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Colistin regained global interest as a consequence of the rising prevalence of

multidrug-resistant Gram-negative Enterobacteriaceae. In parallel, colistin-resistant

bacteria emerged in response to the unregulated use of this antibiotic. However,

some Gram-negative species are intrinsically resistant to colistin activity, such as

Neisseria meningitides, Burkholderia species, and Proteus mirabilis. Most identified

colistin resistance usually involves modulation of lipid A that decreases or removes

early charge-based interaction with colistin through up-regulation of multistep capsular

polysaccharide expression. The membrane modifications occur by the addition of

cationic phosphoethanolamine (pEtN) or 4-amino-L-arabinose on lipid A that results

in decrease in the negative charge on the bacterial surface. Therefore, electrostatic

interaction between polycationic colistin and lipopolysaccharide (LPS) is halted. It

has been reported that these modifications on the bacterial surface occur due to

overexpression of chromosomally mediated two-component system genes (PmrAB and

PhoPQ) and mutation in lipid A biosynthesis genes that result in loss of the ability to

produce lipid A and consequently LPS chain, thereafter recently identified variants of

plasmid-borne genes (mcr-1 to mcr-10). It was hypothesized that mcr genes derived

from intrinsically resistant environmental bacteria that carried chromosomal pmrC gene,

a part of the pmrCAB operon, code three proteins viz. pEtN response regulator PmrA,

sensor kinase protein PmrAB, and phosphotransferase PmrC. These plasmid-bornemcr

genes become a serious concern as they assist in the dissemination of colistin resistance

to other pathogenic bacteria. This review presents the progress of multiple strategies of

colistin resistance mechanisms in bacteria, mainly focusing on surface changes of the

outer membrane LPS structure and other resistance genetic determinants. New handier

and versatile methods have been discussed for rapid detection of colistin resistance

determinants and the latest approaches to revert colistin resistance that include the

use of new drugs, drug combinations and inhibitors. Indeed, more investigations are

required to identify the exact role of different colistin resistance determinants that will aid in

developing new less toxic and potent drugs to treat bacterial infections. Therefore, colistin

resistance should be considered a severe medical issue requiring multisectoral research

with proper surveillance and suitable monitoring systems to report the dissemination rate

of these resistant genes.
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OVERVIEW OF COLISTIN AND
EMERGENCE OF RESISTANCE

The antibiotics have been widely used in human, animal
husbandry, and aquaculture, aiming to fight bacterial infections.
The unmonitored and continued use of antibiotics has led to
contamination of diversified environments, results in selective
pressure on bacteria, and subsequently increases in the
prevalence of antibiotic resistance (1–3). A steady increase in
antibiotic resistance coupled with the decline in the development
of new drugs is leading the world toward the pre–antibiotic
era (4). This global public health threat requires immediate
multidisciplinary steps to achieve the sustainable development
goals, which are a collection of 17 interlinked global goals
designed to be a roadmap for achieving a better and more
sustainable future for all. Among these, Goal 3, i.e., Good Health
and Well-being, was set up by the United Nations General
Assembly to ensure healthy lives and promote well-being for all
ages (5). New antibiotics active against Gram-positive bacteria
provided some extent of respite (6, 7), but infections caused
by antibiotic-resistant Gram-negative bacteria are emerging as
a greater threat. Antibiotic-resistant bacteria and associated
antibiotic resistance genes are gradually considered as diverse
environmental contaminants. These antibiotic resistance genes
are no longer limited to point sources, e.g., hospitals, sewage, and
farms, but can also get disseminated in other relatively pristine
environments, including rivers, lakes, and soils (8, 9). The
occurrence of extremely drug-resistant and multidrug-resistant
(MDR) bacteria has led to the reuse of polymyxin, a last-resort
drug against severe bacterial infections (10–12). Polymyxins,
non-ribosomal, cyclic oligopeptides antimicrobials structurally
comprised a cyclic heptapeptide with five major chemical
compounds: polymyxins A, B, C, D, and E. These compounds
are differentiated based on variation in their amino acid
sequences and fatty acid side chains. The prime representatives of
polymyxin that have been used in clinical practice are polymyxin
B and polymyxin E (colistin) (Figure 1) (12–16). Colistin is
a polypeptide antibiotic isolated in 1947 from the bacterium
Paenibacillus polymyxa subspecies Colistinus (17). Thereafter, it
was reported from Japan (1947) that colistin is a secondary
metabolite of the Gram-positive bacteria P. polymyxa subspecies
Colistinus (18). In the 1950s, colistin was used as an intravenous
formulation. In 1959, the US Food and Drug Administration
approved colistin to treat various types of diarrhea and urinary
tract infections. Failure of carbapenems against Gram-negative
bacteria has led to the unprecedented increase in the use of
colistin (one of the last-resort drugs) and subsequent emergence
and dissemination of colistin resistance (14). Resistance to
polymyxins has mainly emerged against polymyxin E class
(colistin), a cationic polypeptide drug with cyclic decapeptide
ring attached by an amide linkage to a fatty acyl chain, which
is differentiated by single-amino-acid phenylalanine (D-Phe) in
polymyxin B peptide structure with a leucine (D-Leu) in colistin
(Figure 1) (16, 19). Until 2015, colistin resistance was known to
be caused by chromosomal genes (phoPQ, pmrAB, and mgrB)
(19–21). After the first report of plasmid-mediated mcr-1 gene

from China in 2015 (14), more than 27 bacterial species have
been identified from six continents (Asia, Europe, Africa, North
America, South America, and Oceania). It is interesting to note
that after 2015 the new reports about plasmid-mediated mcr-
1 were made in isolates dating back to as early as 1980. The
rise in the number of reports may be attributed to the long-
term use of colistin in veterinary medicine. Similarly, global trade
and travel to countries such Canada, United States, Japan, and
Tunisia and overprescription of colistin in human medicine to
treat highly resistant bacterial infection are likely reasons for
colistin resistance (22–27). There is a high prevalence of colistin
resistance that requires further studies to evaluate the factors
involved, mechanism of acquisition, and dissemination (28, 29).
We present herein an overview of recognition of alternative
mechanisms of colistin action, the spread of acquired colistin
resistance determinants, and diverse strategies taken by bacteria
to extend resistance against colistin antibiotic.

