatment. The hydrogels can also promote the growth and differentiation of
human corneal stem cells and the formation of human corneal cells in vitro [38]. Serum is a
noncell component that is a part of the fluid in the blood, which is rich in many kinds of
growth factors and vitamins. Serum is currently used for the treatment of ocular surface
diseases. For example, Choi [143] described a silicone hydrogel lens using autologous
serum for the treatment of persistent corneal epithelial defects, and the results showed that
the hydrogel lens had a remarkable therapeutic effect (Figure 9a).
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5.6. Cancer Treatment

Tumors are cells whose genetic material changes and whose growth is out of control
under the influence of the external environment (due to chemical, physical, biological, and
other factors). According to their degree of harm, tumors can be divided into benign and
malignant tumors. Benign tumors are small, but malignant tumors can invade surrounding
normal tissue. In severe cases, they can follow the body’s lymphatic system, via which they
can be transferred to other body parts and cause serious harm [144]. Therefore, researchers
have been searching for treatments that are more effective and produce fewer side-effects
to the body, as well as more targeted effects. Among them, intelligent hydrogels have
attracted increasing attention in the diagnosis and treatment of cancer. Smart hydrogels
can increase the permeability of therapeutic drugs in cancerous tissues, breaking the
bottleneck of low permeability of hydrophobic drug delivery [145,146]. Gariepy et al. [147]
achieved remarkable results in inhibiting the growth of emT-6 cancer cells in mice by using
a chitosan smart hydrogel as the drug carrier in a study in which the therapeutic drug
paclitaxel was transported to the tumor site for targeted therapy. Castro et al. [148] injected
cisplatin/epinephrine gel (CDDP/EPI/GEL) into tumors for the treatment of recurrent
and metastatic squamous cell carcinoma of the head and neck and achieved remarkable
results. In previous work, chitosan interventional radionuclide 188Re gel was used for the
treatment of cancer in mice by locally injecting it into the focal site to prolong the drug’s
retention time, which significantly enhanced the antitumor effect [149]. Pan et al. [150] used
the PLGA–PEG–PLGA polymer as a gel matrix and added trastuzumab and collagenase to
prepare a thermosensitive hydrogel sustained-release system. In experiments evaluating
peripheral administration to tumors, the hydrogel systems had little toxicity and could
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stably exist around tumors for more than 20 days. They also had good tumor cell-killing
ability, showing that the hydrogel system had an excellent treatment effect. Moreover, the
gel sustained-release system had a better effect after one release compared to the effect
when administered four times intravenously. The experiment also strongly confirmed that
hydrogels have broad prospects as drug carriers for the treatment of tumors (Figure 9b).

5.7. Cardiovascular System

In the field of vascular tissue engineering, there are various materials available on
the market for the treatment of cardiovascular diseases, but most of them have the dis-
advantages of toxic side-effects or low biodegradability; however, hydrogels have great
development potential in vascular regeneration. The application of hydrogels in this field is
mainly to regulate bone defect repair and angiogenesis by promoting vascularization and
changing the performance of hydrogels together with inducing factors [151]. Hydrogels are
usually transplanted or injected into sites of vascular injury. There are two mechanisms of
angiogenesis using hydrogels. The first is to introduce inducible factors into hydrogels and
then make the hydrogels release inducible factors upon the vascular injury to induce angio-
genesis. The second involves adhesion of the hydrogel surface to circulating endothelial
progenitor cells (EPCs) to promote angiogenesis [152] (Figure 9c). Li et al. [153] devel-
oped a controllable, injectable gelatin hydrogel synthesis method for delivering growth
factor-induced angiogenesis. Heparin was covalently linked to gelatin, and VEGF was
ultimately introduced into gelatin hydrogels by combining the vascular endothelial growth
factor (VEGF) with heparin. Then, experiments were carried out on mice. The results show
that a gelatin derivative/VEGF is an excellent injection model for a delivery system for
soft-tissue regeneration-induced angiogenesis. The experimental results further showed
that the material can solve problems related to growth factor deficiency by releasing VEGF
on its own. In the treatment of myocardial infarction, hydrogels have also shown great
prospects. Injectable hydrogels have currently entered the stage of clinical trials in the
treatment of myocardial infarction. The biological mechanisms of its treatment may include
the following: promoting angiogenesis, improving blood perfusion in the infarct area
and reducing myocardial necrosis, promoting the homing of stem cells and repairing the
heart muscle, replacing the extracellular matrix of the myocardium, improving the local
microenvironment, and inhibiting the expansion of the infarct area [154].

