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Abstract

Gradual degeneration and loss of dopaminergic neurons in the substantia nigra, pars compacta and subsequent

reduction of dopamine levels in striatum are associated with motor deficits that characterize Parkinson’s disease

(PD). In addition, half of the PD patients also exhibit frontostriatal-mediated executive dysfunction, including deficits

in attention, short-term working memory, speed of mental processing, and impulsivity. The most commonly used

treatments for PD are only partially or transiently effective and are available or applicable to a minority of patients.

Because, these therapies neither restore the lost or degenerated dopaminergic neurons, nor prevent or delay the disease

progression, the need for more effective therapeutics is critical. In this review, we provide a comprehensive overview of

the current understanding of the molecular signaling pathways involved in PD, particularly within the context of how

genetic and environmental factors contribute to the initiation and progression of this disease. The involvement of

molecular chaperones, autophagy-lysosomal pathways, and proteasome systems in PD are also highlighted. In addition,

emerging therapies, including pharmacological manipulations, surgical procedures, stem cell transplantation, gene

therapy, as well as complementary, supportive and rehabilitation therapies to prevent or delay the progression of this

complex disease are reviewed.
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Background
Parkinson disease (PD) is second to Alzheimer’s disease

as the most common age-related complex, idiopathic

neurological disorder [1]. It is characterized by tremor,

bradykinesia and muscle rigidity along with impaired

gait, and posture [2–4]. In addition, about half of the PD

patients also exhibit frontostriatal-mediated executive

dysfunction, including deficits in attention, speed of

mental processing, verbal disturbances, impairment of

working memory and impulsivity [5]. Dopaminergic

neuronal loss in the substantia nigra pars compacta

(SNpc), and depletion of dopamine (DA) levels in the

striatum represent the hallmark pathology of PD [6].

Experimental evidence indicates that the prefrontal cor-

tex (PFC), anterior cingulate gyrus, and/or frontostriatal

pathways are also affected by PD [7].

Although the exact mechanism of dopaminergic neur-

onal loss in SNpc is not well understood. Mitochondrial

damage, energy failure, oxidative stress, excitotoxicity,

protein misfolding and their aggregation, impairment of

protein clearance pathways, cell-autonomous mecha-

nisms and “prion-like protein infection” may be involved

in the onset and progression of PD [3, 8, 9]. Among

them, protein misfolding and its subsequent accumula-

tion in intracellular spaces has become a leading hypoth-

esis for PD [10, 11]. The major misfolded amyloid

protein inclusion observed in the intracellular spaces of

SNpc neurons in PD is the Lewy bodies (LB) [3, 11, 12],

which contain several misfolded amyloid proteins, including

alpha-synuclein (SNCA), phosphorylated tau (p-tau), and

amyloid beta protein (Aβ) [11, 13]. Several environmental

toxins are associated with sporadic PD (SPD), which can be

partially mimicked in experimental animal models of PD,

such as the use of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyri-

dine (MPTP) and paraquat [14, 15]. Unlike SPD, familial

cases are rare, and do not follow the prescribed symptoms
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of PD, which makes it more difficult to understand the

pathogenesis of PD [10, 16].

Although several new treatments for PD have been

developed [17], none of them effectively halt the pro-

gression of PD. The few symptomatic treatments cur-

rently available, are appropriate for only a limited

number of patients. Moreover, side-effects, short-life

span, and permeability issues are the major problems

for use of these drugs against PD. Interestingly, recent

developments in stem cell transplantation [18–20]

and gene therapies [21, 22] have drawn special atten-

tion as alternative strategies for treating PD. For ex-

ample, genetically engineered DA-neurons have shown

promising results in mouse models of PD [20, 23].

Similarly, using lentiviral or recombinant adeno-

associated viral vectors (rAAV), scientists are able to

correct some of the dysfunctional metabolic pathways

involved in PD [24]. Further, a very recent develop-

ment of the gene editing technique, clustered

regularly-interspaced short palindromic repeats-

associated protein 9 (CRISPR-Cas9), may prove useful

for treating PD [22]. Given the pressing need for the

development of new, rational therapies for PD, the

focus of this review is to provide basic conceptual in-

formation on the molecular mechanisms underlying

PD, which may assist in the design of more effective

drugs or other treatment strategies.

Global scenario and risk factors for PD
Although the symptoms and therapies for PD were

first mentioned in the “Indian Ayurveda” (5000 BC)

and Chinese medical text, “Nei-Jing” (500 BC), it was

James Parkinson, a British physician for whom the

disease is named accurately described it as “the

shaking palsy” in 1817. Epidemiological studies have

revealed that PD is world-wide and affects 1–2% of

those older than 65 years, and 4–5% of those aged

over 85 years [8, 25]. In US, more than one million

cases have been reported [26]. PD is more common

in men (about 1.5 times) than in women [8], and a

higher incidence of PD has been reported in

developed countries [14], due to an increase in the

aged population [14, 27]. Aging is the most dominant

risk factor for PD. As such, the cases of PD are very

low in people under 40 and becomes more prevalent

in individuals in their 70s and 80s [10]. People with

one or more close relatives who have PD have an in-

creased risk of developing the disease themselves, but

the total risk is still just 2–5%, unless the family has

a known gene mutation for the disease [26]. Other

risk factors exist, including exposure to environmental

toxins [14, 27]. However, most scientists agree that

PD is not, by itself, a fatal disease, but rather, it

causes a worsening of normal functioning with time.

Interestingly, the average life expectancy of a PD pa-

tient is generally the same as for normal people [28].

Symptoms of PD
The progression of symptoms in PD may take 15 to

20 years or more, but may vary person-to-person [8].

The major symptoms observed in PD patients are cate-

gorized into: (i) early symptoms; (ii) primary motor

symptoms, (iii) secondary motor symptoms, (iv) primary

non-motor symptoms, and (v) secondary non-motor

symptoms (Fig. 1).

Early symptoms

The early symptoms are subtle and progress slowly,

making them difficult to detect. They include mild

tremors, posture difficulty, soft speech, slow handwrit-

ing, lack of limb movement, abnormal facial expression,

loss of focus in thought and speed, fatigue, irritability or

depression, without provocation or cause [2, 29]. Some-

times the person may be stiff, unsteady, or unusually

slow, and as the disease progress, the shaking or tremor

may appear, which start from one side of the body, they

eventually spread bilaterally over time [2, 29]. Generally,

family members or close friends, or daily caretakers are

more likely to detect the emergence of early symptoms

in patients.

Fig. 1 Different symptoms of PD. The PD symptoms are categorized into five major subtypes: early, primary motor, secondary motor, primary and

secondary non-motor symptoms
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Primary motor symptoms

(i) Resting Tremor. Shaking of hands, arms, legs, jaw,

head, tongue, lips, chin are the primary motor

symptoms observed in PD (Fig. 1). About 70% of

people with PD experience “resting tremor” in the

early stage of the disease, either in the hand or foot

on one side of the body, or less commonly, in the

jaw or face [26, 30]. As the disease progresses, both

arms may become affected [26, 30]. Typically, the

tremor takes the form of a rhythmic, back-and-forth

motion at a rate of 4–6 Hz.

(ii) Rigidity. The rigidity or increase in stiffness or

tonicity of a muscle is the second most common

symptoms noted in PD patient [31]. The person with

PD often feels stiff or weak, pain and cramping in

muscles and joints. Sometimes muscle rigidity can

cause an increase in resistance to the extent that the

person feels as if someone else is moving his or her

joints [31].

(iii)Slow movement (bradykinesia). Bradykinesia in PD

causes unplanned movements, decreases in the

extent of movement, or the slowing and loss of

spontaneous and automatic movements [4].

Common bradykinesia includes a diminution of their

handwriting (micrographia), decreased facial

expression, decreased rate of eye blinking, and a soft

or lowering of volume in their speech [4].

Sometimes it impairs simple tasks, such as routine

movements [4]. Other symptoms include incomplete

movement, difficulty initiating movements, and

sudden stopping of ongoing movement [4, 29].

(iv)Balance and coordination problems. Impairment of

coordination, including losing reflex mechanisms,

causes instability or imbalance when the PD patient

is standing [31]. In severe cases, PD patients are

unable to get up off the ground after falling and

have difficulties in making turns or abrupt

movements [30].

Secondary motor symptoms

Secondary motor symptoms include stooped posture, a

tendency to lean forward, dystonia, fatigue, impaired fine

and gross motor coordination, decreased arm swing,

akathisia, cramping, drooling, difficulty with swallowing

and chewing, and sexual dysfunction [8].

(i) Difficulties in swallowing and chewing. PD patients

often have difficulties in swallowing due to losing

control of muscle movement around the mouth and

throat, which makes it difficult to chew solid foods.

This prevents peristaltic movement of GI tract, thus

constipation may develop in PD patient [32].

(ii) Muscle cramps and dystonia. A variety of pain,

aches, muscle spasms or dystonia have been

observed in PD [33]. These muscle cramps can be

sustained for prolonged periods and can be very

painful. Muscular rigidity is the principal reason for

this, which may be exacerbated due to the side-

effects of certain medications [34].

(iii)Sexual dysfunction. Sexual dysfunction is one of the

major reasons for deterioration of quality of life of a

PD patient. Hyper-sexuality, erectile dysfunction,

and difficulties in ejaculation are found in some PD

male patients. Whereas the loss of lubrication and

involuntary urination during sex are common in

female PD patients [35]. The tremor, bradykinesia,

muscular rigidity, dyskinesia, hyper-salivation, and

sweating may be the reasons for sexual dysfunction

in PD [36]. In contrast, hyper-sexuality reported in

male PD patients may be due to side-effects of

medications [36].

(iv)Changes of speech and voice. About 90% of the PD

patients have difficulties with voice control and are

unable to deliver speech appropriately [37]. They

may speak too softly or in a monotone, or may have

slurred speech and develop a breathy or hoarse

quality [32]. PD patients may hesitate before

speaking, slur or repeat their words, or may even

speak so fast that is difficult to understand them

[32]. Communication difficulties are common during

walking or doing any other tasks. Sometimes

expression of complicated sentences become difficult

for them, along with presence of longer pauses in

their conversation [32, 37].

Primary non-motor symptoms

Frequently observed non-motor symptoms in PD patients

include depression, insomnia, and cognitive dysfunction.

(i) Depression. Depression is a common problem and

an early indicator of PD, which can manifest itself

before other symptoms appear [38, 39]. PD patients

often experience episodes of sadness and depression,

which results in an unpleasant attitude, without any

apparent reason, which can reduce the quality of

life. The level of depression can be sufficiently severe

for some PD patients to have suicidal thoughts and

ideations [38].

(ii)Dementia and or cognitive dysfunction. About half of

the PD patients have cognitive dysfunction, slowness

of thought processing [40]. During their

conversation, PD patients have difficulties in finding

the right words and in understanding complex

sentences [40, 41]. Due to this “tip-of-the tongue”

problem, PD patients often have many pauses during

conversation, and their audience has a difficult time
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following their line of thought. This dementia may

affect memory, social judgment, language, reasoning,

or other mental skills [40, 41].