MECHANISM OF COLISTIN ACTIVITY

Antibacterial activity of colistin occurs on the outer membrane
(OM) of Gram-negative bacteria. In addition, Gram-negative
bacteria are well-characterized by the existence of an outer
lipopolysaccharide (LPS) membrane that constitutes cell surface,
which limits the entry of hydrophobic components and
antibiotics (30, 31). Moreover, bacterial anionic LPS confers
stability and integrity of the outer LPS membrane. But
polymyxins are polycationic peptides crucial for their interaction
with lipid A, a hydrophobic constituent of the LPS layer
(32, 33). The antibacterial activity of colistin occurs through
two-step mechanisms that are initial binding and employed
permeabilization of the outer LPS membrane induces the
displacement of Ca2+ and Mg2+ ions from the phosphate groups
of LPS in a competitive way resulting in destabilizing cytoplasmic
membrane, leading to disruption of the outer LPS and the loss of
inner cellular contents, hence bacterial killing. The critical step of
colistin action is based on the electrostatic interaction of cationic
colistin peptide and anionic lipid A membrane also known as
endotoxin component of LPS layer (Figure 2) (16, 19, 34, 35).
Furthermore, It has been reported that bactericidal activity is
independent of the passage of colistin into a bacterial cell (36) but
inhibited in the presence of these divalent cations (33). However,
LPS is the initial target for bacterial killing, but still, the exact
mode of colistin action remains uncertain. Another antibacterial
mechanism of colistin occurs by a potent antiendotoxin activity
where the lipid A portion of LPS represents an endotoxin
in Gram-negative bacteria. Therefore, colistin inhibits the
endotoxin activity of lipid A by binding to and neutralizing the
LPS molecules. This antibacterial activity mechanism occurs in
vivo only (12, 37, 38). Moreover, another mechanism of action
occurs by vital respiratory enzymes (type II NADH-quinone
oxidoreductases NADH-2) inhibition by colistin drug in Gram-
negative bacteria (39). The alternative strategy of colistin action
occurs by induction of rapid cell death via hydroxyl radical
production through colistin binding to the lipid membrane.
The free radicals are generated when colistin crosses the OM
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FIGURE 1 | The general structure of the cyclic cationic peptide (A) polymyxin E (colistin) and (B) polymyxin B, phenylalanine (D-Phe) in polymyxin B peptide structure

replaced with a leucine in colistin.

and IM of LPS. The hydroxyl radical generation occurs via the
production of the reactive oxygen species; hydroxyl radicals.
(•OH), superoxide (O−

2 ), and hydrogen peroxide (H2O2), which
cause oxidative stress. O−

2 is generated when colistin enters into
and crosses the OM and IM, followed by the conversion of O−

2
into H2O2 by superoxide dismutase. After that, H2O2 oxidizes
ferrous iron (Fe2+) into ferric iron (Fe3+), besides the formation
of •OH; this process is known as Fenton reaction. This reaction
can induce oxidative damage in bacterial DNA, proteins, and
lipids, leading to cell death. This mechanism of killing has been
shown to occur in the colistin-sensitive and MDR isolates of
Acinetobacter baumannii and Escherichia coli but does not take
place in polymyxin-resistant strains (40, 41).

SPECTRUM OF ACTIVITY

Colistin has a narrow bactericidal activity spectrum against the
most common Gram-negative Enterobacteriaceae. Colistin has
antibacterial activity against members of the Enterobacteriaceae
family, including Klebsiella species, E. coli, Citrobacter species,
Shigella species, Enterobacter species, and Salmonella species.
Colistin also has significant bactericidal activity against
prevalent non-fermentative Gram-negative bacteria, including
Stenotrophomonas maltophilia, A. baumannii, and Pseudomonas
aeruginosa (12, 42, 43). Moreover, some species are resistant
naturally to colistin, such as Proteus species, Providencia species,
Morganella morganii, Pseudomonas mallei, Chromobacterium
species, Burkholderia cepacia, Serratia marcescens, Edwardsiella
species, Campylobacter, Vibrio cholera, and Brucella, Legionella.
Moreover, colistin antibiotic is not active against Gram-
negative cocci (Neisseria species), anaerobic bacteria (12, 35),
and Aeromonas species (except Aeromonas jandaei), whereas

Aeromonas hydrophila was found to have inducible resistance
(44, 45).

PHARMACHEMISTRY OF COLISTIN

The pharmacokinetics (PK) and pharmacodynamics (PD)
determine the related dosage and therapeutics of colistin. It
is imperative to determine the effective dosage of a drug to
treat dreadful infections. With increasing resistance, it has
become necessary to study the PKPD relation of colistin to
determine proper treatment regimen. Until now, PK and PD
data of colistin are not well-reported, especially in patients
suffering from renal replacement therapy (46, 47). Therefore,
time-bound studies are needed further to understand the PD/PK
relationship of colistin to determine fixed doses to critically ill
patients. Randomized controlled trials are urgently required to
clarify further the issues surrounding the efficacy and safety of
colistin. Two decades ago, non-specific microbiological assays
were applied to estimate the colistin concentrations in biological
fluids (38). Moreover, it has been reported that bactericidal
activity is dependent on colistin concentration (11, 48–50). The
plasma colistin concentration of 2µg/mL has been found to
be a reasonable dose for bacteria having minimum inhibitory
concentrations (MICs) of ≤1µg/mL (51). Postantibiotic effect
was noticed among P. aeruginosa, A. baumannii, and Klebsiella
pneumoniae, although the main antibacterial activity is noticed
only when susceptible strains are exposed to colistin. However,
in A. baumannii and K. pneumoniae, regrowth has been
reported for static time-kill studies (49, 50). It has also been
reported that the emergence of colistin-resistant subpopulation
is dependent on colistin heteroresistance that enables growth at
≥4µg/mL of colistin within a sensitive population with a MIC of
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FIGURE 2 | Action of colistin on bacterial membrane. The cationic cyclic decapeptide structure of colistin binds with the anionic LPS molecules by displacing calcium

and magnesium from the outer cell membrane of Gram-negative bacteria, leading to permeability changes in the cell envelope and leakage of cell contents.

