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Current–Voltage Characteristics of Long-Channel
Nanobundle Thin-Film Transistors:

A “Bottom-Up” Perspective
N. Pimparkar, Q. Cao, S. Kumar, J. Y. Murthy, J. Rogers, and M. A. Alam

Abstract—By generalizing the classical linear response the-
ory of “stick” percolation to nonlinear regime, we find that the
drain–current of a nanobundle thin-film transistor (NB-TFT) is
described under a rather general set of conditions by a universal
scaling formula ID = A/LSξ(LS/LC , ρSL2

S) × f(VG , VD),
where A is a technology-specific constant, ξ is a function of
geometrical factors such as stick length LS , channel length LC ,
and stick density ρS , and f is a function of drain VD and gate
VG biasing conditions. This scaling formula implies that the mea-
surement of the full current–voltage characteristics of a “single”
NB-TFT is sufficient to predict the performance characteristics of
any other transistor with arbitrary geometrical parameters and
biasing conditions.

Index Terms—Carbon nanotube (NT), inhomogeneous percola-
tion theory, network transistor, thin-film transistor (TFT).

I. INTRODUCTION

OVER the last several years, many research groups have
developed nanobundle thin-film transistors (NB-TFTs)

based on a percolating network of randomly oriented finite-
length silicon nanowires (NWs) and carbon nanotubes (NTs),
as shown in Fig. 1. Potential applications include macroelec-
tronics systems such as displays, e-paper, e-clothing, biological
and chemical sensors, conformal radar, solar cells, and others
[1]–[4]. These applications often require higher performance
than amorphous silicon and organics and lower temperature
processing than single-crystal Si and poly-Si for flexible sub-
strates such as plastics. Therefore, NB-TFTs based on NW/NTs
are expected to be better suited for these high-performance
macroelectronic applications.
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Fig. 1. (a) Schematic of NBT: Geometry of a nanobundle network transistor.
(b) Normalized current distribution, which is invariant under any biasing
conditions. Normalized conductance distribution along the sticks in the random
network in (c) low and (d) high bias. The conductance is uniform along the
channel in low bias, while it varies nonlinearly in the high-bias condition, re-
sulting in an inhomogeneous percolating network; the contours of conductance
are not straight lines parallel to S/D as in a conventional MOSFET.

The carrier transport characteristics in NB-TFTs (Fig. 1)
has been previously modeled and compared to experiments in
the linear response regime (VTH < VG < VDD, VD ∼ small)
(where VG, VD, VTH, and VDD are the gate bias, the drain
bias, the threshold voltage, and the power supply voltage to the
transistor, respectively) [5]. Instead of using a traditional “top-
down” phenomenological effective mobility model to describe
carrier transport [6], Kumar et al. [5] uses a “bottom-up”
approach where the properties of the thin film reflects the
percolating geometry of NW/NT network. Specifically, in the
linear response regime, the charge density induced in each
NW/NT, i.e., n = COX(VG–VTH), is a constant independent
of VD. Therefore, the transport properties of NB-TFT in the
linear response regime are readily described by the theory
of 2-D homogeneous (constant conductivity) stick percolating
networks.

The performance limit of NB-TFTs, however, is dictated
by the transistor characteristics at high-bias (nonlinear) regime
(VTH < VG, and VD < VDD). The high interface trap density
NIT [7] and large hysteresis associated with current generation
of NB-TFTs make stable measurement of their high-bias char-
acteristics difficult. Therefore, a predictive simulation of high-
bias operation can be used to establish both the performance
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limits of NB-TFTs and the relative importance of various device
parameters. The fundamental issue is this: Although the spatial
geometry of the NW/NT network does not change with bias,
the “low-bias” assumption of constant conductivity and local
homogeneity along the channel is no longer valid at a “high-
bias” regime [see Fig. 1(b) versus Fig. 1(c)]. Since the tradi-
tional percolation theory demands global spatial homogeneity,
the classical theory cannot be used to analyze the high-bias
regime for NB-TFTs.

In this letter, we generalize the classical percolation theory
to a nonlinear (high-bias) regime and establish the performance
limits for NB-TFTs using a self-consistent solution of drift-
diffusion (DD) and Poisson equations. Surprisingly, we find
that the conductance exponentm(ID ∼ 1/Lm

C ) in the high-bias
inhomogeneous case is “exactly” the same as that in the low-
bias homogeneous condition [5]. This universal scaling theory
implies that the measurement of the full current–voltage (I–V )
characteristics of a single transistor can be used to predict
the high-bias transistor characteristics of any other NB-TFTs
with arbitrary geometrical parameters (e.g., channel length,
stick length, etc.) and operating conditions. Previously, we
have established the theoretical basis of the scaling formula
for short-channel NB-TFTs with LC < LS in [8]. In the next
section, we show numerically that the scaling formulation
holds even for technologically relevant long-channel NB-TFTs
with LC > LS .