(iii)Problems in sleep (insomnia). Impairment of sleep is

very common, and almost 80% of people with PD

have difficulty staying asleep at night, or suffer from

some form of restless sleep, nightmares, emotional

dreams, drowsiness, or sudden sleep onset during

the day [42, 43]. Muscle rigidity, tremors or stiffness

at night, or frequent urge to urinate, or experiencing

vivid dreams or hallucinations, including violent

nightmares may underlie the interference in normal

sleep for PD patients [29, 42, 43]. The most

common sleep disorders include insomnia, REM

sleep behavior disorder, sleep apnea, “sleep attacks,

and restless legs syndrome” [43, 44].

Secondary non-motor symptoms

(i) Gesture and emotional changes. Many people with

PD have issues in reorganizing words and are unable

to deliver their message or express their emotions

appropriately [45]. Sometimes their facial

expressions do not match the context of their

speech or their voice intonation [46]. Furthermore,

emotional breakdowns make PD patient fearful,

insecure, and uncomfortable. Sometimes they are

unable to cope with new environments prefer was

not to travel, and to avoid socializing with friends.

Also, many PD patients have developed personality

problems, with their body gestures, their broken or

“flattened voice”, and their disrupted emotional

control, leading to misinterpretations about their

capabilities, and sometime becoming targets for

public ridicule [45, 46].

(ii) Urinary problems and constipation. PD patients

often complain about dysfunction in urination and

defecation [47]. Movement of smooth muscles in

urinary bladder and gastrointestinal (GI) tract are

often impaired, which can lead to urination

problems and constipation. Constipation can occur

because of the slow movement of gastrointestinal

tract in PD patients [47].

(iii)Sweating and skin problems. Because of improper

function of autonomic nervous system, the PD

patient has difficulties in controlling body

temperature, which sometimes causes excessive

sweating [48]. The face of PD patients become very

oily, particularly on the forehead and at the sides of

the nose. Sometimes the scalp can become

excessively oily, as well, resulting in dandruff, and in

some cases, the skin become very dry, rough, and

wrinkled [48].

(iv)Blood pressure. PD patients also suffer from

increased incidences of cardiovascular diseases [49].

For example, when a PD patient stands up from a

lying-down position, his or her blood pressure de-

creases suddenly, causing dizziness, lightheadedness,

and, in extreme cases, loss of balance or fainting [49].

The effects of some medications can be another rea-

son for the sudden dropping of blood pressure [49].

(v)Pain. PD patients often complain of pain in muscles

and joints, which may be due to muscle rigidity and

abnormal postures [50]. Treatment with

dopaminergic agonists can cause aggravate the pain

in muscles and joints, along with unexplained

burning and stabbing sensations [51].

Causes of motor impairment in PD

(i) Role of dopamine. The principal brain area affected

by PD is the substantia nigra, pars compacta (SNpc),

a vital part of the basal ganglia [52]. This area is

predominantly composed of neurons which secrete

DA, an essential brain monoamine, which functions

primarily as an inhibitory neurotransmitter. In

healthy brain, DA regulates the excitability of striatal

neurons, which are involved in controlling the

balance of body movement. In PD, DA-neurons of

SNpc degenerate, and DA levels are diminished [52,

53]. Inadequate DA levels cause less inhibition of the

activity of striatal neurons, allowing them to fire ex-

cessively. This makes it difficult for PD patients to

control their movements, leading to tremor, rigidity,

and bradykinesia, the hallmarks of PD-associated

motor symptoms [3] (Fig. 2).

(ii) Role of serotonin. Other than DA, serotonin (5-HT)

also plays an important role in PD development,

especially in several motor and non-motor symp-

toms, including tremor, cognition, depression, and

psychosis, as well as L-DOPA-induced dyskinesia

[54]. A reduction of 5-HT levels in the PFC has been

observed up to 18 weeks following an acute injection

of MPTP in mice [55]. Similarly, a decline in 5-HT

transporter (SERT) levels has been reported in the

cortex and anterior cingulate following unilateral

striatal lesions in the macaque monkey [56]. In

addition, a reduction of SERT-immunoreactive

axons in the PFC reduced 5-HT-imunoreactivity in

median raphe neurons, or reduced PFC SERT

binding capacity have also been observed in brains

of PD patients [57, 58]. Furthermore, there is ~25%

loss of serotonergic receptor (HT1A) at median

raphe nucleus in PD patients, and this is correlated

with the severity of resting tremor [59], which

suggests that 5-HT projections in midbrain is more

relevant for initiation of PD tremor than loss of
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nigrostriatal DA-projections. Recently, we have

shown that 5-HT turnover in the PFC may play a

pivotal role in executive dysfunction in MPTP-

model of PD [60]. Similarly, a strong relation be-

tween decline of 5-HT and depression have been

found by several investigators in PD [61], however,

the importance of 5-HT and it relationship with the

progression of PD warrants further attention.

(iii)Role of acetylcholine. Acetylcholine (ACh), which

plays significant role in cognition, is downregulated

in several neurological diseases, including PD and

AD [62]. Within the basal forebrain subventicular

region, there is a broad band of cell clusters, commonly

known as nucleus basalis of Meynert (nbM), which are

predominantly cholinergic in nature. Different patterns

of neuronal loss have been observed in the nbM of

patients with PD, LBD, AD, or other forms of

dementia, which strongly supports the idea of an

involvement of the cholinergic system in PD [62, 63].

Importantly, the presence of LB and neuronal loss were

found the nbM of postmortem brain tissue of PD

patients with cognitive decline, which suggests that the

cholinergic system is also involved in the cognitive

dysfunction observed in PD [61].

(iv)Role of GABA/Ca2+system. The gamma amino

butyric acid (GABA) is an inhibitory

neurotransmitter, which controls the calcium (Ca++)

influx directly via GABAergic receptors and,

indirectly, via astrocytes network [64]. The Ca+

+/GABA mechanism stabilizes neuronal activity both

at the cellular and systemic levels. In case of PD, due

to mitochondrial damage, Ca++-buffering system

become impair, which causes Ca++-excitotoxicity

leading to neuronal loss in the SNpc [65], whereas

the Ca++-buffering is controlled by GABA activity

[66]. It has been observed that ~80% of newly

diagnosed PD patients have abnormal olfaction,

which is due to damage of the DA-neurons in the

olfactory bulbs [67]. The function of the DA-

neurons both, in the midbrain and in the olfactory

system are controlled by glial cell-derived neuro-

trophic factor (GDNF), which is also regulated by

the Ca++/GABA system. Moreover, GDNF function

as a chemo-attractant for GABAergic cells and a

strong chemo-attractant for axons of DA. The

neuroprotective effects of GDNF was observed in

PD animal models when administered in GABAergic

neurons in the striatum, but not in the SNpc [68],

suggesting collapsing of GABA/Ca++ system are

involved in DA-neuronal death in PD [69].

Molecular mechanisms of PD
PD is a multifactorial disease (Fig. 3), where both genetic

and non-genetic, such as environmental factors, are involved

[16, 25, 27]. The most salient mechanisms involved in the

development of PD include the accumulation of misfolded

proteins aggregates, failure of protein clearance pathways,

mitochondrial damage, oxidative stress, excitotoxicity, neu-

roinflammation, and genetic mutations [6, 13, 70].

The role of aggregation of misfolded proteins in PD

(i) Aggregation of alpha-synuclein (SNCA). One of the

hallmark pathologies of PD is the intracellular

accumulation of LB in DA neurons of the SNpc

[70], which contain misfolded aggregates of SNCA

and other associated proteins [13]. Interestingly,

several molecular, genetic and biochemical studies

Fig. 2 Neuronal circuits and neurotransmission mechanisms of control in the brains of normal individuals and those with Parkinson’s disease. a: Neuronal

circuit in basal ganglia in normal brain. b: Degeneration of substantia nigra pars compacta (SNpc) impairs cortico-striatal circuit in PD brain. Decrease in DA

levels in the SNpc and striatum causes loss of control of striatal neuronal firing, leading to withdrawal of inhibitory effects on globus pallidus as well as

thalamus, therefore, the thalamus becomes over-excitable, which activates the motor cortex excessively. This ultimately leads to impairment of motor

coordination and causes Parkinsonism
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evidenced that a mixture of multiple misfolded

protein aggregates, such as p-tau, Aβ, and SNCA,

are frequently seen in human post-mortem brains of

patients who were neuropathologically diagnosed as

having mixed dementia with Lewy bodies (DLB) and

PD with dementia (PDD) [67]. Gomperts and col-

leagues examined the brains of several PD patients

and found a mixture of amyloid deposition in their

brain, which was linked to cognitive declines without

dementia, suggesting amyloid contributes to cogni-

tive, but not motor decline over time [68]. Similarly,

Hepp and colleagues found that the load and extent

of Aβ pathology contribute to cognitive impairments

in PDD and LBD [69].

The oligomers, proto-fibrils, and fibrils of SNCA

or other misfolded amyloid proteins can make a

pore in the membrane, causing neuronal death via

oxidative stress, energy failure, excitotoxicity, and

neuroinflammation [13, 71] (Fig. 4). For example,

a single intracerebroventricular (i.c.v.) infusion of

SNCA oligomers (α-SYOs) in mice causes the

development of late motor and non-motor symp-

toms, such as deficits in the pole and rotarod

tests, along with reduced TH and DA content in

the caudate putamen [72]. Similarly, mutations of

SNCA gene (e.g. A53T, A30P, E46K and H50Q)

cause familial PD with its early onset, rapid

progression, and a high association of dementia

[73]. Overexpression of SNCA in animal and cell

culture models showed an accumulation of SNCA

aggregates in mitochondria, marked deficits in

mitochondrial motility, and decreased mitochon-

drial membrane potential [74]. The SNCA

knockout mice showed mitochondrial lipid

abnormalities and impairment of electron trans-

port chain [75], and the mice became less sensi-

tive to mitochondrial toxins [76]. Furthermore,

A53T, a transgenic mouse model of PD develops

neuronal mitochondria degeneration with

accumulation of SNCA-containing mitochondria

and marked reduction of complex IV activity [77].

Mitochondrial DNA damage, respiratory chain

dysfunction, oxidative stress, along with SNCA

inclusion have also been reported to observe in

human DA-neurons in the PD brain [78].