≤2µg/mL (52, 53), e.g.,K. pneumonia (50, 54) P. aeruginosa, and
A. baumannii (55).

ONE HEALTH PERSPECTIVE FOR
COLISTIN RESISTANCE

Antimicrobial resistance is a public health problem of complex
epidemiology suitable for a comprehensive study as part of
the One Health perspective. One Health is defined as the
collaborative effort of multiple disciplines working locally,
nationally, and globally to attain optimal health for people,
animals, and the environment through policy, research,
education, and practice (56, 57). The drivers of antimicrobial
resistance include antimicrobial use and abuse in humans,
animals, and the environment followed by the dissemination
of resistant bacteria and resistance determinants between and
among these sectors around the globe. Major concerns in the
animal health and agriculture sectors are mass medication of
animals with antimicrobials that are critically important for
humans, like colistin, one of the last-resort drugs to tackle Gram-
negative bacterial infection. The unmonitored use of colistin

in human and veterinary medicine results in the emergence of
colistin resistance among Enterobacteriaceae. The emergence of
mcr-1 has almost certainly been exacerbated by the use of colistin
on Chinese and Southeast Asian farms (14) and subsequent
spread to dozens of other countries (35, 58, 59). The colistin
resistance has risen in Spain, Italy, and Greece with 31, 43,
and 20.8%, respectively (60–62). Colistin resistance makes it
difficult to use it as a therapeutic option for multidrug-resistant
bacteria. Therefore, the use of colistin is dependent on the
type of infection, sensitivity phenotype of bacteria, and the
target of PK/PD antibiotic, including possible side effects (63).
The most adverse effects of colistin are nephrotoxicity and
neurotoxicity due to parenteral use (18, 64, 65). In addition
to human medicine, colistin has been widely used to prevent
and treat various veterinary infectious diseases. Colistin use in
veterinary varies extensively among different countries, e.g.,
in Spain, it is used during lactation, gestation, and control of
metaphylactic intestinal diseases (66). In France, Austria, and
Sweden, colistin is used during the postweaning time in pig
farms (67–69). A German and Netherlands study reported
that colistin is the most widely used antibiotic in animal
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farming next to trimethoprim/sulfonamides, tetracyclines,
lincosamides, and macrolides (70). In Asian countries, colistin
and other antibiotics are used extensively for veterinary
infections and agriculture purposes (71, 72). The increasing
trend of colistin consumption is assumed to reach 16,000 tons
in China by the end of 2021 (72). There are reports of colistin
resistance in the Enterobacteriaceae from fruits and vegetable
samples (73–77). Reports revealed the association between
the incidence of food-borne diseases and the food production
chain that occurs via eating contaminated raw vegetables
(9, 73–75, 78).

The emergence and rapid geographic dissemination of
colistin-resistant bacteria and colistin resistance genes have
become a health concern. Therefore, an integrated and holistic
multisectoral approach is the need of the hour to combat colistin
resistance, in particular, better integration of human health,
veterinary, and environment (79–81). Several countries and
international agencies have included a One Health perspective
within their action plans to address antimicrobial resistance.
Necessary actions include improvements in antimicrobial
use regulation and policy, surveillance, stewardship, infection
control, sanitation, animal husbandry, and alternatives to
antimicrobials. World Health Organization (WHO) has recently
launched new guidelines on the use of medically important
antimicrobials in food-producing animals, recommending that
farmers and the food industry should stop using antimicrobials
routinely to promote growth and to prevent disease in healthy
animals. These guidelines aim to preserve the effectiveness
of antimicrobials that are important for human medicine by
reducing their use in animals (82–84). Different monitoring
systems were established in European countries for surveillance
to check colistin consumption and the emergence of resistance
(85–87). Recent multinational strategies to address the urgency
of AMR include the US National Action Plan for combating
antibiotic-resistant bacteria and WHO Global Action Plan
on Antimicrobial Resistance (88, 89). WHO’s GLASS (Global
Antimicrobial Resistance Surveillance System) is helping
countries strengthen national surveillance systems and provides
more comprehensive standardized AMR surveillance data (90).
The countries and networks at the forefront of AMR efforts
should engage additional stakeholders in developing an effective
strategy that will have far-reaching benefits in minimizing the
impact of this urgent problem on human and animal health,
environment, global economy and national and global security.

CHALLENGES OF TESTING AND
DETECTING COLISTIN RESISTANCE
DETERMINANTS

It is critical to design phenotypic tests capable of detecting
colistin resistance in Gram-negative bacteria. Until now, there
was no agreement on the methodology for colistin susceptibility
testing. Because of the weak diffusion of colistin in agar, the
disc diffusion process and gradient tests were inaccurate (91–
95). As a result, disc diffusion and gradient diffusion are
ineffective in determining polymyxin susceptibility. Both the

European Committee on Antimicrobial Susceptibility Testing
(EUCAST) and the Clinical and Laboratory Standards Institute
recommended the International Standard Organization 20776
standard broth dilution method for testing colistin MIC values
(96, 97). The reference broth microdilution method, on the other
hand, is difficult to apply in routine microbiological diagnostics.
The EUCAST does not recommend using automated systems to
determine the phenotype of bacterial sensitivity, such as Vitek
2 (bioMérieux, France), WalkAway (Beckman Coulter, USA)
or BD Phoenix (Becton Dickinson, USA) for the analysis of
Gram-negative bacteria sensitivity to colistin. This is because
these systems’ accuracy in determining colistin MIC is minimal
compared to the reference method especially in the 2–4-mg/L
range (98–101). There is currently insufficient understanding
of acquired colistin resistance mechanisms to design a sensitive
molecular test specific enough to be recommended as best
practice. Genotypic methods, in particular, are unlikely to detect
any of the chromosomal defects known to cause most phenotypic
colistin resistance in clinical settings (20). A negative polymerase
chain reaction (PCR) molecular test result cannot be used to
predict colistin susceptibility because the test cannot rule out
the existence of chromosomal mechanisms of resistance or even
novel mcr genes not included in the test. As evidence of this
limitation, high colistin resistance rates have been reported
among K. pneumoniae strains that produce carbapenemase but
lack mcr genes (102–105). In these circumstances, a negative
PCR result for mcr genes would have poor predictive value
for a colistin-susceptible phenotype. However, if the results are
intended to guide clinical management, inference of phenotype
based solely on a genotypic result may be valid only when the
genotypic result is positive (i.e., mechanisms or genes detected)
with the caveat that the resistance may not be detected.

