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fluctuations at voltage probes coupled to interferometers. The results are
compared with correlations of current and occupation number fluctuations at
dephasing probes. We use a quantum Langevin approach for the average
quantities and their fluctuations. For higher order correlations we develop a
stochastic path integral approach and find the generating functions of voltage
or occupation number fluctuations. We also derive a generating function for
the joint distribution of voltage or occupation number at the probe and current
fluctuations at a terminal of a conductor. For energy independent scattering we
found earlier that the generating function of current cumulants in interferometers
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number fluctuations differ, the latter being broader than that of former in all
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1. Introduction.

The quantization of charge and the diffraction of quantum waves lead to fluctuations
in the transport state of electrical conductors even in the limit of absolute zero
temperature [1]. These fluctuations provide additional information not available from
conductance measurements alone. This has led to considerable theoretical [2, 3, 4, 5]
and experimental efforts [6, 7, 8, 9, 10] to characterize fluctuations not only on the
level of noise but including all higher order cumulants. These efforts have been focused
almost exclusively on the statistics of transferred charge [2, 3, 4], i.e. on the cumulants
of currents measured at a contact of a conductor. Clearly, there are however also
other quantities of interest. For example, fluctuations of the charge inside a conductor
[11, 12, 13] (as opposed to transferred charge) are closely connected to electrostatic
potential fluctuations in a conductor [14] and are thus essential in determining the
long range Coulomb interaction of two nearby conductors. Still another example
is fluctuations of voltage. The statistics of voltage have been investigated for a
mesoscopic conductor in series with a classical impedance [15, 16] and for networks of
two-terminal conductors [17].

In this work we consider voltage probes which connect to a conductor within
its phase-coherent volume [18]. We determine the fluctuations of the voltage at the
probe [19, 20, 21] and determine the joint probability distribution between the voltage
fluctuations and the charge transferred into a contact of the conductor. Voltage probes
are real elements of mesoscopic conductors and are used to gain information of the
interior state of the system. We compare the fluctuations at a voltage probe with
the fluctuations at a dephasing probe. This latter probe conserves not only charge
but also energy [22, 23]. At a dephasing probe the occupation number fluctuates [20].
Voltage and dephasing probes provide a simple means to introduce incoherent events
in an otherwise quantum coherent conductor [18, 23].

We examine these correlations with the help of a (quantum) Langevin approach
[24, 25]. In a second step we derive a generating function for the correlations using a
semi-classical path integral approach [26, 27]. On the level of conductance and noise
the Langevin approach and the saddle point solution of the path integral approach
are shown to agree. We have earlier demonstrated that for the statistics of transferred
charge both a single channel voltage probe and the single channel dephasing probe
lead to the same counting functional if the scattering matrix of the conductor is energy
independent in the range of applied voltages [26, 27]. Interestingly, we find that this
equivalence does not hold for the joint distribution of voltage (or occupation number)
fluctuations and transferred charge.

The characterization of the transport fluctuations not only in terms of transferred
charges but also of internal properties is a central motivation of this work. Voltage
fluctuations at a probe test carrier fluctuations that can still be evaluated in an
approach that considers samples with terminals only. It is particularly interesting for
conductors which exhibit quantum interference since voltage and dephasing probes
are phase breaking elements. A carrier that enters a probe is eventually replaced by a
carrier that is re-emitted into the conductor with a phase (and in the case of a voltage
probe, an energy) that is unrelated to the exiting carrier. This carrier is detected
in the voltage probe and thus does not contribute to certain interference processes.
Phase breaking and which path detection are generally closely linked phenomena [28].
This provides another motivation to investigate the fluctuations at the probes (the
which path detectors) and their correlations with the transmitted current.
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2. Correlations: Langevin approach.

The Langevin approach is a convenient tool to investigate current and voltage
correlations in mesoscopic conductors [24, 25]. This has been demonstrated in
numerous papers, see e.g. Refs. [1, 19, 20, 29, 30, 31, 32]. Importantly, the Langevin
approach also allows one to obtain information on the fluctuation properties of a probe
connected to the mesoscopic conductor. In this section we investigate the average
current and potentials as well as the auto- and cross-correlations. It is possible to
extend the Langevin approach successively to higher order correlations, giving rise
to cascade corrections [5]. In section 3 we instead directly determine the generating
function of the correlations, making use of a stochastic path integral approach [4].

We consider a multi terminal quantum coherent conductor first without being
connected to a probe. The current through the conductor fluctuates. When
the conductor is embedded in a zero-impedance external circuit, all contacts are
characterized by Fermi distribution functions which are constant in time. Only bare
current fluctuations take place due to scattering in the conductor, described by a
unitary scattering matrix S. The total current in contact α can be expressed as a sum
of the average current and the current fluctuations [24, 25]

Iα = 〈Iα〉 + δIα =
∑

β

GαβVβ + δIα, (1)

where Vβ is a voltage applied to reservoir β, and Gαβ the conductance matrix

Gαβ =
e2

h

∫

dE

(

− ∂f

∂E

)

[Nαδαβ − Tαβ ]. (2)

The equilibrium Fermi function is called f , the number of channels in lead α is Nα,
and Tαβ = Tαβ(E) = Tr[S†

αβ(E)Sαβ(E)] denotes the total probability that a particle
is transmitted from terminal β to terminal α where the trace runs over the transport
channels.

Like the conductances, the noise correlations can be expressed in terms of
scattering matrices. The zero frequency noise and correlations are Cαβ = 〈δIαδIβ〉.
Note that the definition of the noise as given for example in Ref. [1] usually differs by a
factor of 2. The noise can be expressed as Cαβ = Ceq

αβ + Ctr
αβ , a sum of an equilibrium

contribution Ceq
αβ stemming from noisy incident beams in one contact proportional to

fα(1 − fα), and a transport contribution Ctr
αβ which depends on Fermi functions of

two different reservoirs fγ(1 − fδ) (with γ 6= δ). Following Ref. [25] we find

Ceq
αβ =

e2

h

∫

dE(2δαβNαfα(1 − fα) −

Tβαfα(1 − fα) − Tαβfβ(1 − fβ)), (3)

Ctr
αβ =

e2

2h

∫

dE
∑

γ,δ

Tr[S†
αγSαδS†

βδSβγ ]

(fγ(1 − fδ) + fδ(1 − fγ) − 2fα(1 − fα)) . (4)

In the case when temperature is negligible compared to the applied bias, the
contribution Ceq

αβ vanishes and the term Ctr
αβ represents the pure shot noise.
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2.1. Voltage probe.