II. COMPUTATION MODEL

Fig. 1(a) shows typical NB-TFTs assembled with a bundle
of NW/NT of length LS , which is isotropically oriented (0 ≤
θ < 2π) onto the surface of the gate oxide. The probability
of germination of NW/NT at each location is dictated by the
average density of tubes ρs. For NBTs with LC > LS , the
stick–stick interaction is important, and an analytical solution is
not possible. The low-bias assumptions [5] that charge density
n is constant along the channel and is independent of VD do
not apply at high-bias conditions. Therefore, n(VD, VG) must
be determined self-consistently by solving the DD equations
(appropriate for LC > 1 µm) and the Poisson equation. In
the bottom-up description of the channel, the DD–Poisson
equations are generalized for NB-TFTs as

d2Φ
dV 2 + ρ

ε = 0
∇ · Jp = 0
∇ · Jn = 0


→

N∑
i=1

(
d2Φi

ds2 + ρi

ε − (Φi−VG)
λ2 +

∑
j �=i

(Φj−Φi)

λ2
ij

)
= 0

∑
i

(
∇ · Jpi +

∑
j �=i

Cp
ij(pj − pi)

)
= 0

∑
i

(
∇ · Jni +

∑
j �=i

Cn
ij(nj − ni)

)
= 0

(1)

where N is the total number of NT/NWs (assumed undoped
NA = 0, i.e., the initial Fermi level is equal to the intrinsic level

or EF = Ei), s is in the direction of individual NW/NT, ρ is
the total charge density, and the term −(Φ − VG)/λ2 (the well-
known parabolic approximation [9], [10]) introduces the effect
of back gate, where λ is the effective screening length with
λ2 = εNTToxd/εOX. For typical transistor parameters, d ∼
2 nm is the thickness of the nanobundle film, Tox ∼ 250 nm
is the thickness of the gate oxide, εNT ∼ 5 [11] and εOX ∼ 3.9
are the dielectric constants for the NT network and gate oxide,
respectively, which give λ ∼ 44 nm. The parabolic approxi-
mation is valid in this case because the condition that LC �
λ� d is satisfied. The term (Φj–Φi)/λ2

ij is the stick–stick
interaction with screening length λij , where a node on stick i
intersects a node on stick j. The intersecting nodes act as
tiny gates for each other, modifying the potential and carrier
concentrations [12]. Furthermore, transport is essentially 1-D
(along the tube), with the additional term Cn

ij(nj − ni) in the
continuity equation representing the charge transfer between
the nanosticks at the point of intersection. Here, a higher value
of Cn,p

ij = G0/G1 implies better electrical contact, where G0

and G1 are the mutual and self-conductances of the tubes. We
assume that Cij = 50 [5] and λij = 1 nm for a well-contacted
network.

III. RESULTS AND DISCUSSION

It was shown in [8] that in the “short-channel” limit of
LC < LS and at low stick density, the NW/NTs behave as
individual transistors connected in parallel; therefore, the ratio
of ID for any two bias points is independent of the geometry
of the NB-TFTs. This implies that the scaling relationship is
(assuming that contact resistance RS is negligible or has been
subtracted out)

ID =
A

LS
ξ

(
LS

LC
, ρsL

2
S

)
× f(VG, VD) (2)

where the proportionally constant A depends on oxide
capacitance COX, tube diameter d [13], and stick–stick inter-
action parameter Cn,p

ij . In addition, ξ and f are functions of
geometrical parameters (LS , LC , and ρS) and bias conditions
(VD and VG), respectively. The factorization is consistent with
the experimental data, as shown in [8, Fig. 10].