METHODS FOR RAPID DETECTION OF
COLISTIN RESISTANCE

The rapid polymyxin NP is an innovative technique for
identification of colistin resistance among Gram-negative
bacteria (98). The researchers are currently working on tests
to detect colistin resistance in non-fermenting bacilli. In the
presence of a given concentration of polymyxin E and B, the rapid
polymyxin NP test detects glucose fermentation associated with
bacterial growth; the presence of acid metabolites is shown by a
shift in pH and the color of the indicator (red phenol) turning
from orange to yellow. The test’s sensitivity and specificity
are similar to the reference broth microdilution method (99.3
and 95.4%, respectively). This test is simple to perform and
yields a result in <2 h (98). Chromogenic media are widely
used for screening because they enable bacteria to develop
as properly colored colonies. The super polymyxin screening
medium was the first agar medium for detecting colistin-
resistant Gram-negative rods from bacterial cultures and rectal
swab samples (106). The commercial version of this medium
is super polymyxin medium (ELITechGroup, Puteaux, France)
for the identification of colistin-resistant Enterobacterales strains,
including those with the low MIC values (mg/L) that contain the
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mcr-1 gene (107). It consists of methylene blue agar and includes
colistin, daptomycin, and amphotericin B at concentrations (3.5,
10, and 5 g/mL, respectively). The other medium, CHROMagar
COL-APSE medium was used to identify colistin-resistant
bacteria (108); this medium distinguishes colistin-resistant
Enterobacterales strains from non-fermenting rods. The LBJMR
medium is a new polyvalent culture medium for the isolation and
selection of colistin-resistant bacteria and vancomycin-resistant
bacteria (109). This medium was developed by combining
colistin sulfate salt (4 g/mL), vancomycin (50 g/mL), and a
fermentation substrate (7.5 g/L of glucose) with purple agar
base (31 g/L). Moreover, new chromogenic medium, CHROMID
Colistin R agar (COLR; bioMérieux, France), was introduced
in the market in early 2018, allowing the screening of colistin-
resistant Enterobacteriaceae in clinical samples such as rectal
swabs and stools. The COLR is a manual qualitative diagnostic
test that distinguishes colistin-resistant isolates from susceptible
isolates. Colistin-resistant strains form colored colonies on
chromogenic media, with the color varying according to the
species. However, colistin-susceptible isolates, on the other hand,
do not grow on the COLR plate (110). The chromogenic method
is based on agar dilution. Still, EUCAST does not recommend
it for determining bacterial susceptibility to colistin because the
detectability threshold increases with the growth of the bacterial
inoculums (100). Moreover, Turlej-Rogacka et al. (111) reported
that when compared to broth dilution methods, the agar dilution
method yields more accurate results in evaluating colistin MIC
values (111). Behera et al. (93) confirmed the strong correlation
between the reference and agar dilution methods (93, 94). The
biggest challenge is the adhesion of colistin to plastic during
handling (112). According to the above authors, the agar dilution
process reduces the colistin plastic–binding process significantly,
and the MIC results obtained by the agar dilution method are
exact (93, 112, 113). The COLR medium uses the borderline
concentrations of colistin to qualify strains as susceptible or
resistant. This chromogenic medium is a qualitative detection
method for Enterobacteriaceae and does not permit colistin MIC
values to be determined against the test bacterial strains; thus,
it should be considered as a screening test only. The clinical
interpretation is, by contrast, significant in the treatment of
infections caused by colistin-resistant bacteria. This means that
the colistin resistance is categorized rather than the MIC value
determined as maximum dosages are prescribed irrespective of
the precise sensitivity levels. However, MIC values are important
to monitor the rise in colistin resistance in Gram-negative
bacteria. Other new-generation methods for detecting colistin
resistible strains were recently developed, e.g., loop-mediated
isothermal amplification (LAMP) for nucleic acid detection (114)
and CT103XL microarray (115). It has been demonstrated the
sensitivity of the LAMP test is 10 times higher than conventional
PCR and confirmed its usefulness in the detection of the
mcr-1 gene from Enterobacterales (114). Similarly, the new
microarray CT103xl has been demonstrated by simultaneously
identifying mcr-1, mcr-2, and clinically important ESBL genes
(115). Whole-genome sequencing would allow screening for
mcr genes and known chromosomal mutations that confer
colistin resistance. Bioinformatics analysis could be conducted by

applying the Center for Genomic Epidemiology Web tools (116)
and ResFinder 4.0 (117). Although the sensitivity and negative
predictive value would be affected by the inclusion of strains with
novel mechanisms of resistance, this is the most comprehensive
method for detecting all currently known putative colistin
resistance mechanisms. It will also enable a retrospective analysis
of sequencing data as new resistance mechanisms are described.
Whatever the molecular method used, it is critically important
to ensure that either the PCR detects all currently known mcr
genes or the databases used to impute resistance mechanisms
from whole-genome sequencing data are up to date. As our
understanding of colistin resistance mechanisms improves, so
will the concordance between phenotypic and genotypic test
results. As for many other antimicrobial agents, molecular testing
may eventually offer an alternative to phenotypic testing for the
surveillance of colistin resistance.

RESISTANCE MECHANISMS IN
ENTEROBACTERIACEAE

Mechanisms of Intrinsic Resistance
Resistance to colistin occurs naturally in S. marcescens and
Proteus mirabilis by arnBCADTEF and eptB gene expression and
consequently addition of phosphoethanolamine (pEtN) and 4-
amino-4-deoxy-L-arabinose (L-Ara4N) cationic groups on LPS,
respectively. This modulation increases the cationic charge on
the LPS membrane, which is the initial target of the colistin. It
therefore decreases colistin antibiotic binding results in intrinsic
resistance of these bacterial strains (12, 28, 118, 119).