(ii)Tau. Hyper-phosphorylation of tau (p-tau) can cause

an accumulation of paired helical filaments of tau,

known as neurofibrillary tangles (NFT), a hallmark

pathology of different neurodegenerative diseases,

including AD, frontotemporal dementia with

parkinsonism (FTDP), and progressive supra-nuclear

palsy (PSP) [79]. The FTDP is linked to chromosome

17 (FTDP-17), with p-tau accumulation occurring in

cortex and SNpc areas [79]. The p-tau can also be co-

Fig. 3 Schematic diagram showing the involvement of different factors and signaling pathways for degeneration of DA-neurons in PD

Fig. 4 Schematic diagram showing the steps that cause an accumulation of SNCA. Natural SNCA becomes misfolded under stress and is deposited as

oligomers, small aggregates, or fibrils, which play a significant role in DA-neuronal loss in PD

Maiti et al. Translational Neurodegeneration  (2017) 6:28 Page 6 of 35



localized with LB, which is often associated with the

development of sporadic PD [80]. Similarly, in the case

of FTDP, a mutation of gene coding for microtubule

associated protein (MAPT) causes an increase in the

accumulation of p-tau [80]. The p-tau also has been

linked to the LRRK2 gene mutations [16]. Although

NFTs are associated most closely with AD, they can

co-localize with SNCA in LB and play an important

role in destabilization of DA-neuronal architecture,

which ultimately leads to rapid degeneration and

death of DA neurons [79, 81, 82].

Role of gene mutations in PD

A plethora of recent studies, including the discovery of

gene mutations in familial or inherited forms of PD,

demonstrate that 5–10% of late-onset forms of PD are

linked to genetic factors [16, 24] (Table 1). The most

common PD-related genes are SNCA, parkin, DJ-1,

PINK1 [16]. Experimental and clinical evidence suggest

that there are five different chromosomes (5, 6, 8, 9, and

17), which are linked to an increase in susceptibility to

develop PD. For example, the parkin gene is located on

chromosome 6, which contains genes that are associated

with early-onset of PD [16]. Further, some of the PD pa-

tients who do not respond to L-DOPA treatment have

specific genes located on chromosome 9 [26]. Similarly,

the late-onset PD is related to chromosome 17 (FTDP-

17), adjacent to the gene for tau [83]. In addition, gene

encoding ubiquitin carboxyl-terminal hydroxylase

(UCH-L1), and genes on chromosomes X, 1, 2, and 4,

also have influential roles in the etiology of PD in some

families [16].

(i) Parkin. Parkin is an important protein associated

with protein clearance pathways, such as ubiquitin-

proteasome system, which can help degrade

Table 1 Genetic causes of Parkinson’s disease

Gene PARK loci Chromosome Form of PD Mutations and their origin Refs.

SNCA PARK 1 4q21 Autosomal
dominant

A30P (Germany), E46K (Spain), A53T
(Greece, Italia, Sweden, Australia, Korea),
A18T (Poland), A29S (Poland), E46K (Spain)
H50Q (UK), G51D (France)

[197, 234–238]

Parkin PARK 2 6q25.2–q27 Autosomal
recessive, juvenile

Various mutations, exonic deletions,
dupli/triplications (Japan)

[239, 240]

Unknown PARK 3 2p13 Autosomal
dominant

Europe [241]

SNCA PARK 4 4q21 Autosomal
dominant

Duplication and triplication USA [242]

UCHL1 PARK 5 4p14 Autosomal
dominant,
idiopathic

I93M and S18Y (Germany) [192, 234, 243]

PINK1 PARK 6 1p35–p36 Autosomal
recessive

G309D, exonic deletions (Italy) [244]

DJ-1 PARK 7 1p36 Autosomal
recessive,
early onset

Homozygous exon, deletion
L166P (Europe)

[245–248]

LRRK2 PARK 8 12q12 Autosomal
dominant,
idiopathic

R1441C ⁄ G ⁄ H, Y1699C
G2019S, I2020T, G2385R (Japan)

[249–251]

ATP13A2 PARK 9 1p36 Kufor–Rakeb
syndrome,
early onset

Loss-of-function mutations
(Jordan, Italy, Brazil)

[252–254]

Unknown PARK 10 1p32 Idiopathic (Iceland) [255]

Unknown PARK 11 2q36–q37 Autosomal
dominant,
idiopathic

(USA) [256]

Unknown PARK 12 X Familial (USA) [257]

HTRA2 PARK 13 2p13 Idiopathic A141S, G399S (Germany) [258, 259]

MAPT MAPT 17q21.31 Familial 79 of Ser/Thr of tau (tauopathies)
(Asian, USA)

[238, 260]

Glucocerebrosidase-1 GBA-1 1q21 Recessive Lysosomal storage disorders (USA) [238, 92, 261]

Other genes TMEM, IF4G1E, GRIN2A, GSTP1, TNF-alfa, COX-2, SLC6A3, ADH1C rs356219, SREBF1 and SREBF2, COMT HLA-DRB5, BST1,
GAK, ACMSD, STK39, MCCC1, SYT1, CCDC62/HIP1R [262]
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misfolded proteins in the cell (Table 1). Parkin acts

as an E3 ubiquitin ligase, which can bind covalently

with ubiquitin on various misfolded protein sub-

strates to aid in their degradation [84]. Parkin also

has been co-localized with SNCA, and can form LB

inclusions [85]. In contrast, parkin mutations can

cause aggregation of misfolded amyloid proteins

within SNpc [85]. Parkin-deficient mice and parkin

mutations in idiopathic PD patients show loss of

neurons in the locus coeruleus of the midbrain, [85].

Furthermore, in the case of autosomal recessive

juvenile Parkinsonism, parkin mutations can cause a

significant decline of ubiquitin-ligase enzymatic ac-

tivity in the SNpc [86, 87], which can decrease the

proteasomal degradation process significantly. In

addition, parkin is also involved in the regulation of

the release of DA from SNpc [6].

(ii) DJ-1 (PARK7). DJ-1, a dimer consists of 189 amino

acids, is localized in the cytoplasm, nucleus, and mito-

chondria, and has been linked to early-onset of PD

[88] (Table 1). It is neuroprotective, including regula-

tion of activity of certain cell survival-related genes

(PI3 K/Akt pathway), transcriptional regulation, anti-

oxidant, chaperone and protease activity, as evidenced

by several in vitro studies [89]. DJ-1-deficient mice

show locomotor deficits, decreased activity in the D2

type of DA receptors, and enhances sensitivity to

MPTP [68]. Similarly, DJ-1 deletions and point

mutations cause development of autosomal recessive

PD [15]. In addition, DJ-1 has been co-localized with

SNCA, p-tau, indicating DJ-1, which may play a key

role in synucleinopathies and tauopathies [69].

Furthermore, DJ-1 can bind to several chaperones,

including HSP70, carboxy-terminus of HSP70-

interacting protein (CHIP), and mitochondrial

HSP70/mortalin/Grp75, and can help in the degrad-

ation of misfolded SNCA [70]. DJ-1 also modulates

the expression of the human TH gene by sequestering

the transcriptional repressor, poly-pyrimidine tract-

binding protein-associated splicing factor (PSF) from

the human TH gene promoter, in order to maintain

TH levels in DA neurons of SNpc [88].

(iii)PINK1 (PARK6). PTEN-induced putative kinase-1

(PINK1), is a 63 kDa serine/threonine-protein

kinase, which is localized in the mitochondria and

protect neurons from stress-induced mitochondrial

damage [90]. In vitro studies suggest that PINK1 can

act as a cell-survival factor. The PINK1 gene muta-

tion has been observed in several families with PD,

in which it causes an increase in cell vulnerability

[90, 91]; (Table 1). Mutations of PINK1 gene are also

linked to mitochondrial dysfunctions and degener-

ation of SNpc neurons, which ultimately leads to the

development of PD [90].

(iv)LRRK2/PARK8 (dardarin). Leucine-rich repeat

kinase 2 (LRRK2), is a 268 kDa multi-domain

protein, which is encoded by the PARK8 gene.

Several point mutations on the PARK8 gene have

been linked with late-onset of PD [16] (Table 1).

Post-mortem tissue from PD patients show several

point mutations in PARK8, with significant DA

neurodegeneration, with or without the presence of

LB aggregation. In addition, the p-tau pathology

observed in post-mortem brains of PD patients may

be linked to mutations of the LRRK2 gene [16].

(v)PARK3, PARK9, PARK10, and PARK11. Familial PD

is also related to mutation of the PARK 3-, 9-, 10-

and 11- genes (Table 1). For example, the onset of

late-stage SPD is linked with a mutation of the

PARK3 gene. A few cases have linked PARK9 muta-

tion with PD in one Jordanian family, whereas,

PARK10 has been linked to PD in Icelandic families

[16] (Table 1).

(vi)Glucocerebrosidase (GBA) gene mutation. GBA is

considered one of the most common genetic risk

factors associated with Parkinsonism. Recently,

Velayati and colleagues reported that the mutations

of GBA gene are associated with not only the

development of PD, but also for LBD [92]. The GBA

mutations are associated with alterations in lipid

levels, leading to lysosomal storage disease, which

can induce synucleinopathies, and also autophagy-

lysosomal dysfunction [92]. Similarly, we also found

a mutation of GM1 synthase or the upregulation of

ganglioside-3 synthase (GD3S) are associated with

decreases in the neuroprotective ganglioside (GM1)

and increases in toxic gangliosides (GD3 and GT3

series), which can induce neurodegeneration in

SNpc in MPTP-lesion mice [93].

(vii)Mutation of mitochondrial DNA (mtDNA). The

mitochondria is a target organelle in PD, and an

increase in age-related mtDNA mutations has been

observed in PD brain tissue [94]. A group of re-

searchers have developed mitochondrial gene-

replacement therapy to replace the mutated human

mitochondrial genes as a potential treatment for PD

and other sporadic neurodegenerative diseases [95].

This form of therapy could slow down the progres-

sion of the type of PD that is closely related to mito-

chondrial dysfunction.

(viii)Other gene mutations: Mutations of autophagy-

related genes, which encode vacuolar protein sorting

protein-associated protein 35 (VPS35), are also asso-

ciated with a rare form of autosomal dominant PD

[96]. Similarly, several other genes, including

TMEM, COMT, IF4G1E, GRIN2A, GSTP1, TNF-α,

COX-2, SLC6A3, ADH1C, rs356219, SREBF1 and

SREBF2, HLA-DRB5, BST1, GAK, ACMSD, STK39,
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MCCC1, SYT1, CCDC62/HIP1R are also involved in

development of PD.

PD caused by impairment of protein degradation

pathways

(i) Ubiquitin-Proteasome System (UPS). UPS is the most

efficient disposal system of cell, and is mainly

responsible for degradation of short polypeptides

into small intracellular and plasma-membrane

proteins in normal cells [97]. It is also responsible

for degradation of misfolded or damaged proteins in

the cytosol, nucleus, or endoplasmic reticulum [98].

Impairment or failure of this critical cellular system

has been observed in the pathogenesis of PD, leading

to aggregation of misfolded amyloid proteins, such

as LB, and an increase in neurodegeneration in the

SNpc [99, 100]. In the case of PD, several other

proteins, such as parkin and UCH-L1, along with

UPS, are involved in the degradation of misfolded

SNCA. Experimental evidence suggests that UCH-

L1 is involved in the production of ubiquitin, which

has been co-localized with LB [101] (Fig. 5). Role of

UPS in LB degradation in PD can be best studied by

inhibiting the UPS system.