For long-channel NB-TFTs with LC > LS [see Fig. 1(a)],
the individual sticks cannot bridge the channel by themselves,
and stick–stick interaction becomes important (Cn,p

ij �= 0).
Fig. 2 summarizes the self-consistent solution of (1) for dif-
ferent bias conditions [Fig. 2(a)] and various geometrical pa-
rameters [Fig. 2(b) and (c)] for long-channel NB-TFTs. Each
point of Fig. 2 reflects the average solution of ∼200 statisti-
cal samples, and generation of Fig. 2 requires approximately
15 h on 200 nodes of a cluster with 3.2 GHz and 64-bit Intel
Irwindale processors with 4 GB of memory. We performed
experiments [14], [15] to check the current scaling, and re-
markably, the experimental data support our results very well,
as shown in Fig. 2(b) and (c) for low and high bias, respec-
tively. These results indicate that the scaling formula (2) holds
for arbitrary geometrical and biasing conditions even in the
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Fig. 2. (a) Simulations (curves) and experimental data (“x”) for the ID–VD

of two different random networks with high and low density, respectively. A,
A′ (solid diamond) and B, B′ (solid triangle) represent points on the plot
corresponding to high and low VD , respectively. (b) and (c) Drain–current
versus channel length for network transistors, with channel length LC >
stick length and LS ∼ 6 µm for low and high bias, respectively, in strong
coupling limits. Different curves correspond to density ρSL2

S = 5.4, 6, 8, 12,
and 20 and m = 1.9, 1.7, 1.4, 1.2, and 1.07, respectively. The experimental data
for high density (open circles) and low density (open squares) are also shown.
The absolute values of the experimental results are scaled since they were
performed on two different devices. The current exponents m for the high-bias
regime are exactly the same as those for the low-bias regime, and (2) requires
for any particular percolating random network that IA/IA′ = IB/IB′ .

“long-channel limit” of Cn,p
ij �= 0. Specifically, (2) requires that

for the geometrical scaling factor, ξ(LS/LC , ρSL
2
S) remains

invariant (up to a scaling factor) of biasing conditions, which
is easily confirmed by comparing Fig. 2(b) and (c). Indeed, we
find that (once the series resistance has been accounted for)

ξ

(
LS

LC
, ρsL

2
S

)
=
(
LS

LC

)m(ρsL2
S)

(3)

where m is a universal exponent of the stick percolating sys-
tem. For densities much higher than the percolation threshold
(ρSL

2
S � ρthL

2
S = 4.2362/π [16]), the network behaves as a

2-D conductor with m = 1. Together with (4), we find that (2)
reduces to the classic “square law” as expected. However, for
densities near the percolation threshold (ρSL

2
S ∼ 4.2362/π),

the exponent takes the value m ∼ 1.8 [Fig. 2(b)]. Moreover,
Fig. 2(a) shows that the bias-dependent scaling function

f(VG, VD) =
[
(VG − VTH)VD − βV 2

D

]
(4)

is independent of geometrical parameters (β ∼ 0.5), again
satisfying (2). It is hardly surprising that the voltage scaling
function f(VG, VD) would follow the classical square-law for-
mula at very low (ρ
 ρth, and LC < LS) and at very high
densities (ρ� ρth). After all, for ρ
 ρth and LC < LS , the
stick–stick interaction is negligible, and the sticks bridge the
source and drain (S/D) directly; therefore, the system behaves

as an independent collection of 1-D (long-channel) conductors,
and the conclusions of [8] apply. At ρ� ρth, the percolat-
ing network approximates a classical 2-D homogeneous thin
film (fractal dimension DF > 1.8 compared to DF = 2 for
thin film), and once again, the classical MOSFET formula
should hold. “The real surprise and the most significant find-
ing of our analysis is that (2) holds for the arbitrary stick
density above and below (with LC < LS) the percolation
threshold.”

Our results imply that once VTH and β are determined [for
(4)] by ID–VD and ID–VG measurement and m is determined
from Fig. 2(b) for particular LS , LC , and ρS , one can readily
determine the technology-specific constant A. Given A, VTH,
and β, we can determine [by (2)] the transistor performance
of any other transistor of arbitrary LS , LC , and ρS [Fig. 2(b)]
and biasing condition. This scaling formula could therefore
reduce the technology development and characterization time
significantly. Second, (2) provides a “bottom-up definition of
effective mobility µeff ∼ (dID/dVG/VD)(LS/ξ)/(LWCOX),”
the value of which is independent of LC and can be used to
compare experimental data from various laboratories. For very
high density networks, µeff reduces to a conventional mobility
equation as m = 1 and ξ = LS/LC in (3). Finally, (1) and (2)
can be used to compute fmax = I/CV to establish the ultimate
performance limits of NB-TFTs free from nonideal factors such
as hysteresis or interface traps, which give ∼1 GHz of device
speed for the NB-TFT in [2] for LC = 1 µm.

IV. CONCLUSION

We have generalized the linear stick percolation theory to
nonlinear regime to find a scaling formula (2) to compute the
ID–VD characteristics of NB-TFTs that once calibrated, can be
used to establish the performance limits of NB-TFTs of arbi-
trary geometry and operating conditions. Our analysis therefore
would help organize experimental data from various research
groups and could have significant impact on the development
of NB-TFT technology.