Acquired Resistance in
Enterobacteriaceae
Chromosomal Modulation of PmrAB and PhoPQ

Two-Component Systems
The acquired colistin resistance has been reported in someGram-
negative bacteria such as Enterobacter, E. coli, Salmonella, and
K. pneumoniae but remains unclear for some other bacterial
strains (35, 120). Colistin resistance mechanism occurs by
chromosomal modulations similar to bacteria that are naturally
resistant to colistin. The various molecular mechanisms have
been determined, and the most common modifications occur
via cationic groups (L-Ara4N and pEtN) to the lipid membrane
of bacterial strains (14, 35). The several operons and genes
are related to the LPS membrane modulations (Figure 3). The
two-component systems PhoPQ and PmrAB are extensively
responsible for LPS modifications by addition of cationic
groups to the LPS membrane. The operons coding enzymes
are responsible for modifications in pmrC gene, pmrE gene,
and the pmrHFIJKLM operon regulatory genes. Moreover, two-
component systems are regulated by the mgrB gene, which
negatively controls the expression of the two-component PhoPQ
system. The pmrCAB operon codes three proteins: (a) the pEtN
response regulator PmrA, (b) sensor kinase protein PmrAB, and
(c) phosphotransferase PmrC (121, 122). However, the synthesis
of the L-aminoarabinose group on LPS occurs by activation
of pmrHFIJKLM and pmrE gene expression (123). Likewise,
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FIGURE 3 | Regulators of colistin resistance mechanisms via chromosomal and plasmid-mediated pathways of lipopolysaccharide modifications in

Enterobacteriaceae.

PmrAB two-component regulatory system encoded by PmrA
and pmrB is activated by various environmental stimuli such
as low pH (5.5), ferric (Fe3+) iron, macrophage phagosomes
aluminum(Al3+), etc., and results in PmrB activation via
periplasmic domain (121). In turn, pmrB activates PmrA by
phosphorylation through tyrosine kinase protein of the pmrB
gene. The PmrA activates transcription of the pmrCAB operon
and the attached pmrE gene result in LPS modifications with
the addition of cationic pEtN and L-Ara4N moieties (Figure 3)
(121, 124). Reportedly, Specific mutations within the PmrA
and pmrB genes have been found responsible for acquired
colistin antibiotic resistance in K. pneumoniae (13, 98, 125–
127), Enterobacter aerogenes (128), and Salmonella enterica (129,
130) (Table 1). Another PhoPQ two-component system encoded
by PhoP and PhoQ genes, which expresses two proteins: (a)
regulator protein PhoP and (b) sensor protein kinase PhoQ.
The PhoPQ system is activated in acidic conditions (low pH)
by various environmental stimuli such as low magnesium
(Mg2+) and macrophage phagosomes and intercede PhoQ
activation through its periplasmic lipid domain (124). Moreover,
transcription activation of the pmrHFIJKLM operon occurs by
PhoP resulting in L-Ara4N addition to the LPS membrane (180,
181). The PmrA protein is also activated by the PhoP gene either

directly or indirectly via the PmrD (connector protein), causing
the addition of pEtN to the LPS. However, acquired colistin
resistance was reported in K. pneumoniae by mutations in the
PhoP and PhoQ genes (13, 98, 126, 140, 182, 183) (Table 1). It
has been observed in E. coli that a potential mutation in PmrAB
causes acquired colistin resistance (131).The sum of constitutive
activation of PhoPQ through modulations causes overexpression
of the pmrHFIJKLM operon, thus synthesizing lipid-modifying
moieties L-Ara4N that binds to lipid A membrane.

CrrAB Two-Component System
CrrAB is a two-component regulatory system modulating the
PmrAB system. It encodes two protein products as CrrA as a
regulatory protein and CrrB as a sensor kinase protein. Colistin
resistance inK. pneumoniaewas reported bymutation of the crrB
part of two-component systems (183). The glycosyltransferase-
like protein was expressed through mutation of the CrrB protein
that leads to modification on the outer LPS membrane (183).
However, colistin resistance was observed by six amino acid
substitutions in two-component crrB protein with MIC range
512–2,048µg/mL. The expression analysis of pmrHFIJKLM
operon with pmrC and pmrE leads to overexpression of PmrAB
operon indirectly controlled by mutation of crrB gene and hence
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TABLE 1 | Characteristics of colistin resistance mechanisms and modifications associated with most known bacteria.

Family Bacteria Genes/determinants Resistance mechanisms References

Enterobacteriaceae pmrA/pmrB Modification of lipid A by arnBCADTEF operon, pmrC and pmrE

genes

(98)

phoP/phoQ Modification of lipid A by activation of the pmrHFIJKLM

operon/activation of pmrAB by pmrD

(131)

E. coli arnBCADTEF Modification of lipid A by pEtN and l-4AraN (35)

mgrB mutation Overexpression of phoPQ and activation of pmrHFIJKLM (132)

acrB mutation Efflux pump (133)

mcr-1,2,3,4,5,

and mcr-9

Phosphoethanolamine transferase (21, 134–139)

pmrA/pmrB Modification of lipid A by arnBCADTEF operon, pmrC, and pmrE

genes

(127)

phoP/phoQ Modification of lipid A by activation of the pmrHFIJKLM

operon/activation of pmrAB by pmrD

(140)

arnBCADTEF Modification of lipid A by pEtN and l-4AraN (35)

K. pneumoniae mgrB mutation Overexpression of phoPQ and activation of pmrHFIJKLM (21, 132)

crrB mutation Modification of lipid A by upregulation of pmrAB/activation of the

glycosyltransferase

(141)

ramA Modulates lipid A biosynthesis (37, 142)

acrB mutation Efflux pump (133)

mcr-1,7 and 8 Phosphoethanolamine transferase (143–145)

arnBCADTEF Modifications of the LPS moiety l-Ara4N and/or PEtN

modification of lipid A

(146, 147)