For example, the inhibition of proteasome system by

using lactacystin resulted in a deposition of LB and

degeneration of DA neurons in the fetal rat ventral

mesencephalic cells [102, 103]. A retrograde patients

of DA neurodegeneration has also been observed in

rodent brains, following intrastriatal administration

of lactacystin [104]. Similarly, inactivation of

ubiquitin hydrolases with ubiquitin aldehyde

produce toxic effects in primary neuronal cultures

[97, 102]. Furthermore, low levels of proteasome

inhibition (100 nM MG115) in human

neuroblastoma cells (SH-SY5Y) for several weeks

showed mitochondrial degeneration, elevated levels

of protein oxidation and aggregates [105, 106],

resembling sporadic PD, which strongly supports the

role of UPS dysfunction in PD pathogenesis.

Furthermore, subcutaneous injections of either the

naturally occurring proteasome inhibitor epoxomicin

(1.5 mg/kg) or the synthetic proteasome inhibitor

PSI (peptidyl aldehyde, selective inhibitor of the

chymotrypsin-like activity of the proteasome, 3 or

6 mg/kg) over a period of 2 weeks in adult Sprague-

Dawley rats induces progressive motor dysfunction,

along with loss of DA nerve terminals in the

striatum and a progressive reduction of the DA

transporter ligand [107]. To prove the link between

the UPS and PD, researchers also developed genetic

models of PD, such as parkin-mutated mice, al-

though this mouse model lacks overt signs of parkin-

sonism [108]. Similarly, inactivation of UCHL-1 in

mice did not produce DA neurodegeneration, but

Fig. 5 Role of protein clearance pathways in PD. Different protein clearance pathways, including molecular chaperones (HSPs), ALP (including

macro-autophagy, micro-autophagy and chaperone-mediated autophagy), and the ubiquitin-proteasomal system in degradation of misfolded

proteins, such as SNCA and LB have been associated with PD
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did result in axonal dystrophy syndrome or motor

ataxia [109]. Interestingly, parkin mutations in

Drosophila exhibit selective DA-neuronal death, as

well as locomotion deficits, mimicking those of PD

patient [110, 111].

(ii)Molecular chaperones (Heat shock proteins, HSP).

The molecular chaperone, is one of the most

efficient, highly conserved cellular defense

mechanisms involved in protein folding, refolding of

partially misfolded proteins, and protein degradation

[112, 113]. Major HSPs involved in PD are HSP 26,

40, 60, 70, 90 and 100. Some of the HSPs are

localized in synapses and axons, and their levels are

down-regulated in PD [114] as well as other neuro-

degenerative diseases [113]. Importantly, HSPs can

bind to aggregated SNCA or tau oligomers or pre-

fibrillar structures, and interfere by forming low

MW soluble oligomers or higher order insoluble struc-

tures [115, 116] which reduce their toxicity (Table 2).

HSPs also play pivotal roles in the regulation and pre-

cise functioning of ubiquitin proteasome and the

autophagy-lysosomal pathways [113, 116, 117].

In drosophila and yeast models of PD, HSP70 co-

expression prevents DA cell death by decreasing the

SNCA toxicity [118], whereas mutations of ATPase

domain in HSP70 (K71S) increase toxicity [119].

Similarly, over-expression of HSP70 decreases

MPTP- or rotenone-induced neurotoxicity in rat

brain slices [120] and also in cultured SK-N-SH or

PC12 cells [121]. Furthermore, a reduction of total

and detergent-insoluble fractions of misfolded SNCA

aggregates were observed in an in vitro model of PD,

which co-express different yeast HSPs (HSP104,

HSP40, HSP27, or HSP70) [122], suggesting molecu-

lar chaperones become dysregulated in PD.

(iii)Autophagy lysosomal pathway (ALP). Because they

are too large to pass through the narrow proteasome

barrel, large protein debris, such oligomers and

fibrils of SNCA, cannot be degraded through UPS

[123, 124]. Autophagy, which includes macro-,

micro-, and chaperone-mediated autophagy (CMA),

are the specialized mechanisms serve as alternative

protein clearance machineries present in every cell

for degrading LBs in PD [123, 125, 126] (Fig. 6).

Micro-autophagy is mainly involved in degradation

of small cytosolic proteins, even under resting condi-

tions, and macro-autophagy is responsible for deg-

radation of large aggregates. CMA is more specific,

performing its activity by interacting with heat-

shock cognate protein (HSC70), which specifically

bind to small soluble proteins to be degraded via

specific pentapeptide targeting motif (KFERQ). The

HSC70 docks the t0-be-degraded proteins to the

lysosomal membrane receptor, lysosome-associated

membrane protein 2 (LAMP2A), and then transport

them into the lysosomes, where they are degraded

by lysozymes [127]. Experimental evidence suggests

that the down-regulation of autophagy-related genes,

Atg5 or Atg7, in the CNS leads to aggregation of

poly-ubiquitinated protein debris in neurodegener-

ated tissue in mice [128, 129].

It has been shown that the SNCA is selectively

translocated into the lysosomes for degradation by

the CMA [123]. Therefore, dysfunction of CMA

decreases the efficiency of SNCA degradation,

causing excess accumulation of this protein, which

impairs neuronal activity significantly. Further, PD

brain is particularly vulnerable to dysfunction of

autophagy-lysosomal pathway (ALP), which may be

due to the failure of autophagosome formation or its

inability to bind with lysosomes, due to deficiency of

lysozymes, or dysfunction of HSC70 or LAMP2A

[6, 130, 131]. Substantial evidence from human

post-mortem studies reveals that autophagy

mechanisms become impaired in PD brain. For

example, accumulation of autophagy vacuoles

[132] and levels of the ALP markers,

microtubule-associated protein 1 light chain 3

(LC3) [133] have been reported to increase in the

SNpc area of postmortem PD brain and temporal

cortex of patients with DLB [134] in comparison

to age-matched controls, suggesting dysfunction

Table 2 Different molecular chaperones (HSPs), localization, functions and their involvements in PD

HSPs MW (kDa) Location in cell Co-localization Functions Refs.

HSP27 20–30 Cytosol, ER, nucleus SNCA, Tau Protein degradation [263, 264, 116, 265]

HSP40 40 Cytosol, SNCA Protein folding [116, 263]

HSP60 60 Mitochondria SNCA Prevent protein aggregation [116, 263, 266]

HSP70 70 Mitochondria,
Cytosol, ER, nucleus

SNCA Protein folding and unfolding [116, 118, 263, 265, 267, 268]

HSP90 90 Cytosol, ER, SNCA Protein degradation and
transcription factor

[116, 263, 265, 269]

HSP100/104 100–110 Cytosol, ER, SNCA Thermal tolerance [116, 263, 270]
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of autophagy is linked with PD progression.

Furthermore, decreased levels of LAMP1,

LAMP2A, and HSC70 have been observed in the

SN of PD patients, suggesting CMA dysregulation

[135, 136]. Recent transcriptome studies with

postmortem tissue have revealed that several

autophagy-related downstream mechanisms, such

as mTOR and PI3K/AKT signaling, were also

severely affected in PD brain [137, 138].

Role of environmental toxins on PD

Recent yield-boosting advances in the agricultural and

fertilizer industries have led farmers to use various types

of the pesticides, sometimes indiscriminately, for their

crop production. Exposure of those environmental

toxins (herbicides, pesticides, fungicides, insecticides

etc.) has contributed to the development of SPD [14, 27]

(Table 3). Importantly, farmers and people living in rural

areas are vulnerable to PD, due to exposure of those

toxins, either through direct contact or through drinking

water. Many people are also exposed to bacterial toxins,

viruses or illegal street drugs, such as the synthetic heroin

(MPTP or 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine),

leading to SPD [5, 128].

Exposure of MPTP into the cell produces MPP+, the

actual toxic metabolite, which can pass through DAT

and thus, attack DA-neurons in SNpc and induce

parkinsonism [139]; (Fig. 7). Because of this capability,

currently MPTP is widely used to produce a severe, per-

manent parkinsonian syndromes in animal models of PD

[140]. There are structural similarities between MPTP

and different environmental toxins, such as paraquat,

maneb, zineb, nabam, thiram, ziram, and rotenone

(Table 3), and many of these environmental toxins may

produce Parkinsonism in animals [14, 141].

For example, in one of our experiments, mice that

were injected with MPTP (25 mg/kg BW) for 5 days,

showed an 80% loss of TH-immunoreactivity in SNpc 5

weeks later, indicating a substantial loss of DA-neurons

in that area. We also observed TH-positive DA-fibers

were more sparse in the striatum (Fig. 8), which suggests

that, due to loss of DA neurons in SNPc, the DA fibers

become diminished in the striatum [3]. Similarly, inject-

ing 6-hydroxydopamine (6-OHDA), into the striatum

can also produce PD-like symptoms in rodents [142].

Fig. 6 Role of autophagy-lysosomal pathway in degradation of misfolded protein aggregates in PD. Insoluble, larger and smaller SNCA/LB

aggregates are degraded by macro-autophagy and micro-autophagy, respectively, whereas soluble, small misfolded SNCA and or LB are

degraded by CMA
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Similarly, rotenone is another well-known component of

pesticides that causes degeneration of DA neurons in

SNpc, due to energy failure much like what happens

with MPTP exposure [143]. Several studies have shown

that the most environmental toxins can inhibit the

complex-I activity and interfere the mitochondrial elec-

tron transport system, which can ultimately increase free

radical production, leading to oxidative stress [140].

Although several investigators have developed many

animal models of PD using environmental toxins, none

of them demonstrated the primary PD symptoms, like

resting tremor or bradykinesia. They also fail to accur-

ately recapitulate the mechanisms of DA neuronal death

(Table 4) (Fig. 9).

Moreover, these toxins can cause acute or rapid cell

death, unlike progressive neurodegeneration noted in

PD [14]. In addition, most therapeutics used to protect

against the neurodegeneration caused by these environ-

mental toxins in animal models are unable to translate

into effective human therapies. Therefore, the selection

of a toxin to produce an animal model of PD is a chal-

lenging task (Table 4).

Role of mitochondrial damage and oxidative stress in PD

One of the most promising theories in PD research, as

well as other age-related neurodegenerative diseases, is

the oxidative stress theory [144]. This theory posits that

the mitochondria is the “hot-spot” for degenerative

Table 3 Different environmental toxins involved in neurodegeneration and Parkinsonism

Toxins Use Mode of action Effects on nervous system Refs.