A voltage probe is a large metallic contact connected to the conductor. The potential
Vp at the contact is left floating and there is no current drawn at the probe. The
potential Vp = Vp(t) exhibits fluctuations on the time scale τd, which is given by the
RC-time of a classical circuit. The fluctuations originate from the response of the
potential to the injected charges: Incoming charges make the potential Vp rise. This
leads in turn to an increase in the outgoing current which reduces the potential again
and so on. This mechanism is formally expressed by vanishing current and current
fluctuations at the probe for frequencies smaller than 1/τd:

〈Ip〉 = 0, ∆Ip = 0. (5)

The voltage probe is described by an equilibrium Fermi function fp(Vp), where
thermalization by inelastic scattering is assumed to be much faster than the delay time
τd, and where the temperature is determined by the lattice temperature. Therefore,
a particle scattering via the voltage probe looses not only its phase memory but also
changes its energy.

The potential fluctuations at the probe give rise to additional fluctuations of the
current in the terminals [19, 20]. The potential at the probe can be separated into a
constant and a fluctuating part, Vp = V̄p +∆Vp. Following Eq. (1) the average current
〈Iα〉 and the total fluctuations ∆Iα are in linear response given by

〈Iα〉 =
∑

β 6=p

GαβVβ + GαpV̄p, (6)

∆Iα = Gαp∆Vp + δIα. (7)

Both the constant value V̄p and the fluctuating part ∆Vp of the potential at the probe
are determined by the condition Eq. (5). Throughout this paper we consider that only
one of the contacts (taken to be α = 1) has an elevated potential eV and all other
current terminals are grounded. Solving Eqs. (6) and (7) with α = p, the potential at
the probe is found to be V̄p = −Gp1V/Gpp, and ∆Vp = −δIp/Gpp. Using this we find
for the auto-correlations of the potential and the cross correlations of the potential
with the current in terminal α

〈

∆V 2
p

〉

=
〈

δI2
p

〉

/G2
pp =

Cpp

G2
pp

, (8)

〈∆Vp∆Iα〉 =

(

Gαp

Gpp

〈

δI2
p

〉

− 〈δIpδIα〉
)

/Gpp =
GαpCpp

G2
pp

− Cpα

Gpp
. (9)

These expressions can be evaluated for a given scattering matrix using Eqs. (2), (3)
and (4), where only the constant Fermi functions enter, i.e. fp = fp(V̄p). For higher
order correlations the fluctuations of the Fermi functions have to be taken into account.
As pointed out above, this leads to noise of noise and results in a cascade corrections
similar to the one known from the quasi-classical fluctuating Boltzmann equation [5].

2.2. Dephasing probe.

Dephasing probes are conceptual tools to describe quasi-elastic dephasing [22, 23]. In
the case of a dephasing probe, a particle entering the probe is incoherently re-emitted
within the same energy interval [E, E + dE]. It looses its phase, but the change
in energy dE is much smaller than the external bias or the temperature. Because
scattering in each energy interval is independent, the distribution function np(E) is
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-unlike the Fermi function describing the voltage probe- a highly non-equilibrium
distribution function. It shows independent fluctuations in each energy interval,
np(E) = np(E, t), which occur on the time scale τd, the delay time of the probe.
In a dephasing probe, the current per energy interval ip(E) and its fluctuations are
conserved up to the frequency 1/τd:

〈ip〉 = 0, ∆ip = 0. (10)

Similar to the potential of the voltage probe, the non-equilibrium distribution function
is written as a constant and a fluctuating part fp ≡ n̄p +∆np. All other terminals are
still characterized by constant equilibrium Fermi functions. The average current per
energy 〈iα(E)〉 = 〈iα〉 and the total current fluctuations per energy ∆iα(E) = ∆iα
are given by

〈iα〉 =
∑

β 6=p

gαβfβ + gαpn̄p, (11)

∆iα = gαp∆np + δiα. (12)

In analogy to the expressions for the energy integrated current Iα =
∫

dEiα(E), an
energy dependent conductance matrix gαβ = gαβ(E) can be defined,

gαβ =
e

h
[Nαδαβ − Tαβ ]. (13)

Also for the zero-frequency noise we find an energy dependent function from Cαβ =
∫

dEcαβ(E). Again the function cαβ = cαβ(E) = 〈δiαδiβ〉 splits into an equilibrium
and a transport contribution

cαβ = ceq
αβ + ctr

αβ , (14)

where ceq
αβ and ctr

αβ are the integrands of Eqs. (3) and (4) respectively. ceq
αβ contains

the noise due to a noisy incident beam in one contact, while ctr
αβ involves particles

from two different contacts.
Using Eq. (10) the noise and correlations at the probe are [20, 33]

〈

∆n2
p

〉

=
〈

δi2p
〉

/g2
pp =

cpp

g2
pp

, (15)

〈∆np∆iα〉 =

(

gαp

gpp

〈

δi2p
〉

− 〈δipδiα〉
)

/gpp =
gαpcpp

g2
pp

− cpα

gpp
. (16)

Here we can see the first consequence of the different electron distributions (see Fig. 1)
in the voltage and dephasing probe. Although Eqs. (8) and (15) have exactly the

fp np

1
a) b)

 p

1

0
0 eV eV

p

0
0

eV

n

Figure 1. a) The Fermi distribution function of the voltage probe takes on only
the values zero or one (at zero temperature). The position of the step is given by
the potential at the probe. b) The distribution function of the dephasing probe is
a two-step function and has a value between zero and one in the interval [0, eV ].
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same structure, the evaluation leads to different results. The reason is that in the case
of a voltage probe the contribution Ceq

pp to the noise vanishes at zero temperature,
while for a dephasing probe, the corresponding expression ceq

pp is non-zero even at zero
temperature since the factor n̄p(1−n̄p) is finite in the energy interval [0, eV ] of interest.
Interestingly, in Eqs. (9) and (16), inserting the expressions for the conductance and
correlators from Eqs. (2)-(4), it follows that the terms proportional to n̄p(1 − n̄p)
drop out. Consequently, for energy independent scattering, the energy integrated
correlations 〈∆Vp∆Iα〉 /V equal the correlations 〈∆np∆iα〉.