S. enterica pmrAB, phoPQ Activation of the two-component system (35)

mcr-1,2,3,4,5,

and mcr-9

Phosphoethanolamine transferase (110, 148–152)

pmrA/pmrB Modification of lipid A by activation of the pmrHFIJKLM

operon/activation of pmrAB by pmrD

(128)

Enterobacter

species

phoP/phoQ Modification of lipid A by pEtN and l-4AraN (153)

arnBCADTEF Overexpression of phoPQ and activation of pmrHFIJKLM (153)

mcr-

1,4,5and 10

Phosphoethanolamine transferase (29, 149, 154, 155)

Citrobacter

freundii

mcr-1 and 3 Phosphoethanolamine transferase (156, 157)

Aeromonadaceae Aeromonas

species

mcr-1,3, and 5 Phosphoethanolamine transferase (134, 158–160)

pmrF operon Modifications of the LPS moiety by l-Ara4N biosynthesis (161)

lpxA, lpxC, lpxD Inactivation of lipid A biosynthesis abolishing LPS synthesis (19, 162, 163)

pmrAB Modification of lipid A by arnBCADTEF operon, pmrC, and pmrE

genes

(147, 164, 165)

Moraxellaceae A. baumannii adeABC, HlyD

family, emrA,

emrB

Efflux pump (162, 166, 167)

mcr-1,2,3,

and 4

Phosphoethanolamine transferase (168, 169)

colR/colS,

cprRS

LPS additions in response to high Zn2+ modifications of the LPS

moiety

(35, 170)

Pseudomonadaceae P. aeruginosa pmrAB, phoPQ LPS additions in response to low Zn2+ (35, 171)

mcr-1 and 2 Phosphoethanolamine transferase (172, 173)

arnBCADTEF Modification of lipid A by pEtN and l-4AraN (174)

Morganellaceae P. mirabilis SapABCDF Mutation Efflux pump (175)

mcr-3 Phosphoethanolamine transferase (176)

(Continued)
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TABLE 1 | Continued

Family Bacteria Genes/determinants Resistance mechanisms References

Yersiniaceae S. marcescens arnBCADTEF Modification of lipid A by pEtN and l-4AraN (177)

Helicobacteraceae Helicobacter pylori Cgt Alterations in membrane composition modification of lipid A (35)

Vibrionaceae V. cholera gspIEF, lpxN Modifications of the LPS Moiety (178)

Pasteurellaceae Haemophilus

influenzae

lic1/2A, lpsA,

lgtF, opsX

colistin resistance mechanism (179)

Burkholderiaceae Burkholderia

multivorans

buml_2133/2134 Membrane fluidity/permeability (178)

excess production of cationic pEtN and 4-amino-4-deoxy-L-
arabinose to lipid A membrane that leads to colistin resistance
(141, 183). Additionally, CrrAB and PmrAB two-component
systems are indirectly connected via CrrC; mutations in the
crrB gene system result in increased expression of CrrC. The
amino acid substitution on the crrB protein leads to higher
activation of protein by autophosphorylation that results in
colistin resistance (141).

MgrB Regulator of the PmrAB and PhoPQ

Two-Component Systems
The regulator of PmrAB and PhoPQ two-component system
gene mgrB encodes a 47-amino-acid transmembrane protein
that exerts negative feedback regulation of the PhoPQ two-
component system and inhibits the kinase activity of PhoQ
resulting in repression of the PhoQ gene (132, 184, 185).
However, upregulation of PhoPQ operon occurs by inactivation
and mutation of mgrB gene and consequent activation of
pmrHFIJKLM operon, leading to excess production of cationic L-
Ara4N that results in blocking colistin binding to LPSmembrane.
The various missense and non-sense mutations resulted in amino
acid substitutions with truncated mgrB protein causing acquired
resistance to colistin in Gram-negative bacteria, particularly K.
pneumoniae. Moreover, it has been reported that other modes
of modifications such as deletion or insertion in the mgrB
gene sequence cause complete elimination of the mgrB locus
(182, 184). In addition, insertional inactivation of the mgrB gene
was found by several insertion sequences belonging to various
families and inserted at different positions in the mgrB gene
locus (13, 76, 98, 182, 184–188). Recently, colistin resistance was
reported by transposition of genes encoding carbapenemase and
extended-spectrum of β-lactamases, which leads to chromosomal
mgrB gene disruption (189, 190). Moreover, reports suggest that
coselection of colistin resistance with β-lactamase genes occurs
with selection pressure, and deletion of the mgrB gene led to
upregulated expression of the PhoP gene in E. coli resulting in
colistin resistance (132).

Resistance by a Mutation in LPS Synthesis Genes
Resistance to colistin antibiotic was reported by loss of the initial
colistin and membrane binding by electrostatic interactions with
lipid A component of LPS in Gram-negative bacteria (14, 35).
The binding is lost by complete loss of LPS membrane target

site for colistin antibiotic. The LPS synthesis is governed by
ramA gene locus containing three subgenes: ramA, romA,
and ramR. The ramA and romA genes were downregulated
by ramR; moreover, ramA regulator is known to be present
in some Gram-negative bacteria such as Citrobacter species,
Salmonella species, K. pneumoniae, and Enterobacter species.
However, ramA modifies lipid A membrane biosynthesis that
regulates permeability barriers (191). Recently, it has been
reported that higher levels of RamA cause LPS modulations and
hence increased colistin resistance (191). The loss of LPS results
in colistin resistance in A. baumannii. The mutations in lipid
A biosynthesis genes, lpxA, lpxC, and lpxD, cause total loss of
LPS production halting colistin binding to membrane and hence
colistin resistance. There are mutations in the first three genes
of the LPS production and therefore complete loss of the LPS
layer (19, 192).