5.8. Nervous System

The nervous system is the most important regulatory system in the human body, as
it plays a leading role in regulating and controlling various life systems. With changes
in the social environment, neurological diseases such as insomnia, Alzheimer’s disease,
and Parkinson’s disease pose a serious threat to human health [155]. As the ability of
the nervous system to repair or regenerate traumatic injury is very limited, nerve injury
caused by various factors is a major problem in the medical field [156]. Currently, the
treatment methods for nerve injury mainly include surgical treatment, gene therapy, tissue
engineering, and drug therapy. Tissue engineering treatment for nerve injury mainly in-
volves constructing corresponding tissues in vitro by combining the seed cells and scaffold
materials of relevant nerves to support the repair and regeneration of corresponding nerve
tissues [121]. A large number of studies have shown that hydrogels are a nerve repair ma-
terial with great potential. For example, Hopkins et al. [157] prepared hydrogels using SF,
fibrin, and collagen as materials and used them as carriers to culture chick embryonic dorsal
root ganglia (cDRG). The experimental results showed that SF had a better performance in
promoting cDRG growth than fibrin and collagen. In addition, Sun et al. [158] inoculated
mouse embryonic stem cells with a SF–gelatin composite hydrogel in different proportions
to explore its effect on neural differentiation in mouse embryonic stem cells. The results
showed that the composite hydrogel changed the differentiation fate of embryonic stem
cells compared with the control group of cell culture plates. As an example, Parkinson’s
disease is a common neurodegenerative disease in the elderly, and dopamine is a drug
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that can be used for Parkinson’s treatment [159]. Ren et al. [160] prepared an injectable
hydrogel based on chitosan and gelatin, in which dopamine and metronidazole drugs were
embedded. In the experiment, the hydrogel showed stable mechanical properties, good
biocompatibility, and biodegradability, and it demonstrated its utility as a sustained-release
drug system that can be used for Parkinson’s treatment (Figure 9d).
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5.9. Reproductive System

Diseases of the reproductive system refer to male reproductive system disease, female
reproductive organ dysplasia, and malformation, inflammation, and tumor formation in
the reproductive organs. These diseases can be divided by sex classification into male and
female reproductive diseases. Diseases of the male reproductive system include wrap-
ping that is too long, foreskin and penile adhesions, testicular damage, biological surface
increase in the epididymis, and testis spermatic anomalies. Diseases of the female repro-
ductive system include diseases of the perineum, vagina, uterus, endometrium, cervix,
and fallopian tubes [161–163]. At present, hydrogels as sustained-release drug carriers
are rarely used in male reproductive system diseases, but are more widely used in female
reproductive system diseases. Fungal infection is one of the main causes of vaginitis in
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women. If not treated in time, it can cause further diseases such as cervical disease and
endometritis. A previous study showed that nanometer silver antibacterial hydrogel can
be used in the treatment of female vaginitis. Because the curative effect is distinct, it also
has a good slow-release effect [164,165]. Nanosilver antibacterial hydrogels could also be
used for the clinical treatment of female cervical erosion, and the therapeutic effect was
significantly better than that of the control group without postoperative treatment [166].
Uterine adhesion is a common disease that occurs after cavity surgery in women, and
it often recurs after treatment. Clinically, uterine adhesion can be largely prevented; for
example, a hyaluronic acid hydrogel can be used to effectively prevent uterine adhesions
after abortion surgery [167]. In addition, chitosan–heparin hydrogel loaded with recombi-
nant human stromal cell-derived factor-1α (SDF-1α) could be used for the repair of injured
endometrium to prevent uterine adhesion [168]. The study showed that the hydrogel could
promote the repair of endometrium via sustained release of SDF-1α, achieving the effect of
preventing uterine adhesion.

6. Conclusions and Prospects

At present, the research and development of pharmaceutical preparations is devel-
oping toward “three characteristics” (quick effect, high efficiency, and long effect), “three
effects” (low toxicity, low dose, and few side-effects), and “five conveniences” (easy pro-
duction, storage, transportation, carrying, and taking) as important carriers of controlled-
release drug systems. They have many advantages, such as a high biocompatibility, low
toxicity, simple preparation method, and intelligent regulation, and they are playing in-
creasingly important roles in the field of sustained-release drugs [121,169,170]. In the
field of tissue engineering, hydrogels can be used as sustained-release carriers of drugs or
applied in tissue diseases by making them into scaffolds. However, most of these are still
at the stage of animal experimentation, and there is still a long way to go before they can be
widely applied.

Today, the development of hydrogels generally presents a trend towards making them
intelligent, harmless, and complex; however, in this process, some serious problems have
been exposed; e.g., how to accurately control the physical and chemical properties of a
hydrogel in terms of technology to achieve space-time regulation [171], how to realize
dynamic intelligent drug delivery in the animal body according to the dynamic changes of
the animal environment, how to produce better hydrogels without using potentially toxic
crosslinking agents, and how to summarize the advantages of various materials as easily
as possible. In terms of practical application, some responsive hydrogels, such as cellulose-
based environment-responsive hydrogels, have a low short-term application maturity,
relatively concentrated research field, and limited extensiveness. Moreover, these materials
are industrially produced on a small scale. In terms of the cost of production, chondroitin
sulfate, for example, has good histocompatibility with the body and wide application in
tissue engineering; however, due to its relatively singular source, its production cost is
high, greatly limiting the use of this high-quality raw material as a drug carrier.

In future studies, the research and development of advanced processing technology,
the identification of new materials, and multidisciplinary collaboration, including mechan-
ics, will be important directions in which to solve these types of problems. We hope that,
through this approach, the application of hydrogels as sustained-release carriers of drugs
in tissue engineering can be further expanded to better benefit mankind.
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