2.3. Correlations and interference.

It is interesting to investigate how and if interference appears in the fluctuations of
the potential and the occupation number of the probe or in the correlations with the
current in one of the leads. To this end we evaluated Eqs. (8), (9) and (15), (16) for
four different setups: a beam splitter and three interfering systems, the Mach-Zehnder
interferometer, the double barrier and the triple barrier.

These examples also illustrate an interesting feature of the different nature of
voltage and dephasing probes. It was shown in Refs. [26, 27] that the auto- and cross
correlations (actually all cumulants) of the current in a conductor coupled to a single
mode probe are independent of whether the probe is a voltage or a dephasing probe for
the case that scattering is energy independent. Interestingly, this does not hold for the
fluctuations of the probe: there is a clear difference between the potential fluctuations
of a voltage probe and the occupation number fluctuations of the dephasing probe.

All the examples are quantum Hall bars of different complexity subject to a high
magnetic field. Current is transported by an edge state at filling factor one, where
carriers move in one specific direction along the edge of the structure. A quantum point
contact in such a structure forms a beam splitter: a particle is either transmitted and
continues along the same edge, or it is reflected and moves into the opposite direction
along the opposite edge. The beam splitter is the smallest unit that the interfering
structures are composed of, we chose it here as a simple and instructive example
to show how a voltage or dephasing probe behaves. For simplicity we consider the
scattering matrix of all structures to be energy independent. In the following we

21

p

T

Figure 2. A quantum point contact in the quantum Hall regime forms a beam
splitter with transmission probability T . A perfectly coupled probe is attached
along the upper edge.
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Φ

ε

TA
TB

2 4

31

p

Figure 3. A Mach-Zehnder interferometer with its upper arm coupled to a
dephasing or voltage probe with coupling strength ε. An Aharonov-Bohm flux
generates a phase Φ.

present briefly the setups of the four examples. The results are collected in table 1
and table 2.

• The beam splitter [34, 35] is formed by a quantum point contact with
transmission probability T , situated between two terminals 1 and 2, as shown
in Fig. 2. A probe -either a voltage or a dephasing probe- is perfectly coupled to
the setup, such that every particle transmitted through the beam splitter enters
the probe and moves then from the probe into contact 2.

• An electronic Mach-Zehnder interferometer (MZI) is shown in Fig. 3. It
consists of two arms connected to four electronic reservoirs 1 to 4 via beam
splitters A and B. The transmission (reflection) probabilities of the beam splitters
are TA and TB (RA and RB) respectively. Interference occurs, because the
electrons have two alternative paths to propagate through the interferometer
between beam splitter A and B. An Aharonov-Bohm flux threads the two arms,
and the different vector potentials in the two arms lead to a phase difference
Φ. This difference creates a characteristic flux-periodicity in the interference
pattern, the Aharonov-Bohm effect. A voltage or dephasing probe is attached to
the upper arm. Particles entering the probe loose their phase and, therefore, the
interference is reduced, controlled by the coupling strength ε. Thus the Mach-
Zehnder interferometer is useful as a conceptually simple interferometer and has
been used in theoretical discussions of dephasing [36, 37, 38, 39, 40]. Such a setup
was recently realized experimentally [41, 42, 43] and has since generated further
works [44, 45, 46, 47]. If the length of the two interferometer arms is not equal,
the transmission through the interferometer will be energy dependent due to the
geometric phase a particle acquires. For finite temperature, interference effects
will be averaged out. In order to determine purely the effect of dephasing and
voltage probes, we concentrate here on the ideal case of an equal arm lengths
interferometer.

• The double barrier, shown in Fig. 4, is a two terminal conductor with two
beam splitters [48, 49]. In the region between the barriers (the dot) a particle can
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perform multiple loops and undergo resonant scattering. For each loop in the dot,
the electron picks up a phase Φd. We consider zero temperature and an energy
independent phase. The interference is here not a consequence of two spatially
distinct paths but of multiple possible paths through the closed orbit inside the
dot. A probe is coupled to the dot with coupling strength ε. Since particles
that scatter via the probe loose their phase, coherence is partially destroyed. For
perfect coupling, ε = 1, all particles entering the dot pass on into the probe, then
the system is incoherent and in the sequential tunneling regime.

• In the triple barrier setup, an additional barrier in series is inserted into the
double barrier setup, see Fig. 5. Now there are two dots [50, 51, 52] with two
different phases ΦL and ΦR. Resonances can occur in either one of the dots or
through both dots simultaneously, rendering the scattering matrix considerably
more complex. The limiting case R2 → 0 however represents the double barrier
with ΦL + ΦR = Φd. We consider here a probe coupled to the left dot, thus only
the interference in the left dot is destroyed by the probe.

In table 1 the results for the auto-correlations of the voltage
〈

∆V 2
p

〉

and of the

occupation number
〈

∆n2
p

〉

are listed. The different electron distributions of voltage
and dephasing probes, as pointed out already in section 2.2, become apparent: the
fluctuations of the occupation number n̄p(E) in a dephasing probe are larger than the
potential fluctuations of the voltage probe. This is most easily seen in the example of

21

p

21

ε

Φd

T T

Figure 4. The double barrier quantum Hall interferometer with a resonant state.
A probe couples to the resonant state with coupling strength ε. Φd is the total
phase acquired in one loop.

21

p

1

ε

Φ
2

ΦL R

3T T T

Figure 5. The triple barrier with two resonant states. A single probe is coupled
to the left resonant state.
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Table 1. The mean squared fluctuations of the potential and the occupation
number for the four examples. The transmission probabilities of all point contacts
in the double and triple barrier structures are equal, T = 1−R. Interference effects
are present only in the latter two.