MPTP Herbicide Inhibit electron transport Parkinsonism [140, 153, 271]

Rotenone Pesticide, insecticide Interfere with Mitochondrial
electron transport system

Parkinson’s like symptoms [143, 272]

Paraquat Herbicide Interfere electron transport,
photo synthesis

Oxidative stress [15, 273, 274]

Maneb Fungicide Interferes glucocorticoid
metabolism

Parkinson’s like symptoms [274–276]

Zineb Pesticide Metabolized to carbon
disulfide-a neurotoxin

Convulsions, tiredness, dizziness weakness,
headache, fatigue, slurred speech, unconsciousness

[277–279]

Ziram Pesticide Unknown Prolonged inhalation causes neural and visual
disturbances

[141, 279, 280]

Thiram Pesticide Unknown Convulsions, headaches, dizziness, fatigue
drowsiness, confusion

[279–281]

Nabam Fungicide Unknown Convulsion, dizziness, confusion [279, 282]

Fig. 7 Mechanistic details of MPTP-induced DA-neuronal loss in PD. After crossing blood brain barrier, MPTP enters glial cells, where it is

converted to MPP+. This MPP+ then enters neurons and damage mitochondria, which causes energy failure, oxidative stress, glutamate and Ca++

excitotoxicty, increased aggregation of misfolded SNCA, and DA-neuronal loss
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processes. In PD, the abnormal activity of complex-I in

mitochondria has been observed, which directly inter-

feres with cellular ATP production, leading to cell death

[145]. In addition, the brain monoamines, such as DA

and 5-HT, generally act as antioxidants [146]. However,

breakdown of DA by monoamine oxidase-B (MAO-B),

and combined with ground state O2, leads to the forma-

tion of ROS [147] (Fig. 10). Researchers have found in-

creased oxidative stress markers and related changes

(including free radical damage to DNA, proteins, and

fats) in PD patients [147]. In addition, increased levels of

the apoptotic marker protein, “Bax” has been observed

in DA-neurons of the SNpc in MPTP-treated mice [94].

Recently, investigators have developed hybrid cells,

called “cybrid”, to check the role of mitochondria in de-

velopment of PD [148]. They have placed mitochondrial

DNA from PD patients into neuroblastoma cells and

found these cybrids develop LB, just like those in the

DA-neurons of PD patients. Similarly, certain gene mu-

tations that are involved in cell-survival mechanisms

may lead to impairment of mitochondrial activity and

ATP production. These findings provide strong support

for the idea that mitochondrial defects play a key role in

the development of sporadic PD.

Role of excitotoxicity in PD

DA is an inhibitory neurotransmitter, which normally

maintains the excitation status of the subthalamic nuclei

(STN) at basal levels. However, in the case of PD, due to

deficiency of DA neurons, the STN become over activated,

leading to excessive production of neurotransmitter

glutamate [149]. Excessive glutamate binds to its ionotro-

pic receptors (NMDA or AMPA) and open the voltage-

gated calcium (Ca++) channels (VGCC), which causes Ca+

+ excitotoxicity. Excess Ca++ load can damage the mito-

chondria and produce ROS, leading to oxidative stress

[150, 151]. In addition, environmental toxins, can cause

increased production of glutamate, leading to Ca++ excito-

toxicity which makes DA neurons vulnerable to neurode-

generation [14, 94, 141, 151].

Neuroinflammation involved in PD

A cascade of events are involved in neuroinflammation

processes in PD, including activation of microglia and an

increase secretion of cytokines [152]. For example,

researchers have found strong links between pro-

inflammatory cytokines and degeneration of DA neurons,

following sub-chronic administration of MPTP in animals

[153]. Several clinical studies have shown that the level of

inflammatory enzymes, such as cyclo-oxygenase-2 (COX-

2), is increased several times in DA-neurons of the

postmortem PD brain and in a mouse models of PD [154]

(Fig. 11).

Prion hypothesis

During the past few decades, scientists have postulated

several mechanisms for the onset and progression of PD.

Recently, the “prion hypothesis” is considered one of the

most intriguing theories behind its onset. This theory

posits that SNCA spreads throughout the CNS, similar

to “prion proteins” and infect adjacent new, healthy neu-

rons and that this cycle continues until most of the CNS

Fig. 8 Brain areas affected by PD. Substantia nigra in mouse brain (a and b); TH+ DA-neurons in SN (c; 40 x); in control (d) and MPTP-treated

mouse brain (e). TH+ fibers in control (f, h) and MPTP-treated (g, i) mouse striatum. Note: The loss of DA-neurons in SN (e), along with loss of TH

+ fibers in striatum, have been observed after MPTP treatment (g & i)
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neurons are infected. Therefore, “prion-like infection” of

SNCA may be responsible for the progression and neu-

rodegeneration of some types of PD [11]. According to

Braak’s hypothesis, SNCA, bacteria, or viruses can travel

via the olfactory tract and into the Vegas nerve to the

medala and spread throughout the CNS, which can re-

sponsible initiate sporadic PD [155]. Recently, Chandra

and colleagues discovered that enteroendocrine cells

(EECs) in gastro-intestinal track, possess many neuron-

like properties and that SNCA is expressed in the EEC

lines, as well as in native EECs of mouse and human in-

testines. These cells directly connect to SNCA-

containing nerves, forming a neural circuit between the

gut and the nervous system (gut-brain interaction hy-

pothesis) [156]. Moreover, abundant clinical and patho-

logical evidence have localized misfolded SNCA in

EECs, before it appears in the brain. These phenomena

suggest that PD pathogenesis may originate in the gut

and spread to the CNS via cell-to-cell “prion-like propa-

gation” [156]. Although the “prion hypothesis” provides

useful insights into the progression of PD, the presence

of SNCA is not always necessary for the emergence of

PD pathology or parkinsonism. Therefore, even though

SNCA can infect healthy cells like a prion, the “prion hy-

pothesis” of PD remains controversial [157].

Diagnosis of PD
Most clinicians face difficulties in diagnosing PD accur-

ately, because some of the symptoms can emerge during

normal aging. Moreover, only a few tests are available,

which can help to diagnose PD. Therefore, most PD pa-

tients are diagnosed on the basis of their medical history

and certain neurological examinations [2]. The presence

of LB is one of the most definitive ways to diagnose PD

[158], which can be done by microscopic examination of

postmortem brain tissues. However, LB can also be found

in brains of patients who lack other symptoms without

parkinsonism [159]. For example, more than 8% people

over 50 years, 13% of people over 70, and 16% of over

80 years of age show LB in their brains, in the absence

of any other symptoms of PD [160]. Therefore, the pres-

ence of LB in the brain tissue is not the sole indicator of

PD, but an accurate diagnosis requires the presence of at

least two of the three major motor signs, such as resting

tremor, rigidity, and bradykinesia [161] (Table 5). The

examination of different reflexes and limb movements

are also considered as standard tests for the diagnosis of

PD [161]. These can be measured by different means: (i)

bradykinesia can be tested by measuring the capability

to clamp finger and thumb together, or tap foot up and

down; (ii) tremor index can be determined by simple

inspection; (iii) muscular rigidity can be tested by

moving the neck, upper limbs, and lower limbs; (iv) pos-

tural instability can be tested by “pull test”. Overall, the

progression of PD can be diagnosed and categorized by

different stages, as described by Hoehn and Yahr scale

[162] (Table 5).

Treatment of PD
Like other neurodegenerative diseases, PD can cause

socioeconomic and emotional breakdown to the im-

mediate family members, caretakers and friends of

Fig. 10 Oxidative stress theory in PD. With the help of MAO-B, the

DA is converted to DOPAC and produces hydrogen peroxide (H2O2).

The H2O2 is then converted to other ROS by Fenton reaction

Fig. 9 Different ETs-associated with PD. Chemical structure of different pesticides, herbicides, fungicides, and insecticides which may produce

Parkinson-like symptoms in animal models

Maiti et al. Translational Neurodegeneration  (2017) 6:28 Page 16 of 35



the patient. Unfortunately, effective therapeutics are

not currently available, but early diagnosis and

appropriate palliative treatment can provide for a

more productive and longer life for most PD patients.

Currently, several therapies are available to slow down

the disease progression, albeit modestly, or provide

transient relief of the severe symptoms of PD. Physi-

cians most commonly use either (i) drug treatment or

(ii) surgery to treat PD, however, some accessory

therapies are also available.

Drug treatments in PD

Although several generic drugs are available to reduce

PD pathogenesis, the most critical factor is the selec-

tion of right dose. Therefore, during recommended

course of treatment, a physician always assesses the

effect of drug on the daily life of the patient, because

drugs may take time to affect the patient’s body. Re-

cently microinjection or infusion techniques allow

several neuro-active substances to be injected into the

damaged brain areas of PD [163]. Currently, the avail-

able medications for PD are divided into two categor-

ies: (1) dopaminergic drugs; (2) non-dopaminergic

drugs (Fig. 12).

Dopaminergic drugs

(i) Levodopa (L-DOPA). Physicians usually prescribe

DA-drugs to the PD patients in an effect to restore

DA levels. As DA, itself, cannot cross the blood

brain barrier, therefore, DA precursors, such as

levodopa (L-3, 4-dihydroxyphenylalanine/L-DOPA)

are commonly prescribed [164]. L-DOPA is very ef-

fective in reducing the “resting-tremors” and other

primary symptoms [165], but L-DOPA is unable to

preserve or replace degenerated DA-neurons or to

stop further progression of PD [166]. Furthermore,

it may cause nausea, vomiting, low blood pressure,

restlessness, drowsiness or sudden onset of sleep

(Table 6). In addition, because the conversion of

L-DOPA to DA occurs very fast, decreasing its

potency when it reaches the target area, physi-

cians often prescribe carbidopa, which prolongs

the therapeutic effect when given in conjugation

with L-DOPA [167].

(ii)MAO-B inhibitors. Decrease DA levels in PD may be

due to its rapid breakdown by the catalytic enzyme

monoamine oxidase-B (MAO-B), whose level is

increased in the PD brain [17] (Fig. 12). Therefore,

inhibition of MAO-B is a good strategy to maintain

DA levels in PD brain [168]. Selegiline, (L-deprenyl)

and rasagiline are well-tolerated and the most

commonly used MAO-B inhibitors [169], which,

when administered with L-DOPA, and can sustain

the response of L-DOPA even up to a year or

more. Although several side effects have been

Fig. 11 Mechanism of neuroinflammation in PD. T-lymphocytes and complementary systems can activate microglia to secrete several cytokines,

which causes DA-neuronal injury. Similarly, aggregated SNCA can also activate astrocytes, which causes oxidative stress, leading to neuronal injury

Table 5 Different stages of development of symptoms in PD as

described by Hoehn and Yahr

Stages Characteristics

Stage-I Signs and symptoms on one side only; tremor of the limb;
minute changes in posture, locomotion, and facial expression.

Stage-II Symptoms are both sides; minimal disability; posture and gait
affected

Stage-
III

Slowing of body movements; early impairment of equilibrium
on walking or sliding; generalized dysfunctions.

Stage-
IV

Severe symptoms; can still walk to a limited extent; rigidity and
bradykinesia; unable to live alone; tremor may be less than
in earlier stage.