ACKNOWLEDGMENT

The authors would like to gratefully thank N. Neophytou and
M. Lundstrom.

REFERENCES

[1] Y. X. Zhou, A. Gaur, S. H. Hur, C. Kocabas, M. A. Meitl, M. Shim,
and J. A. Rogers, “p-channel, n-channel thin film transistors and p-n
diodes based on single wall carbon nanotube networks,” Nano Lett., vol. 4,
no. 10, pp. 2031–2035, Oct. 2004.

[2] E. S. Snow, J. P. Novak, P. M. Campbell, and D. Park, “Random networks
of carbon nanotubes as an electronic material,” Appl. Phys. Lett., vol. 82,
no. 13, pp. 2145–2147, Mar. 2003.

[3] L. Hu, D. S. Hecht, and G. Gruner, “Percolation in transparent and con-
ducting carbon nanotube networks,” Nano Lett., vol. 4, no. 12, pp. 2513–
2517, Dec. 2004.

[4] E. S. Snow, J. P. Novak, M. D. Lay, E. H. Houser, F. K. Perkins, and
P. M. Campbell, “Carbon nanotube networks: Nanomaterial for macro-
electronic applications,” J. Vac. Sci. Technol. B, Microelectron. Process.
Phenom., vol. 22, no. 4, pp. 1990–1994, Jul. 2004.

[5] S. Kumar, J. Y. Murthy, and M. A. Alam, “Percolating conduction in finite
nanotube networks,” Phys. Rev. Lett., vol. 95, no. 6, p. 66 802, Aug. 2005.



160 IEEE ELECTRON DEVICE LETTERS, VOL. 28, NO. 2, FEBRUARY 2007

[6] O. Marinov, M. J. Deen, and B. Iniguez, “Charge transport in organic
and polymer thin-film transistors: Recent issues,” Proc. Inst. Electr.
Eng.—Circuits Devices Systems, vol. 152, no. 3, pp. 189–209, Jun. 2005.

[7] S. Kumar, N. Pimparkar, J. Y. Murthy, and M. A. Alam, “Theory of
transfer characteristics of nanotube network transistors,” Appl. Phys. Lett.,
vol. 88, no. 12, p. 123 505, Mar. 2006.

[8] N. Pimparkar, J. Guo, and M. A. Alam, “Performance assessment of
sub-percolating nanobundle network transistors by an analytical model,”
in IEDM Tech. Dig., 2005, vol. 21.5, p. 541.

[9] K. K. Young, “Short-channel effect in fully depleted SOI
MOSFETs,” IEEE Trans. Electron. Devices, vol. 36, no. 2, pp. 399–402,
Feb. 1989.

[10] F. G. Pikus and K. K. Likharev, “Nanoscale field-effect transistors: An
ultimate size analysis,” Appl. Phys. Lett., vol. 71, no. 25, pp. 3661–3663,
Dec. 1997.

[11] D. S. Novikov and L. S. Levitov, Electron Properties of Carbon Nano-
tubes in the Field Effect Regime, 2002. cond-mat/0204499.

[12] M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni,

H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, “Crossed
nanotube junctions,” Science, vol. 288, no. 5465, pp. 494–497, Apr. 2000.

[13] X. J. Zhou, J. Y. Park, S. M. Huang, J. Liu, and P. L. McEuen, “Band
structure, phonon scattering, and the performance limit of single-walled
carbon nanotube transistors,” Phys. Rev. Lett., vol. 95, no. 14, p. 146 805,
Sep. 2005.

[14] S. H. Hur, C. Kocabas, A. Gaur, O. O. Park, M. Shim, and J. A. Rogers,
“Printed thin-film transistors and complementary logic gates that use
polymer-coated single-walled carbon nanotube networks,” J. Appl. Phys.,
vol. 98, no. 11, p. 114 302, Dec. 2005.

[15] Q. Cao, M. G. Xia, M. Shim, O. O. Park, and J. A. Rogers, “Bilayer
organic/inorganic gate dielectrics for high performance, low-voltage sin-
gle walled carbon nanotube thin-film transistors, complementary logic
gates and p-n diodes on plastic substrates,” Adv. Funct. Mater., 2006.
in press.

[16] G. E. Pike and C. H. Seager, “Percolation and conductivity—
Computer study: Part 1,” Phys. Rev. B, Condens. Matter, vol. 10, no. 4,
pp. 1421–1434, Aug. 1974.