〈

∆V 2
p

〉

e
hV

〈

∆n2
p

〉

1
h

Beam splitter

T (1 − T ) 2T (1 − T )

Mach-Zehnder
interferometer 2−ε

ε TA(1 − TA) 2
εTA(1 − TA)

Double barrier

R((1+R2)(2−ε)+4R
√

1−ε cosΦd)
ε(1−R)(1+R)3

2R(1+R2(1−ε)+2R
√

1−ε cosΦd)
ε(1−R)(1+R)3

Triple barrier
R
ε F(R, ΦR)[(1+3R2)(2−ε)+

4R(1 + R)
√

1 − ε cosΦL +
4R2

√
1 − ε cos(ΦL − ΦR) +

2R(1 + R)(2 − ε) cosΦR +
4R

√
1 − ε cos(ΦL + ΦR)]

2R
ε F(R, ΦR)[1+3R2−2R2ε+

2R(1 + R)
√

1 − ε cosΦL +
2R2

√
1 − ε cos(ΦL − ΦR) +

2R(1 + R(1 − ε)) cosΦR +
2R

√
1 − ε cos(ΦL + ΦR)]

with

F(R, ΦR) = 1+R2+2R cos ΦR

(1+R+2R cosΦR)3

the beam splitter, where the fluctuations of n̄p(E) are twice as large as the fluctuations
of V̄p. Note that occupation numbers at different energies are uncorrelated but that
the fluctuation spectrum, in the limit of zero temperature, and in the limit that the
energy dependence of the scattering matrix can be neglected, is independent of energy
for 0 ≤ E ≤ eV .

For finite coupling, the fluctuations are proportional to 1/ε and diverge for ε → 0
for both voltage and dephasing probe. This means the fewer particles enter the probe,
the stronger are the fluctuations. Note that the differences in the fluctuations of
voltage and dephasing probes are of order one compared to 1/ε and, therefore, become
less important for small ε. (For the beam splitter, the table includes only the strong
coupling result ε = 1. The above statement applies also to the beam splitter with a
weakly coupled probe).

The noise of the probe in the MZI is independent of the phase Φ. This is
not surprising since particles enter the probe before they could interfere. This is
in accordance with Ref. [36] which demonstrates that charge density fluctuations in
an MZI arm are independent of phase. In the double barrier, particles enter the probe
after performing multiple loops inside the dot and thus the fluctuations depend on the
phase Φd picked up. In the triple barrier different paths containing different resonant
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Table 2. Current voltage correlations 〈∆Vp∆Iα〉 and current occupation number
fluctuations 〈∆np∆iα〉. For energy independent scattering these two correlations
are identical.

〈∆Vp∆Iα〉 1
eV = 〈∆np∆iα〉 1

e

Beam splitter

±T (1 − T )
for α = 1 (+) and α = 2 (-)

Mach-Zehnder
interferometer TA(1− TA)(1− 2TB) for α = 3

Double barrier

−R(1−R)
(1+R)3 for α = 2

Triple barrier

R(1 − R)F(R, ΦR)[−1 + 3R +
2R cosΦR] for α = 2

passages are possible and the noise contains a combination of ΦL, ΦR, ΦL + ΦR and
ΦL − ΦR.

Table 2 shows the correlations of the voltage fluctuation measured at a probe with
the current transferred into a contact. As usual p denotes the probe and α stands for
any of the contacts of the conductor. As pointed out at the end of subsection 2.2 the
energy integrated correlations 〈∆Vp∆Iα〉 /V equal the correlations 〈∆np∆iα〉 which
characterize an energy interval in the window opened by the transport voltage eV .

The example of the beam splitter shows that the correlation can have either sign,
depending on whether we consider the correlation with the transmitted (α = 2) or the
reflected (α = 1) particle current. The dependence on the transmission probability
directly reflects the shot noise generated at the quantum point contact.

The correlations in the MZI are independent of the phase Φ. The correlations are a
signature of incoherent processes: only carriers that enter the probe give rise to voltage
fluctuations and only carriers that leave from the probe to the contact are correlated
with the voltage at the probe. Note, that the additional beam splitter B the particles
have to pass after leaving the probe renders the correlations cubic in the transmission
of the beam splitters (in contrast to the beam splitter setup of the first example).
Curiously, for TA = TB = T they coincide with the third current cumulants [2, 39]
of a beam splitter with transmission T . In contrast to the simple beam splitter (first
example) here the correlation changes sign as function of the transmission probability
of the second beam splitter TB. For TB = 1 we have the same situation as for the
beam splitter for α = 2, and TB = 0 corresponds to the beam splitter result for α = 1.

Surprisingly, also the correlations for the double barrier are independent of the
phase Φd. The fact that no oscillating contribution appears in the correlations is
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however a feature of this particular chiral setup. For non-chiral Aharonov-Bohm
rings, for example, the current-voltage correlations do depend on the phase Φd [53].

In the triple barrier a probe is only connected to the left dot. The correlations
of the triple barrier contain the phase ΦR due to interference in the right dot but are
independent of ΦL. This is consistent with the fact that the correlation for the double
barrier is independent of phase.

All correlations shown in table 2 are independent of the coupling strength
of the probe and moreover are independent of the phase directly adjacent to the
probe. Further research is needed to characterize the examples where current-voltage
correlations are phase- and coupling-strength independent and the examples where
this is not the case [53].

3. Full counting statistics of the probe: the stochastic path integral.

An elegant description of the zero frequency transport is the full counting statistics
(FCS) [2, 3, 5] which permits to obtain not only the average current and noise but the
full distribution of charges transmitted through a conductor during a measurement
time τ . For an M -terminal conductor without a probe the distribution function is
denoted by P (Q), where the vector quantity Q = (Q1, Q2, . . . , QM ) describes the
charge transfered into each of the M terminals. P (Q) can be expressed in terms of
the cumulant generating function S(Λ), where Λ = (λ1, λ2, . . . λM ) are the conjugate
variables to Q:

P (Q) =

∫

dΛeS(Λ)−iΛ·Q, (17)

S(Λ) = ln
∑

Q

P (Q)eiΛ·Q. (18)

The sum and integrals run over all elements of the vector,
∫

dΛ = (2π)−M
∫

dλ1 . . . dλM

and
∑

Q =
∑

Q1...QM
. Probability conservation leads to the normalization of the gen-

erating function S(0) = 0.
For a long measurement time τ , the transmitted charge into a contact α is

proportional to τ : Qα = τIα. Then the zero frequency current cumulants are obtained
by taking derivatives of the cumulant generating function with respect to the counting
variables and evaluated at Λ = 0. The average current 〈Iα〉 and the auto- and cross-
correlations Cαβ are given by

〈Iα〉 =
e

iτ

∂S

∂λα
, Cαβ =

e2

i2τ

∂2S

∂λα∂λβ
. (19)

When a probe is connected to the conductor, particles can enter and leave the
probe. However, for every particle entering the probe, a particle is re-emitted after
a delay time τd as described in sections 2.1 and 2.2. The functions P (Q) and S(Λ)
have then to be determined under the condition that no charge is accumulated in the
probe. The transport statistics under this constraint was developed in Refs. [26, 27]
using a stochastic path integral approach. The findings are that the model of voltage
and dephasing probes are perfectly equivalent for the case of one single-channel probe.
For multi-channel or multiple probes the transport statistics of voltage and dephasing
probes differs.