Stage-V Cachectic stage; invalidism complete; cannot stand or walk;
requires constant nursing care.
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reported with the use of these drugs (Table 5),

they have promising effects on restoration of cell

functioning or slowing down the loss of DA-

neurons in PD [169].

(iii)COMT inhibitors. MAO can breakdown the DA to

dihydroxy phenyl acetate, which is further catalyzed

by the enzyme, catechol-O-methyl transferase

(COMT), to form homovanillic acid (Fig. 13).

(iv)As COMT is responsible for breakdown of DA

indirectly, therefore, inhibition of COMT could be

another way to restore DA and treat PD [170].

The common COMT inhibitors are entacapone

and tolcapone, which prolong the effects of L-

DOPA by preventing the breakdown of DA [171].

These drugs also can reduce the sensitivity of L-

DOPA in PD patient and produce fewer side-

effects (Table 5) [171].

(v)Dopamine agonists. These drugs can increase DA

levels in the brain and are most effective during

the early stages of PD. They can also be

combined with L-DOPA in late-stages of PD to

increase the life span of L-DOPA [172]. The

common DA agonists used to treat PD patients

are pramipexole and ropinirole which are gener-

ally less effective than L-DOPA for controlling

rigidity and bradykinesia [173]. Unfortunately,

these drugs have several potential side effects that

are similar to L-DOPA (Table 6) [172, 173].

Non-dopaminergic drugs

Non-dopaminergic drugs include anti-cholinergic com-

pounds, norepinephrine (NE), serotonergic receptor- and

muscarinic-receptor-related compounds, and antiviral drugs.

(i) Anticholinergic drugs. One of most important

excitatory neurotransmitters in the brain is ACh,

which has been reported to decrease in several areas

of the brain parts in PD patients. In PD, DA levels

are diminished, causing less inhibitory activity in the

brain, allowing ACh-induced excitation to continue

to the point of over-excitation. Therefore, anti-

cholinergic drugs may be effective [174]. Although

anti-ACh drugs can help to reduce tremors and

muscle stiffness in PD, only about 50% of the

patients get any relief, and this is only for brief

periods, whereas only 30% of patients showing

any symptomatic improvements [175]. Moreover,

the anti-ACh drugs have several side effects

(Table 6) [175].

Other drugs

The non-motor symptoms, including depression and

anxiety, can be treated with anti-depressants. Benzodi-

azepine is one of the most commonly used drugs to treat

anxiety in PD patients [176], but it has some side effects.

Similarly, clozapine is prescribed to control dyskinesia in

PD, but this can cause agranulocytosis and other side

effects [177].

Immunotherapies

There are mainly two immunotherapeutic strategies

available: active and passive, which have tested in animal

models and human PD patients for targeting SNCA.

Masliah and colleagues used a transgenic mouse overex-

pressing human wild type SNCA. These mice exhibit

SNCA accumulation in neurons and glia of the neocor-

tex, hippocampus, and SNpc [178]. Mice that were

Fig. 12 Possible therapies for PD. Currently different therapies available for treating PD include pharmacological manipulations, surgical treatments,

stem cell and gene therapies, rehabilitation therapies and other complementary and supportive therapies
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Table 6 Some common drugs used in PD therapy, their mode of actions and effects and disadvantages

Drugs Mode of action Effects Adverse side effects Refs.

L-DOPA Dopamine agonist Increases dopamine
concentrations

Nausea, vomiting, low blood pressure, restlessness,
drowsiness.

[324, 325]

Selegiline MAO-B inhibitor Maintains L-DOPA
levels

Dizziness, dry mouth, insomnia, muscle pain, rash, nausea,
constipation, severe headache, tachycardia, arrhythmia,
hallucinations, chorea, or difficulty in breathing.

[326]

Creatine Boosts mitochondrial
function

Antioxidant, prevents
MPTP-induced
neuronal damage

Nausea, stomach pain, diarrhea, muscle cramps; difficult
breathing; swelling of face, lips, tongue, or throat, and
weight gain.

[327]

Bromocriptine,
Apomorphine,
Pramipexole,
Rropinirole

Dopamine agonist Increases dopamine
levels

Drowsiness, nausea, vomiting, dry mouth, dizziness, leg
swelling, and feeling faint upon standing, drop in blood
pressure, confusion, hallucinations, or psychosis.

[328]

Entacapone
and tolcapone

preventing the breakdown
of dopamine

prolongs the effects
of L-DOPA

Hepatotoxic, nausea, diarrhea, orthostatic hypotension,
urine discoloration and dizziness, mitochondrial
dysfunction,

[329]

Amantidine Activate dopamine synthesis Increases dopamine
levels

Blurred vision, confusion, difficult urination, dizziness,
fainting seeing, and hearing, swelling of the hands,
feet, or lower legs.

[330]

Rofecoxib Inhibit COX-2 Prevents inflammation Back pain, diarrhea, dizziness, headache, heartburn,
and loss of energy or weakness, nausea, stuffy or
runny nose, swelling of legs and feet, blurred vision,
constipation.

[331]

ACP-103
(Pimavanserin)

Blocks serotonin receptors Decrease
levodopa-associated
complications

Hyperprolactinemia, menstrual and sexual dysfunction,
akathisia, distressful motor disturbance, restlessness

[332]

GM1 gangliosides Dimerization of tyrosine
kinase A and increases
neurotropic factors

Increases dopamine Not known [333]

Quetiapine Blocking of the dopamine
type 2 (D2) and serotonin
type 2 (5-HT2) receptors

Reduce psychosis
and/or agitation

Agitation, dizziness, tremor, anxiety, hypertonia,
abnormal dreams, dyskinesia, involuntary movements,
confusion, amnesia, hyperkinesia, increased libido,
abnormal gait, myoclonus, apathy, ataxia, hemiplegia,
aphasia, buccoglossal syndrome

[334]

Ubiquinone or
coenzyme Q10

Improves mitochondrial
function

Antioxidant, slows
disease progression
in early-stages

Lower blood pressure, hemorrhage, skin itching, nausea,
vomiting, headache or migraines, abnormal breathing,
back pain, bronchitis, changes in attention, chest pain,
constipation, coughing, diarrhea, dizziness, fainting,
falling, fatigue, hearing loss, heart attack, indigestion,
insomnia, irritability, loss of appetite, low energy, muscle
pain, night sweats, respiratory tract infection, sore throat,
urinary infection etc.

[335, 336]

S-Adenosyl-
methionine (SAM)

Methylates phospholipid
and increase nerve-cell
communication

Improves dopamine
transmission, decreases
depression

Gastrointestinal disorders, dyspepsia, and anxiety. [337]

Entacapone,
tolcapone

COMT inhibitors Inhibit DA breakdown Diarrhea, nausea, sleeps disturbances, dizziness, urine
discoloration, abdominal pain, low blood pressure,
hallucinations.

[338]

Fig. 13 DA-biosynthesis and degradation. TH: Tyrosine hydroxylase, ALAAD: Aromatic L-amino acid decarboxylase, MAO: Mono amine oxidase,

COMT: Catechol O-methyl transferase
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immunized with recombinant human SNCA showed a

decreased in accumulation of SNCA inclusions in

temporal cortex, and preserved synaptophysin-positive

nerve terminals, as well as reduced neurodegeneration

[179, 180] (Table 7).

Surgical treatments

Most of the anti-PD drugs have several side-effects and

are only transiently effective in a certain population of

patients (Table 6). Additionally, they are unable to stop

further DA-neuronal loss. Therefore, when there is no

adequate relief after medication, clinicians resort to

surgical treatments to reduce motor symptoms, espe-

cially during the advanced stages of PD. Currently,

there are two commonly used surgical treatments for

PD: (i) deep brain stimulation (DBS) and (ii) surgical

lesions, such as a pallidotomy and/ or a thalamotomy

[181].

Table 7 Alfa-synuclein immunization studies in animal models of PD Tg-trangenic, hSNCA-human alfa synuclein, rh-SNCA-

recombinant human alfa synuclein, rAAV-recombinant adeno-associated virus, SN-substantia niagara, PDGF-platelet derived growth

factor, TH-tyrosine hydroxylase, Ag-antigen, Ab-antibody, APOE-Apolipoprotein E

Active immunization Refs.

Animal models Ag/Ab Outcomes

Tg-mice expressing hSNCA under
the PDGF-β promoter, D-line

rh-SNCA Reduction of accumulated SNCA in neurons and
higher number of synaptophysin-positive nerve
terminals ameliorating neuronal damage, mild
microglia activation

[29, 179, 180]

Sprague-Dawley rats injected with
rAAV-SNCA into SN

rh-SNCA Reduction of SNCA inclusions in SN, induction
of regulated T cells and activated microglia

[180, 339]

Two models: PDGF-SNCA mice
expressing hSNCA under the
PDGF-β promoter and
mThy1-SNCA mice expressing
hSNCA under the murine
Thy1 promoter

C-terminus of SNCA (aa 110–130),
also able to bind to full-length and
N-terminal-truncated forms of
α- syn, such as SNCA 96–140

Reduced SNCA oligomers in axons and synapses,
reduced degeneration of striatal TH-immunoreactive
fibers, clearance of SNCA involved microglia,
improved motor and cognitive deficits in both
models

[180, 340]

Mice expressing hSNCA under
the control of the myelin basic
protein promoter

Ag mimicking the C-terminus of
SNCA or the original C-terminus
peptide (aa 110–130)

Decreased accumulation of SNCA, reduced
demyelination in neocortex, striatum and corpus
callosum, reduced neurodegeneration, activation
and clearance of SNCA by microglia, reduced
spreading of SNCA to astrocytes

[341]

Passive immunization

Tg-mice expressing hSNCA
under the PDGF-β promoter,
D-line

SNCA C-terminus Ab-9E4 (IgG1),
epitope 118–126

Reduction of calpain-cleaved SNCA in neurons,
no difference in microglia activation between
control and Ab-treated mice, less motor and
cognitive impairment

[342]

Tg-mice expressing hSNCA
under the PDGF-β promoter,
M-line

SNCA C-terminus Ab274 (IgG2a),
epitope 120–140

Reduced accumulation of SNCA in neurons and
astroglia, increased presence of SNCA in microglia,
improved function in open field and pole tests

[180]

Tg-mice expressing hSNCA
under the Thy-1 promoter,
line 61

C-Terminus SNCA Ab: 1H7, 9E4,
5C1, and 5D12

Attenuated synaptic and axonal pathology in
cortex, hippocampus and striatum, reduced
accumulation of C-terminus-truncated SNCA
in striatal axons and mitigated loss of TH fibers,
reduced astrogliosis and microgliosis, improved
motor and cognitive deficits

[343]

Tg-mice expressing hA30P
SNCA under the Thy-1
promoter

SNCA protofibril-selective
monoclonal Ab (mAb47)

Reductions of soluble and membrane-associated
SNCA protofibrils in spinal cord, no change of
astrocytic or microglial activity

Mice overexpressing hSNCA
under the PDGF-β promoter
(line D)

Single-chain fragment variables
against oligomeric SNCA fused to
the low-density lipoprotein
receptor-binding domain of APOE-B

Decreased oligomeric and phosphorylated SNCA
accumulation in neocortex and hippocampus,
reduced levels of astrocytes, improved memory
function

[344]

Intrastriatal stereotaxic
injections of SNCA preformed
fibrils in wild type
C57Bl6/C3H-mice

Monoclonal Ab: Syn303
(binds pathological conformations
of human and mouse SNCA)
targeting N-terminus)

Reduction of LB, amelioration of nigral DA-neuron
loss, no differences in astrogliosis and microgliosis,
improved motor behavior

[345]

Fisher 344 male rats injected
into SN with rAAV expressing
hSNCA

Ab against the N-terminal or
central region of SNCA

Lowered levels of SNCA, reduced SNCA-induced
DA-neuron loss, decreased number of activated
microglia, partial improvement of behavioral deficits

[346]
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(i) Deep brain stimulation (DBS). Several basal ganglia

nuclei become inactive or dysfunctional in PD.