Role of the Capsule in Colistin Resistance
The capsule in bacteria acts as a defensive and protective
covering against an antimicrobial peptide including colistin (20,
193), and capsular polysaccharide is released by the bacteria
from their surface (194). However, it has been reported that
resistance pattern is dependent on the number of capsule layers
that the bacteria can produce. Gram-negative bacteria such
as K. pneumoniae with multiple capsule layers were found
more resistant than bacteria with only a few CPS layers (10,
195). Moreover, the unregulated expression of CPS syntheses
decreases colistin electrostatic interaction with the target site
in K. pneumoniae, resulting in increased colistin antibiotic
resistance (193). Subsequently, there are Cpx (conjugative pilus
expression) and Rcs (regulator of capsule synthesis) regulators of
capsule layer formation located on the LPS membrane (196). It
has been reported that two-component PhoPQ and efflux pump
KpnEF are activated by Rcs and Cpx, respectively (20, 197).
Additionally, the ugd gene was found in CPS and L-Ara4N
biosynthesis via phosphorylation causing assembly of capsules in
bacterial strains and hence colistin resistance (198, 199).

Role of Efflux Pumps
There are reports of efflux pumps such as KpnEF, AcrAB, and Sap
proteins systems involved in colistin resistance among bacterial
isolates. The activation of these efflux pumps resulted in the
increase of colistin resistance (20, 189, 200–203). The KpnEF
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pump is a member of the Cpx regulon and belongs to the SMR
protein family (10). It has been revealed that efflux pumps are
activated by colistin resistance to other related antibiotics such
as rifampicin, ceftriaxone, and erythromycin (201). Moreover,
the mutation in KpnEF results in more susceptibility and
double reduction in the MICs with colistin antibiotic (201).
From the same pipeline, efflux pump AcrAB is a small part
of the AcrAB-TolC multifaceted structure involved in colistin
resistance. Accordingly, AcrAB-mutant E. coli revealed an 8-
fold increase in colistin antibiotic sensitivity. In addition, it has
been observed that PhoPQ TCS is dependent on the expression
of AcrAB pump proteins (204). Similarly, SapABCDF operon
constitutes five proteins in P. mirabilis resulted in increasing
sensitivity to colistin by a mutation in Sap ABCDEF operon (175,
204). It has been shown that the use of efflux-pump inhibitors
in the test medium carbonyl cyanide 3-chlorophenylhydrazone
leads to a reduction in MIC for colistin-resistant strains (203).

Emergence of Plasmid-mediated mcr-Like Genes
The acquired resistance from chromosomal to plasmid DNA
coded on transposable genetic elements on plasmids with
mcr-1 and several variants has been reported first in E. coli from
China; after that, plasmid-mediatedmcr-1 and variants have been
detected in other Gram-negative bacterial isolates (134, 148). The
resistance pattern was found to be the same as the chromosomal
pmrC gene that codes mcr-1 protein pEtN transferase. It was
hypothesized that mcr genes derived from intrinsically resistant
environmental bacteria, e.g., Paenibacillus species, but mcr
genes disseminated worldwide with an extremely transmissible
plasmid (14). However, epidemiological and molecular studies
have observed thatmcr-1 in diversified Enterobacteriaceae family
includes K. pneumoniae (14, 205), E. aerogenes (154), Shigella
sonnei (206), Enterobacter cloacae (154), Salmonella (207, 208),
Kluyvera species (209), Cronobacter sakazakii (210), Citrobacter
species (156, 211), and Raoultella ornithinolytica (75) (Table 1).
Additionally, mcr-1 harboring bacterial isolates exhibited
complex resources including human linked environments and
natural ecosystem (134, 212–214), food (26, 75, 148, 215),
animals (216–218), and human (219–221). The LPS is modified
by mcr-1 expression by adding cation pEtN transferase (pEtN
transferase) (10). However, new variants of mcr-1 (mcr-1.0 to
mcr-1.30) were reported with expression by modification of
LPS membrane (Figure 4). Additional mcr variants were also
reported such as mcr-2 (mcr-2.1 to mcr-2.7) (135). Phylogenetic
studies observed that it is a new variant of mcr-1 with 80%
identity. Subsequently, three more plasmid-mediated mcr-like
gene variants were reported in E. coli and Salmonella as mcr-3
(mcr-3.1 tomcr-3.41) (136),mcr-4 (mcr-4.1 tomcr-4.6) (222), and
mcr-5 (mcr-5.1 to mcr-5.4) (149). Phylogenetic studies reported
mcr-3, mcr-4, and mcr-5 were descent genes of mcr-1/mcr−2.
In 2018, new mcr gene variants, mcr-6 (mcr-6.1), mcr-7 (mcr-
7.1), and mcr-8 (mcr-8.1-mcr-8.5), were identified that caused
increasing spectrum of colistin resistance (143, 144, 223). Carrol
et al. reported a novel mcr homolog, i.e., mcr-9 (mcr-9.1 to
mcr-9.3), in multidrug-resistant colistin-susceptible S. enterica
serovar Typhimurium isolates (150). Surprisingly, S. enterica
serovar Typhimurium strain was phenotypically sensitive to

colistin with an MIC value of 2 mg/L, according to (EUCAST)
guidelines. Comparison analysis revealed that protein structures
of all nine mcr homologs (mcr-1 to mcr-9) depicted that mcr-3,
mcr-4,mcr-7, andmcr-9 genes have a high degree of resemblance
at the structural level (150). Recently, mcr-10 (mcr-10.1) variant
has been identified on an IncFIA plasmid of an Enterobacter
roggenkampii clinical strain. This mcr variant has the highest
nucleotide identity (79.69%) with mcr-9 and encodes mcr-10
with 82.93% amino acids identical to mcr-9 (29). The steep
increase in plasmid-mediated mcr gene variants has raised a
serious public health concern during the last few years.