Here we address the question of whether information about the statistics of
the probe itself can be obtained. Usually the quantities investigated with the FCS
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Figure 6. a) The current as a function of time at a terminal. The charge
transfered into a terminal is absorbed immediately. For a one-channel contact
only one charge per time step τs = h/eV can enter. b) Charge on a voltage
(dephasing) probe as a function of time. The charge on the probe accumulates
and fluctuates on the time scale τd, the delay time of the probe. The figure is for
τd ≫ τs.

are the number of charges Q =
∫ τ

0
dtI(t) counted during a measurement time τ .

Consequently, we now need to consider the statistics of the quantities
∫

dtVp(t) and
∫

dtnp(t). More precisely we are interested in for example 1
τ

∫

dtdt′ 〈Vp(t)Vp(t′)〉
or 1

τ

∫

dtdt′ 〈np(t)np(t
′)〉. For the voltage probe we can define a normalized phase

φp proportional to the time integrated voltage and for the dephasing probe a time
averaged occupation number n̄p = n̄p(E),

φp =
1

N

e

h

∫ τ

0

dtVp(t) =
1

V τ

∫ τ

0

dtVp(t), (20)

n̄p =
1

τ

∫ τ

0

dtnp(E, t), (21)

where N = eV τ/h. These are the accessible quantities describing the probe, they
are not numbers of particles but phases. This is a consequence of the fact that
charges transfered into the terminals are absorbed, but the charge on the probe is
conserved. Fig. 6 illustrates this difference. Both φp and n̄p vary from measurement
to measurement, because the injection of particles into the probe that determines the
time averaged potential and the time averaged occupation number is a probabilistic
process. The phase φp is proportional to the total charge on the probe integrated
during the measurement time τ : φp = e

CNh

∫ τ

0 dtQp(t), with C the capacitance of the
voltage probe. In Refs. [11] and [12] the FCS of charge fluctuations in a chaotic cavity
were investigated, conceptually this is similar to the FCS of φp addressed here. As
pointed out in Ref. [11], the quantity

∫ τ

0 dtQp(t) has no direct physical meaning, but
can be understood as the time spent by all electrons in the cavity (or probe) after time
τ , or alternatively as the phase picked up due to the potential integrated over time
τ . In analogy to this, the phase n̄p is proportional to the charge in an energy interval
dE integrated during τ . We only consider the case that there is a large number of
states in this energy interval. This corresponds to the case of a long delay time τd of
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particles inside the probe. For the stochastic path integral approach discussed here
it is important that the charge on the probe is slowly fluctuating compared to the
inverse attempt frequency τs = h/eV : τd ≫ τs. This allows to justify the saddle
point solutions which will be used later on. A different dynamics at voltage probes is
considered in Ref. [55].

3.1. Voltage probe.

We define a joint probability P (Q, φp) that Q charges are transmitted during τ and
the phase due to the potential of the voltage probe is φp. By definition we have

P (Q) =
∫ 1

0 dφpP (Q, φp). The conjugated variable to φp is a number called mp.
Fourier transforms in the variables Q or φp or in both of them are possible. Thus
there are four equivalent functions containing all informations about the transport
and the probe statistics: P (Q, φp), S(Λ, mp), ξ(Λ, φp) and ζ(Q, mp). Note that the
counting fields Λ are periodic in 2π, but φp has a period of 1. Thus the exponent in
the transformation is multiplied by 2π. Explicitly written we have for example,

P (Q, φp) =

∫

dΛ
∑

mp

eS(Λ,mp)−iΛQ+2πiφpmp , (22)

P (Q, φp) =

∫

dΛeξ(Λ,φp)−iΛQ. (23)

In particular we are interested in the distribution P (φp) of the phase φp alone. It is
obtained from the relation

P (φp) =
∑

Q

P (Q, φp) = eξ(Λ=0,φp). (24)

Refs. [26, 27] used the stochastic path integral to calculate the generating function
of a conductor coupled to a voltage or dephasing probe. With this formalism also
the joint functions P, S, ξ and ζ introduced above are accessible. A description of the
procedure is given in the appendix, here we simply state the results.

Most directly the function ξ(Λ, φp) can be determined by an integral

eξ(Λ,φp) =

∫

dλpe
S̄V (Λ,λp,Vp=V φp). (25)

A very long measurement time τ ≫ τd defines the stationary case considered here
where the variables λp and Vp are time independent. The function S̄V (Λ, λp, Vp) is
given by [54]

S̄V (Λ, λp, Vp) =
τ

h

∫

dEH0 (26)

with

H0 = ln det
[

1 + ñ
(

λ̃†S†λ̃S − 1
)]

. (27)

For a conductor with single mode contacts to the M terminals and to the probe,
the scattering matrix S is of dimension (M + 1) × (M + 1). The matrix ñ contains
the occupation numbers of the different terminals with ñ = diag(n1, n2, . . . , nM , np)

(here np ≡ fp(Vp)), and the matrix λ̃ introduces the counting fields, λ̃ =
diag(eiλ1 , eiλ2 , . . . , eiλM , eiλp).

To proceed it is useful to introduce the expressions qkl containing multi-particle
scattering probabilities multiplied with the appropriate counting fields in the contacts.
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The index l = 0, 1 denotes the number of particles injected into the probe, and k = 0, 1
the number of particles emitted from the probe [27]. Below, for the examples of interest
here, we give the explicite expressions for the qkl. With the help of the qkl, the function
H0 is

H0(λp, np) = ln
[

(1 − np)
(

q00 + q01e
iλp

)

+ np

(

q11 + q10e
−iλp

)]

. (28)

Using Eq. (28) we obtain for Eq. (26), with N = eτ
h V ,

S̄V = N
(

φp ln[q11 + q10e
−iλp ] + (1 − φp) ln[q00 + q01e

iλp ]
)

. (29)

The integral (25) is solved in saddle point approximation. The saddle point equation
∂S̄V

∂λp
= 0 is quadratic in eiλp . The solution satisfying the normalization condition

∫

dφpe
ξ(0,φp) = 1 is

eiλ̄p =
−q01q10(1 − 2φp) +

√

(q01q10(1 − 2φp))2 + 4q00q01q10q11φp(1 − φp)

2q10q11(1 − φp)
. (30)

The generating function is in saddle point approximation

eξ(Λ,φp) = eS̄V (Λ,λ̄p,V φp). (31)

As demonstrated in Ref. [27, 26], the saddle point approximation is correct when
the delay time of the probe is much longer than the inverse average attempt frequency,
τd ≫ h/eV .