Surgical implantation of very fine electrodes in these

areas can be used to keep them functionally active, a

process called deep brain stimulation (DBS). The

thalamus, globus pallidus interna (Gpi), or STN are

target regions for DBS [182], where the electrodes

are implanted, in one or both the hemispheres

(Fig. 14).

In DBS, devices containing two batteries, which

generate finely tuned electrical currents for

stimulating those deep brain areas, are implanted in

both sides in the chest under the collar bone. The

electrical pulses are generated by these batteries,

which can be programmed precisely according to

the specific needs of the PD patient. At 3–5 year’

intervals, the implanted batteries can be checked or

replaced or recharged, accordingly. The DBS can

reduce many primary motor symptoms of PD, and

also decrease the need for L-DOPA to reduce dyski-

nesias [183]. In addition, the electrodes can be pro-

grammed to be turned on or off, as needed, by using

a hand-held device [184]. However, the greatest dis-

advantage of using DBS, is that it requires surgical

implantation of the device, which can cause poten-

tial complications, including stroke or hemorrhage,

risk of infection, speech, or balance problems. More-

over, DBS is not effective in “atypical” parkinsonian

syndromes, such as multiple system atrophy,

progressive supra-nuclear palsy, or posttraumatic

parkinsonism [184]. In addition, DBS is not used to

treat the early stages or for treating mild symptoms

of PD, or not suitable for treating the cognitive, psy-

chological, or any other non-motor symptoms [183].

(ii)Pallidotomy and thalamotomy. The parts of the

brain which control our voluntary movements

include the globus pallidus (GP), a part of basal

ganglia which has strong connections to the

striatum and the thalamus. In pallidotomy, the

surgeon selectively destroys a part of the GP

(Fig. 15). Therefore, the synaptic connections with

thalamus or striatum are altered in a way which

decreases tremor, rigidity, bradykinesia, and posture

abnormalities in PD patients [185].

This surgical method can also reduce the amount of

L-DOPA that the PD patient requires, which can

decrease drug-induced dyskinesia and dystonia.

Similarly, destruction of the thalamus, known as

thalamotomy, can interrupt the connections between

the basal ganglia and motor cortex, in ways that can

restore neurotransmitter balance (e.g. glutamate

excitation) and reduce symptoms, such as tremor

[185]. Thalamotomy is used mainly for controlling

tremor, and it is not very effective for bradykinesia,

rigidity, or dyskinesias (Fig. 15).

Cell transplantation therapy

Transplantation of neuronal stem cells into the brains

of PD patients is considered to be one of the most

promising approaches for treating this disease [186].

Fig. 14 Schematic diagram show the process of DBS. In DBS, STN or thalamus or the globus pallidus interna (Gpi) (in this case STN) are stimulated by

an implanted apparatus contains batteries that produce electrical stimulation (like a pace-maker). Stimulating the STN can activate the GPi, which can

strongly inhibit the thalamus (right side circuitry) which can activate the motor cortex; in turn, allowing more control into the movement of limbs
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Over the last two decades, several investigators trans-

planted DA cells, such as adrenal medullary dopamin-

ergic cells, into the striata in animal models of PD,

[5, 6]. Recently, by manipulating several growth fac-

tors (such as FGF-2b, FGF8, SHH), researchers are

able to generate DA-neurons from rodent embryonic

stem cells (Fig. 16), and transplant them into the stri-

ata of animal models of PD. Interestingly, these trans-

planted neurons survive and integrate into the

existing brain circuitry in animal model of PD and re-

verse the behavioral deficits [187, 188]. By over-

expressing Nurr1, (a transcription factor for develop-

ment of DA neuron) in embryonic stem cells, re-

searchers can generate even more DA neurons [18,

19, 189, 190] to transplant into the brains of PD

animals.

When human fetal-derived dopaminergic tissues are

grafted into the striatum of the PD patients, an increase in

DA levels is observed, suggesting that the implanted stem

cells are able to survived and differentiate into DA neu-

rons [191]. Further, when researchers implanted porcine-

derived DA-producing cells into the brain of a PD patient,

they observed modest clinical improvements, suggesting

that DA-producing xenografts can survive in human brain

[192]. Similarly, the greatest clinical benefits have been ob-

served in allogeneic human fetal ventral mesencephalic

(FVM) tissue transplantation in PD patient [193, 194].

These cells survive and make appropriate synaptic con-

nections, while and increasing DA levels within the host

cells. Similarly, high-quality DA-cells, such as porcine fetal

mesencephalic cells, human retinal pigmented epithelial

cells, and progenitor cells, have also been used for clinical

or preclinical testing as a therapy for PD [190, 195]. How-

ever, further research is needed to evaluate the safety and

efficacy of stem cell therapy before it can be approved as a

treatment of human PD patients [196].

Fig. 15 Schematic diagram showing pallidotomy (a), and thalamotomy (c) and the basal ganglia circuitory during pallidotomy (b) and thallatomy

(d). In case of pallidotomy, the globus pallidus (GP) is surgically destroyed. In the case of a thalamotomy, both thalami are destroyed surgically,

which causes a loos of thalamic excitation to the motor cortex, which can decrease Parkinson-like symptoms. Scematic diagram of basal ganglia

circuitory in normal brain is shown in “e”
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Gene therapy for PD

Although most cases of PD are sporadic in nature, re-

cent studies have confirmed that several genes are linked

with the development of PD [16, 24, 197]. Therefore,

gene therapy approaches may offer another promising

means of treating PD [24].

(i) Viral vectors-mediated gene delivery. Currently,

several viral vectors, such as lentivirus (LV), non-

lentivirus, adeno-virus and recombinant adeno-

associated virus (rAAV), containing target genes,

are injected to the animal brain either by direct

stereotaxic administration or via systemic injec-

tions. These viruses can integrate with the host

cell and induce certain gene expression, promote

DA-cell survival, as well as prevent degeneration

of DA-neurons, which, ultimately, increases DA

levels [24]. Similarly, the use of AAV2 to deliver

gene for NGF, BDNF, GDNF, can increase regen-

eration of DA-neurons in SNpc and boost DA

levels in striatum [198, 199]. For example, animals

that were injected with the constitutively express-

ing GDNF vectors showed a long-term and stable

improvement for GDNF levels [200]. Similarly,

when AAV2-GDNF vectors were injected into the

putamen of a MPTP-treated monkey, an enhance-

ment of the locomotor activities and increased

the DA-terminals were observed in the putamen

[201]. Furthermore, delivering glutamic acid de-

carboxylase gene (GAD, the rate limiting enzyme

for GABA synthesis) using an AAV (AAV-GAD)

into the STN can increase GABA, which helps to

balance the neuronal firing in the PD brain,

resulting in a normalization of inhibitory signaling

[202]. A clinical trial with AAV-GAD gene

therapy into the STN has been shown to be safe

and well tolerated by patients with advanced PD

[203].

(ii)AADC-TH-GCH Gene Therapy. Chemical synthesis

of DA from L-DOPA requires three-enzyme systems,

involving aromatic amino acid decarboxylase

(AADC), TH, and guanosine triphosphate cyclohy-

drolase (GTC). The TH and GCH catalyze the diet-

ary tyrosine and convert it to L-DOPA, whereas

AADC turns the L-DOPA to DA. Therefore, delivery

of this triple gene therapy (AADC-TH-GCH) could

be helpful to in maintaining basal DA levels in ad-

vanced PD [204] .

(iii)RNA interference-based therapy. Interference RNA

(RNAi) is another powerful gene silencing

approach, which could be used to inhibit SNCA,

PINK, or parkin genes in PD. Recently, the

polyethylene glycol-polyethyleneimine (PEG/PEI)

siSNCA complex has been transfected into PC12

cells and a significantly decreased SNCA-mRNA

expression, preventing MPTP-induced apoptosis

[205].

(iv)CRISPR-Cas9 gene editing system. CRISPR/Cas-9

system is a powerful gene editing tool, including

adding, disrupting, or changing the sequence of

specific genes [21, 206, 207], which may be applied

for PD-related gene therapy (Fig. 17). Using

CRISPR/Cas9-mediated genome editing, Basu and

colleagues developed a stable cell line that expresses

SNCA tagged with a nano-Luc luciferase reporter.

They observed an endogenous monitoring of SNCA

transcription, which can make an efficient drug

screening tool for therapeutic interventions in PD

[208]. Although these gene therapy techniques look

very promising, further studies are needed before

Fig. 16 Different steps of generation of DA-neurons from stem cells for treating PD. Stem cells are obtained from different sources and converted to

induced pluoripotent stem cells (iPSCs) using growth factors, such as Fgf2, Shh, Klf4 and c-Myc. The iPSCs is then converted to induced neuronal stem

cells (iNSCs). These cells are then converted to DA-neurons by treating different growth factors. These DA-neurons are then injected to the brain of

mouse model of PD to supply DA, which ultimately leads to the recovery of motor and cognitive deficits
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their safe applications in PD patients can be

initiated.

Supplementation of neurotrophic factors

One of the primary reasons for neuronal cell death in

PD is the depletion of neuronal growth factors, such as

decrease BDNF, NGF, GDNF, and FGF-2b [199, 209]. It

has been found that treatments with GDNF for 3–

6 months can protect DA-neurons and promote their

survival in animal models of PD [198]. Importantly,

treatment with GDNF protects damaged DA neurons in

the SNpc from their further degeneration in PD models

[198]. Similarly, combined therapy of GDNF and

neurotropin-4 on cultured DA neurons decreased oxida-

tive stress and protected these neurons from further

neurodegeneration [198]. Further, when BDNF was

administered to rats in an aged rodent model of PD, an

increase in the number of DA-receptors in the striatum

was observed [210]. Other growth factors, such as FGF-

2, released from activated astrocytes have also been

shown to stimulate the survival of DA neurons [211],

suggesting neurotrophins may be able to rescue DA-

neurons in PD.