CURRENT DEVELOPMENT TO REVERT
COLISTIN RESISTANCE

Several approaches are being developed for the treatment
of colistin-resistant superbugs (224). To date, three primary
approaches to reducing mcr-1 associated colistin resistance
have been investigated. The first solution is the development
of new antibiotics against mcr positive organisms, such as
eravacycline (225), plazomicin (226), and artilysin (226, 227).
Another technique tends to be the standard strategy that
involves effective colistin administration and the possible use
of combination therapies with additional agents to produce
synergistic associations. These agents can include antibiotics that
are typically restricted for use against Gram-positive bacteria,
such as amikacin (228, 229), aztreonam (229), rifampin (230),
azithromycin (230, 231), clarithromycin (232), linezolid (230),
azidothymidine (233), tigecycline (234), and derivatives of
tryptamine (235). Natural products can also be used to act as
adjuvants, some of which might interact with LPSs, such as
pentamidine and meridianine D analogs, to disturb the outer
bacterial membrane (236, 237). In contrast, other adjuvants
do not have specific roles so far, such as resveratrol (238),
pterostilbene (239), osthole (240), and niclosamide (241). The last
but most important and focused direction is to identify specific
drugs targeting mcr. There are several methods identified to
reducemcr expression at the gene level, such as the use of peptide
conjugated phosphorodiamidate morpholino oligomers to target
mcr-1 mRNA (224), peptide nucleic acid against the mcr-1 gene
(242), and the CRISPR/Cas9 system to target mcr-1 harboring
plasmids (243). However, few studies have examined specific
drugs targetingmcr, with promising results having been observed
only for 1-phenyl-2-(phenylamino) ethanone derivatives (244)
and the lipid A analog ethanolamine (245). The inhibitory action
of ethanolamine against bacteria that produce mcr-1 was also
tested in vivo to further confirm that it can be used as an inhibitor
of mcr-1 activity. In the presence of 4 mg/mL polymyxin B,
the results clearly showed that ethanolamine could inhibit mcr-1
expression in a concentration-dependent manner. Furthermore,
ethanolamine can be used as an inhibitor ofmcr-1 activity in light
of the structural model and functional unification within themcr
family. Reports depicted that ethanolamine acts as an inhibitor
of other mcr members. However, this would require further
experimentation to validate. EptA catalyzes the transfer of PEA
from phosphatidylethanolamine to lipid A at 1 and/or 4

′
head
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FIGURE 4 | Phylogenetic tree of mcr gene variants, constructed by neighbor-joining method (bootstrap analysis with 500 replicates). All the proteins used for the

phylogenetic tree were members of the PEA lipid A transferase family. Multiple sequence alignment was conducted using Clustal W, and resultant output was

generated with Mega X.

group positions. EptA is an integral membrane protein consisting
of an N-terminal transmembrane domain and a C-terminal
soluble periplasmic-facing domain (246, 247). Moreover, EptA
enzymes are found in many Gram-negative pathogens, e.g., E.
coli, S. enterica, K. pneumoniae, etc. (248). In-depth studies
are being undertaken to identify and optimize potential EptA
inhibitors that suppress expression (224). In addition, similar
approaches to EptA inhibition in Neisseria species are helpful
for developing new therapies. Promising therapies are currently

under development to boost phagocytic cells bactericidal
activities (249), which could be used as novel combination
therapies combined with anti-EptA compounds to effectively
decrease transmission of multidrug-resistant bacteria. One
strategy to counter this problem is to develop novel antivirulence
agents that inhibit lipid A modification by EptA. Inhibition of
EptA will hopefully restore the efficacy of polymyxin, support the
clearance of infection by the immune system, and minimize the
proliferation of colistin resistance (250).
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FUTURE PROSPECTS OF RESISTANCE

The emergence of colistin resistance occurs via various
mechanisms against the last line defense among carbapenem-
resistant Gram-negative bacteria. Several studies led detection of
different colistin resistance mechanisms in Enterobacteriaceae.
However, there is still a lack of knowledge regarding colistin
binding and initiating bactericidal activity. As new resistant
variants of plasmid-mediated genes emerge that express new
mechanisms of LPS modifications, on another side, many
bacterial strains have inbuilt intrinsic colistin antibiotic
resistance. Such a type of drug resistance occurs by modification
of LPS with LAra4N. Moreover, naturally occurring resistant
bacteria against colistin were found to have an expression of
some specific chromosomal mediated genes such as eptA of
N. meningitides. It becomes a need of the hour to decipher
other possible mechanisms of colistin resistance that are still
unknown. Reports revealed that colistin resistance follows only
when bacteria are exposed to colistin antibiotics, but other
reports suggest that colistin resistance can occur without earlier
colistin antibiotic exposure. This represents a serious threat that
obstructs the application of colistin as the last line therapy against
multidrug-resistant Gram-negative bacteria. A perspective of
this phenomenon is crucial and fundamental to protect against
the future possibility of the deadly development of bacteria
conferring colistin resistance.

CONCLUSION

The current epidemiological situation with multiple drug
resistance results in the reuse of last-resort antibiotic (colistin)
to treat bacterial infection. Moreover, colistin in combination
with other drugs becomes a therapy against pathogenic bacteria.
The unprecedented use of colistin drug in human medicine,
animal husbandry, aquaculture, and agriculture has a serious
impact on the emergence and dissemination of colistin resistance
among Gram-negative bacteria. The resistance to this lifesaving
drug has become a serious public health problem. The primary
mechanism of colistin resistance occurs by modulation of
chromosomal two-component PmrAB and PhoPQ systems,

resulting in modification of the bacterial OM. Additionally,
rising risks occur in heteroresistance by colistin attributed in
suboptimal colistin dosages and represent a mean potential
source of colistin resistance. The emergence of the plasmid-
mediated mcr-1 gene encoding colistin resistance in bacteria can
transfer horizontally from one bacteria to another and further
disseminate among animals, humans, and the environment.
Moreover, identification of new mcr variants such as mcr-2,
mcr-3, mcr-4, mcr-5, mcr-6, mcr-7, mcr-8, mcr-9, and recently
detected mcr-10 becomes a more concern to health. There is a
clear indication of the rapid spread of plasmid-mediated colistin
resistance variants, which requires further studies to evaluate the
factors involved, themechanism of acquisition and dissemination
among bacteria. The handier, versatile, and robotic methods
are needed to identify different new deadly mcr determinants
rapidly. Indeed, more investigations are required to identify the
exact role of different colistin resistance determinants that will
potentially aid in developing new less toxic and potent drugs
to treat infections caused by resistant Gram-negative bacteria.
Therefore, colistin resistance should be distinguished as a serious
medical issue that requires multisectoral research with proper
surveillance and suitable monitoring systems to report the rate
of dissemination of these resistant genes.
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