To obtain the cumulants of the distribution function it is important to look at
the joint generating function S(Λ, mp). The auto- and cross-correlations studied in
section 2 can be expressed in analogy to Eqs. (19) as

〈

∆V 2
p

〉

= V 2
〈

∆φ2
p

〉

= −V 2τ

4π2

∂2S

∂m2
p

, (32)

〈∆Vp∆Iα〉 =
V

τ
〈∆φp∆Qα〉 =

eV

2π

∂2S

∂λα∂mp
. (33)

The generating function S(Λ, mp) is in principle obtained by a Fourier transform
of ξ(Λ, φp) as indicated in Eqs. (22) and (23). Another, more transparent way is
to express S(Λ, mp) with the help of Eq. (25) and solve the coupled saddle point
equations. This is shown in the appendix.

3.2. Dephasing probe.

The distribution function for the average occupation number n̄p of the dephasing probe
can be found in a way similar to what is described above for the voltage probe. Here,
the distribution PE(Q) is energy dependent and the vector Q denotes the charges per
energy interval, Q = Q(E)dE. The function PE(Q, n̄p) is the joint probability that Q

charges are transmitted during τ and the average occupation number takes the value
n̄p in the energy interval dE. The conjugated variable to n̄p is a number called γp,
and the corresponding generating functions and distribution functions are PE(Q, n̄p),
SE(Λ, γp), ξE(Λ, n̄p) and ζE(Q, γp) with for example

PE(Q, n̄p) =

∫

dΛ
∑

γp

eSE(Λ,γp)−iΛQ+i2πn̄pγp . (34)
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With this the fluctuations and correlations of section 2 are
〈

∆n2
p

〉

= − dEτ

4π2

∂2S

∂γ2
p

, (35)

〈∆np∆iα〉 =
e

2π

∂2S

∂λα∂γp
. (36)

Note that the counting fields λα are dimensionless and of order 1, but the variable γp

and the generating function S scale with dEτ/h, leading to the proportionality factors
above. Here again, we are most interested in the distribution function

PE(n̄p) =
∑

Q

PE(Q, n̄p) = eξE(Λ=0,n̄p). (37)

The function ξE(Λ, n̄p) is given from the stochastic path integral approach in the
stationary limit:

eξE(Λ,n̄p) =

∫

dλpe
S̄E(Λ,λp,np=n̄p) =

∫

dλpe
dEτ

h
H0(λp,n̄p). (38)

The saddle point equation ∂H0

∂λp
= 0 is quadratic and the solution satisfying the

normalization is

eiλ̄p = +

√

q10n̄p

q01(1 − n̄p)
. (39)

Explicitly we obtain the generating function

ξE(Λ, n̄p) =
dEτ

h
ln

[

q00(1 − n̄p) + q11n̄p + 2
√

q10q01n̄p(1 − n̄p)

]

.(40)

Even though the distribution function P (Q) of the transmitted charge only is equal
for both voltage and dephasing probes (in the single channel case), the generating
functions Eqs. (31) and (40) are different. Technically this originates from the
different structure of the saddle point equations and their solutions Eqs. (39) and (30).
Physically the differences are based on the different occupation functions of the voltage
and dephasing probe, a Fermi function and a non-equilibrium occupation function. As
shown in Fig. 1, the later is a two-step function and carries a probabilistic uncertainty
leading to the different statistics of the number n̄p compared to the phase φp. This is
already seen in the fluctuations

〈

∆V 2
p

〉

and
〈

∆n2
p

〉

obtained by the Langevin approach
in section 2.

4. Examples.

With the formalism presented above, it is possible to discuss the full counting statistics
of voltage and occupation number fluctuations and their correlations with transferred
charge of the examples presented in section 2. Here we concentrate on the beam
splitter, the Mach-Zehnder interferometer and the double barrier.

4.1. Beamsplitter.

The beam splitter with transmission T coupled to a probe is shown in Fig. 2. It is
straightforward to evaluate the equations presented above with the expressions for
qkl. The qkl are expansion coefficients of the determinant in Eq. (27), however for this
simple example they can be found by considering the different processes in and out of
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Figure 7. Distribution functions P (φp) of the integrated voltage (a) and
PE(n̄p) of the occupation number (b) of the the probe of the beam splitter for
two transmission probabilities. The function P (φp) of the integrated voltage
is a binomial distribution whereas the function PE(n̄p) of the time integrated
occupation number of the dephasing probe is non-binomial. The plots are
normalized with respect to N = eV τ

h
or dN = dEτ

h
.

the probe. q00 describes the process that no particle enters or leaves the probe. For the
beam splitter this happens if the particle is reflected at the barrier. This process occurs
with probability 1−T . When the particle passes through the barrier with probability
T , it enters the probe, this is q01. The remaining q10 and q11 represent two-particle
processes: no particle is injected into the probe (probability 1−T ) but one particle is
emitted from the probe into terminal 2 (counting factor eiλ2), or one particle enters
with probability T and one leaves the probe into terminal 2. In conclusion,

q00 = 1 − T, q01 = T,
q10 = (1 − T )eiλ2 , q11 = Teiλ2 .

(41)

Inserting this in Eqs.(31) and (40) we obtain

ξ(λ2, φp) = N

(

φp ln
Teiλ2

φp
+ (1 − φp) ln

1 − T

1 − φp

)

, (42)

ξE(λ2, n̄p) = dN ln

[

(

√

(1 − T )(1 − n̄p) +
√

Teiλ2 n̄p

)2
]

, (43)

with N = eV τ
h and dN = dEτ

h . The two functions have a very different form. The

distribution functions P (φp) = eξ(0,φp) and PE(n̄p) = eξE(0,n̄p) are plotted in Fig. 7.
The function P (φp) is a binomial distribution. The saddle point approximation does
not lead to an binomial factor in Eq. (42). The factor can be obtained by inserting the
above expressions Eq. (41) into Eq. (29) and evaluating the integral Eq. (25) exactly.
The distribution function of n̄p for the dephasing probe is however non-binomial as
can be clearly seen in the figure.