Complementary and supportive therapies

To overcome some of the motor, as well as non-motor

symptoms, several complementary and supportive ther-

apies are available, including physical, occupational, and

speech therapies.

(i) Diet. Diets containing fresh vegetables, fruits,

green tea, and caffeine provide good sources of

antioxidants, which may be beneficial for delaying

or preventing oxidative stress-induced cell death

in PD [212–214]. A high protein diet may aggra-

vate the disease process, including an increase in

constipation, and it may also reduce the effective-

ness of L-DOPA [212]. Similarly, drinking plenty

of liquids can reduce the chance of constipation.

Several natural polyphenols (e.g. curcumin) can

also prevent cell death in PD by interacting with

amyloid proteins, including Aβ, p-tau, and SNCA

[215, 216], as well as preventing further deterior-

ation of DA-neurons [113, 216, 217]. Similarly,

pleotropic actions of sodium benzoate, the princi-

pal ingredient of cinnamon also preserves DA

neurons in the SNpc of animal models of PD

[218, 219] (Table 8)

Fig. 17 Schematic diagram of basics of rAAV-gene therapy. Left: The gene of interest is packaged within a rAAV vector. When the virus infects

the host cell, it injects its DNA-containing gene of interest. This foreign DNA then crosses the nuclear membrane and binds with host DNA. Using

protein machinery, the nucleus can make DNA and protein using the inserted DNA, replacing mutated or abnormal genes from host cell. Right:

CRISPR-Cas9 system can be used to correct defect gene in PD and other genetic diseases. In presence of guide RNA (g-RNA) CRISPR-Cas9 enzyme

can breakdown the DNA double strands in the locus where mutated or faulty genes are located. Then using DNA repair system, the normal DNA

can be inserted in the cut site to get normal gene expression
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(ii)Aerobic exercise. A plethora of evidence suggests

that controlled aerobic exercise may improve gait,

posture, mobility, and flexibility of PD patients [220,

221]. Sometimes, voluntary physical exercise, or

physiotherapy, can strengthen muscle activity,

decrease muscular tonicity and rigidity, improve

balance, minimize gait problems, and strengthen

certain muscles in PD patients [222]. Even in severe

cases of the disease, regular walking, gardening, and

other physical activities have been shown to be

beneficial, and may improve the ability of the brain

to increase DA synthesis. Moreover, experimental

results indicate that daily aerobic physical exercise

improves brain functioning by increasing

neurogenesis, and secretion of neurotropic factors,

such as BDNF, NGF, GDNF, FGF, which also help

to maintain the emotional balance of people with

PD [223].

Rehabilitational therapy

Some of the primary symptoms of PD, especially gait,

tremors, and rigidity can be reduced by the use of

rehabilitational therapy [224]. Clinicians, who focus on

treatments for non-motor symptoms, such as cognitive

impairments, urinary tract dysfunction, sleep disorders,

and micrographia, often utilize rehabilitational therapy

[224]. For example, to reduce or to prevent muscle

hypo-tonicity, PD patients need to be involved in their

daily activities, such as moving from side to side, lifting

their toes, breaking down their actions into individual

steps, and keeping busy with house-hold work for at

least few hours a day [225]. Similarly, walking, turning,

or standing in different postures can help the patient

maintain their balance and reduce the risk of falling. Pa-

tients with PD should take small steps when turning, but

large, exaggerated steps when walking forward [225]. In

addition, cognitive and other emotional dysfunction can

be reduced by engaging in hobbies requiring focused

attending, such as carpentry, fishing, playing cards, prac-

ticing “Yoga” or deep breathing and relaxation exercises

[225]. These activities may help to control tremor, as

well as reduce anxiety and depression. Speech therapy

can help rectify the monotone voice and loss of volume

which is often observed in PD patients, and it is also

critical for evaluating and monitoring the ability to

swallow [37].

Monitoring PD progression
Using recent advanced and cutting-edge, noninvasive

technology, the brains of PD patients can be more

readily imaged for searching potential biomarkers or

monitoring disease progression.

(i) Neuroimaging. The lack of easy access to the human

brain is the major limitation for studying PD. Novel

imaging techniques, such as PET biomarkers,

including [18F]-DOPA can be used for estimating

DA, [18F] dG for mitochondrial bioenergetics, [18F]

BMS for mitochondrial complex-1, [11C] (R)-

PK11195 for microglial activation. Similarly, SPECT

imaging with 123Iflupane and βCIT can be used for

measuring DAT, urinary salsolinol, and 8-hydroxy,

2-deoxyguanosine for neuronal loss [226, 227]. Simi-

larly, terminal DOPA-decarboxylase (DDC) activity

of PD brain can be measured with 18F–DOPA-PET,

whereas the availability of presynaptic DAT can be

assessed with tropane-based PET and SPECT

tracers. Furthermore, vesicle monoamine transporter

density in DA-terminals can be examined with 11C–

dihydrotetrabenazine (DHTBZ)-PET [228]. Several

investigators have used these techniques to study PD

both in animals and human. For example, the striatal
18F–DOPA uptake has been shown to correlate with

DA-neuronal numbers in the SNpc area of post-mor-

tem PD brain and in MPTP-lesioned monkeys [229].

Similarly, 18F–DOPA-PET has been employed to

Table 8 Some important dietary components which may prevent or delay PD progression

Diet Chemical compound (s) Usefulness in Parkinson’s disease Refs.

Fava beans Levodopa Increases dopamine levels. [347, 348]

Olive oil Hydroxytyrosol Antioxidants. [212, 349, 350]

Turmeric powder Curcuminoid Antioxidants, decrease SNCA aggregation, anti-inflammatory [215, 351, 352]

Cinnamon Sodium benzoate Stops the loss of Parkin and DJ-1 in Parkinson’s mice model. [219, 218]

Soy (genistein) Isoflavone Increases dopamine, dopamine transporters, and Bcl2 levels [212, 353]

Coffee Caffeine Antioxidants, adenosine A2A receptor antagonists. [354–356]

Tea Epigallocatechin-3-gallate
(EGCG), theaflavins

Antioxidants, antiamyloid, decreases activity of COMT, increases
dopamine uptake

[356–358]

Red wine Resveratrol Anti-amyloid, prevent blood clots and decreases inflammation. [212, 359]

Fish Omega-3 fatty acids (DHA) Antidepressant effect, lowers blood pressure, and decreases the
risk of strokes and inflammation.

[360–363]
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study a series of asymptomatic heterozygote parkin

mutation carriers and 11C–PK11195-PET has been

used to study microglial activation in both the SNpc

and pallidum of a PD patient [228]. In addition,

brain regional N-acetyl-aspartate can be used for the

in vivo assessment of neuronal loss in PD using

MRS and MRI. Furthermore, fMRI and MRS can

also be used to monitor the blood flow or metabolic

status in the PD brain [230], and using fMRI, it is

possible to detect PD and other synucleinopathies,

such as LBD. These methods can also be helpful for

studying the status of physiological activation of

specific motor, cognitive, or mood swings after drug

treatments.

(ii)Biomarkers. As PD is a disease with multiple

etiologies and heterogeneous clinical symptoms, it is

critical to develop several biomarkers to understand

the disease more fully and to devise effective

therapies. Although radioactive nucleotides are the

most feasible biomarkers for screening of PD [231],

fluid biomarkers, neuromelanin antibodies, candidate

blood-based biomarker testing (e.g. SNCA, DJ-1, uric

acid, epidermal growth factor, ApoA1) [232], gene

expression profiling, metabolomics, protein profiling

(e.g. Aβ and tau) and inflammatory markers (e.g. IL-

6) from blood and CSF samples, can be used to pre-

dict PD. Because of the high cost of the procedures

and the difficulty in administering these techniques,

these methods are not always practical for screening

PD patients in the general population [233]. In

addition, investigating redox status and mitochon-

drial health could be used as early biomarkers for

prediction of the onset of this disease [12]. Further,

abnormal motor physiology, cognitive dysfunction,

REM sleep disorders, autonomic dysfunction, loss of

olfaction, and speech disturbances can, collectively

be used to screen for PD [8]. Overall, expanding our

knowledge of PD, combined with analyses of the

pre-clinical and clinical symptoms, along with the

development of more accurate biochemical and

molecular markers, should translate into more

effective and efficient ways to predict the onset and

progression of this disease.

Future directions for PD research and therapeutic
developments
From the extensive animal research, we have addressed

several critical questions in this complex field. However,

no animal model is perfect in reproducing the behavioral

deficits and neuropathological changes observed in

human PD patients. Therefore, to mimic human PD

symptoms and to address specific questions in this field

several strategies can be taken, such as (i) development

of a novel animal model, which can be produced by

combination of two or more animal models, such as

transgenic (for genetic effects), as well as sporadic (for

toxin effects); (ii) using a range of non-DA drugs, in-

cluding α2-adrenergic antagonists, serotonergic, and

adenosine A2a antagonists, which may offer beneficial

effects in late-stage developments of motor symptoms

in PD; (iii) development of novel formulae for levo-

dopa/carbidopa drugs (e.g. use of IPX066, XP21279,

and Opicapone), MAO-inhibitors (e.g. use of safina-

mide:100–200 mg/day), which has an immediate and

long-term clinical benefit on both early and advanced

PD patients, without side effects, such as dyskinesia

or depression; (iv) targeting ALP and UPS by novel

pharmacological molecules may be an attractive

strategy for PD therapy; (v) development of trans-

plantation therapies using novel DA neurons from in-

duced neuronal stem cells (iNSCs) or from induced

pluripotent stem cells; (vi) micro-RNA or Si-RNA

approach to inhibit mRNA of misfolded protein

aggregates; (vii) application of novel gene editing

techniques (e.g. CRISP-Cas9) for correction of mu-

tated genes involved in PD. New drugs are constantly

being developed tackle PD, and some of them are

already improving quality of life in PD patients. There

are several issues that need to be addressed before ef-

fective gene therapy can be safely used to treat PD.

Some of these concerns involve the identification of

the exact genes to be used for rectification, appropri-

ate selection of novel vectors, development of safe

marker genes, and modulators of precise gene expres-

sion in the CNS [24].

Conclusions
The cases of PD are steadily increasing, due to the

increase in the aged population. The financial and emo-

tional impact of PD on public health and on those of the

family and friends of those suffering from this disease is

staggering. Therefore, prognosis or early detection will

be critical for screening those who are susceptible for

getting this disease. Several treatments are available, but

none of them are particularly effective, in terms of redu-

cing dopaminergic neuronal loss and restoring DA levels

in the striatum. Moreover, some of the drugs have ser-

ious side-effects, and are expensive. Recently, scientists

have introduced some promising alternative strategies,

such as stem cell transplantation and gene therapy to

treat this disease. However, most of these new treatment

strategies are still under investigation, with most of these

only being tested in animal models, so issues of safety

and efficacy need to be adequately addressed before they

can be used in clinical trials for PD. Nonetheless, the

new therapeutic approaches described in this review of-

fers significant hope that effective treatments for PD are

in the near horizon.
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