For this simple example the joint distribution function P (Q, φp) can be directly
obtained with P (Q, φp) =

∫

dλ2

2π eξ(λ2,φp)−iλ2Q. We find that the distribution of the
phase φp equals the distribution of the charge transmitted into a contact of the beam
splitter:

P (Q, φp) = eξ(0,φp)δQφp
= P (φp)δQφp

. (44)

Also for the dephasing probe the joint distribution PE(Q, n̄p) can be calculated (in
this function Q denotes the charge per energy interval). The probability function
PE(Q, n̄p) depends on both variables Q and n̄p, in contrast to the voltage probe,
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Figure 8. The joint distribution function PE(Q, n̄p) of the charge transferred
into contact 2 and the integrated occupation number at the dephasing probe of the
beam splitter for T = 0.5. In contrast for the voltage probe, the joint distribution
P (Q, φp) is a one-dimensional binomial function with P (Q, φp) = P (φp)δQ,φp

.

Eq. (44) where Q and φp act effectively as one variable. This reflects the fact that the
occupation number n̄p represents the probability for the emission of a particle, while
the occupation in the voltage probe determines exactly each scattering event. A plot
of PE(Q, n̄p) is shown in Fig. 8.

Although the two generating functions (42) and (43) have a very different form,
integration over φp and n̄p respectively leads to the same generating function for charge

transmitted through a beam splitter: ln
∫ 1

0 dφpe
ξ(λ2,φp) =

∫

dE ln
∫ 1

0 dn̄pe
ξE(λ2,n̄p) =

N ln[1+T (eiλ2−1)]. This means that a voltage or a dephasing probe, perfectly coupled
to the conductor as shown in Fig. 2 does not affect the statistics of transmitted charge.

4.2. Mach-Zehnder interferometer.

The Mach-Zehnder interferometer is shown in Fig. 3. The coefficients qkl are
determined by the scattering matrix and are derived in Ref. [27]:

q00 =
(

(RARB(1 − ε) + TATB)eiλ3 + (RATB(1 − ε) + TARB)eiλ4

+2
√

RATARBTB(1 − ε) cosΦ(eiλ4 − eiλ3 )
)

(45)

q01 = εRA (46)

q10 = εTAei(λ3+λ4) (47)

q11 =
(

(RARB + TATB(1 − ε))eiλ3 + (RATB + TARB(1 − ε))eiλ4

+2
√

RATARBTB(1 − ε) cosΦ(eiλ4 − eiλ3 )
)

(48)

Using these parameters, the generating functions Eqs. (31) and (40) become very
long expressions, which are not explicitely written out here. Plots of the functions at
Λ = 0 are shown in Fig. 9. Note that both Eqs. (31) and (40) contain all information
about the cumulants of the transmitted charge and about the phases φp and n̄p

respectively. Thus both functions contain terms proportional to cosΦ due to the
interference. However the phase-dependence Φ drops out when we study cumulants
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Figure 9. The distribution functions P (φp) (left) of the integrated voltage and
PE(n̄p) (right) of the integrated occupation number of the probe of the Mach-
Zehnder interferometer for different coupling strength ε. The case of symmetric
beamsplitters is shown in the upper figures and the case of beamsplitters with
transmission TA = TB = 0.7 is shown in the lower figures. For ε = 0.1 both
distribution functions look very similar (in fact they are equal to first order in ε).
For stronger coupling, the tails of the distribution are broader for the dephasing
probe. The maximum of both distribution functions lies at RA = 1 − TA.

of the phase φp or the occupation number n̄p of the probe. This has been already
observed in section 2.3 and is explained by the setup of the MZI: particles enter the
probe before they could interfere and no oscillating terms appear in the cumulants of
the probe.

Interestingly, the distribution functions of φp and n̄p given by eξ(0,φp) and eξE(0,n̄p)

coincide to first order in the coupling parameter ε. This means that when only very
few particles enter the probe, the distribution functions of the potential and of the
occupation function per energy respectively behave similarly, while for a higher number
of charges in the probe the differences become more and more clear, in particular the
function P (φp) is narrower than PE(n̄p).

4.3. Double barrier.

The double barrier is shown in Fig. 4. In this setup the electrons enter the probe after
they interfere and the distribution function depends on the phase picked up. The
coefficients qkl are

q00 =
R1 + (1 − ε)(R2 + T1T2e

iλ2) + 2
√

R1R2(1 − ε) cosΦd

1 + R1R2(1 − ε) + 2
√

R1R2(1 − ε) cosΦd

(49)

q01 =
R1T2e

iλ2ε

1 + R1R2(1 − ε) + 2
√

R1R2(1 − ε) cosΦd

(50)

q10 =
T1ε

1 + R1R2(1 − ε) + 2
√

R1R2(1 − ε) cosΦd

(51)
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Figure 10. The distribution function P (φp) for the integrated voltage (a) and
PE(n̄p) for the integrated occupation number (b) of the probe of the double barrier
geometry for equal transmission probabilities T1 = T2 = 1/2 and ε = 1 − e−1 as
a function of the phase Φd. The different properties of the two probes are most
apparent around Φd = π.

q11 =
R1(1 − ε) + R2 + T1T2e

iλ2 + 2
√

R1R2(1 − ε) cosΦd

1 + R1R2(1 − ε) + 2
√

R1R2(1 − ε) cosΦd

(52)

Plots of the distribution functions of the voltage probe and the dephasing probe,
Eqs. (31) and (38) at λ2 = 0 are shown in Fig. 10. Both functions depend on the
phase and are most narrow at Φd = π. Around this value the differences between
the voltage and dephasing probe become visible: the distribution function P (φp) is
narrower than PE(n̄p). For values further away from π the functions look pretty much
alike. Since the transmission probability Tp1 has a maximum in Φd = π, this is in
agreement with our findings that the more particles enter the probe the less broad are
the distribution functions. Higher order correlations in the double barrier are briefly
discussed in the appendix Appendix B.

5. Conclusions.

In this work, using the Langevin approach, we examined the auto-correlations
of voltage fluctuations at voltage probes and occupation number fluctuations at
dephasing probes. We investigated correlations between voltage (or occupation
number) fluctuations at probes and currents at a contact of the conductor. We
determined these fluctuation spectra for several examples. Subsequently we extended
this discussion to include higher order cumulants. To achieve this we extended a
stochastic path integral approach to find the generation function for the distribution
of voltage and occupation number fluctuations and also the joint distribution of voltage
(or occupation number) fluctuations and current fluctuations. Interestingly we find
differences between the fluctuations of voltage and dephasing probes despite the fact
that for single channel probes the full counting statistics of the transmitted currents
is identical [26, 27]. This is a consequence of the fact that occupation numbers at
different energies in the dephasing probe are uncorrelated while in a voltage probe
they are correlated. The fluctuations of the occupation number of a dephasing probe
are larger than the potential fluctuations of a voltage probe. For small coupling
of the probe -corresponding to a small number of particles entering the probe- the
differences become less important. It is expected that dephasing and which path
detection are closely related. To understand this we analyzed the sensitivity of the
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correlation functions of voltage (or occupation number fluctuations) and currents to
Aharonov-Bohm oscillations. For the examples investigated here, we found that the
Aharonov-Bohm effect in the loop directly probed by the voltage or dephasing contact
is indeed absent. However, this is a consequence of the chirality of the setups chosen, it
is not a general feature [53]. Further research is needed to systematically characterize
the systems where current-voltage correlations are independent of the Aharonov-Bohm
phase.
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Appendix A. Stochastic path integral.

We show how the Eq. (25) for the voltage probe is obtained starting from the stochastic
path integral approach [4, 12]. The voltage probe is described by a Fermi function
with a potential Vp(t) fluctuating on the time scale τd. As derived in detail in Ref. [27],
the generating function SV (Λ) (the index V stands for voltage probe) is given by the
stochastic path integral

eSV (Λ) =

∫

DVpDλpe
S̃V (Λ,λp,Vp) (A.1)

S̃V =
1

h

∫ τ

0

dt

[

−iτdλpeV̇p +

∫

dEH0

]

. (A.2)

The function H0 is defined by Eq. (27) and is determined by the scattering matrix.
The term −iτdλpeV̇p results from the charge conservation on the probe. The path
integral in Vp and λp is evaluated via a saddle point approximation which is a
good approximation for τd ≫ h/eV . For a discussion of this important point see
Refs. [26, 27]. For a long measurement time τ ≫ τd, the function S̃V is stationary in
the variables λp and Vp, and the saddle point equations are:

∂S̄V

∂λp
= 0,

∂S̄V

∂Vp
= 0 with S̄V =

τ

h

∫

dEH0. (A.3)

Starting from Eq. (A.1) we also find the full counting statistics of the probe.
We define a joint probability P (Q, φp) that Q charges are transmitted and the

phase due to the potential at the probe is φp. With Eq. (A.1) the joint probability
P (Q, φp) is given by

P (Q, φp) =

∫

DVpδ

(

φp − 1

V τ

∫ τ

0

dtVp(t)

)
∫

dΛDλpeS̃V (Λ,λp,Vp)−iΛQ.(A.4)

Here the constraint φp = 1/(V τ)
∫

dtVp(t) is introduced via a functional delta function
δ
(

φp − 1
V τ

∫ τ

0 dtVp(t)
)

=
∑

mp
exp

(

2πimp(φp − 1
V τ

∫ τ

0 dtVp(t))
)

. Inserting the sum
we find

P (Q, φp) =

∫

dΛ
∑

mp

eS(Λ,mp)−iΛQ+2πiφpmp (A.5)
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where the generating function is given by

eS(Λ,mp) =

∫

DVpDλpe
S̃V (Λ,λp,Vp)− 2πimp

V τ

R

τ

0
dtVp(t). (A.6)

In the stationary limit the path integrals in λp and Vp are reduced to ordinary integrals.
Then the sum in mp in Eq. (A.5) can be evaluated giving a delta function δ(φp−Vp/V )
and thus

P (Q, φp) =

∫

dΛ

∫

dλpe
S̄V (Λ,λp,Vp=V φp)−iΛQ =

∫

dΛeξ(Λ,φp)−iΛQ (A.7)

leading to Eq. (25).
In order to obtain the joint generating function eS(Λ,mp) directly, it is convenient

to start from Eq. (A.6). In the stationary case, we have to solve the coupled saddle
point equations in φp and λp. Up to a constant, the solution is

S(Λ, mp) = N ln

[

q00 + q11e
− 2πimp

N +

√

(

q00 − q11e−
2πimp

N

)2

+ 4q01q10e−
2πimp

N

]

.(A.8)

The cumulants like the auto- and cross-correlations shown in Eqs. (32) and (33) are
then given by simple derivatives of the above function eS(Λ,mp) taken at Λ = mp = 0.

For the dephasing probe, the procedure outlined here is exactly the same, but
all functions concern an energy interval of width dE. However, the joint generating
function SE(Λ, γp) can not be obtained exactly unlike for the voltage probe.

Appendix B. Higher order correlations.

In section 2 we found that in all interfering structures considered the current-voltage
correlations were independent of the phase directly adjacent to the probe. An
interesting question is whether the full counting statistics discussed in sections 3 and
4 gives additional insight on interfering effects in higher order correlations. These

correlations are joint cumulants like
〈

∆V k
p ∆I l

α

〉

which are proportional to
dk+lS(Λ,mp)

dmk
pdλl

α

with k, l ∈ N. With the expression (A.8) we can evaluate cumulants of higher order
for different setups connected to voltage probes.

For the double barrier setup we find that S(0, mp) which determines the
distribution function of the time-integrated voltage P (φp) depends on the phase in
the dot φd as already seen in section 4.3. All cumulants linear in ∆Vp but to any
order in the current in lead 2 are independent of the phase φd and the coupling
strength ε (the proportionality sign hides factors of 2πi):

∂S(λ2, mp)

∂mp

∣

∣

∣

∣

mp=0

∝ eiλ2(1 − R)2 + 4R +
√

e2iλ2(1 − R)4 + 4eiλ2R(1 − R)2

2(eiλ2(1 − R)2 + 4R)
.(B.1)

The above function at λ2 = 0 determines the mean voltage V̄p, the first derivative
gives the current-voltage correlations that were already obtained in section 2.3 etc.
Cumulants quadratic in ∆Vp however always contain a contribution proportional to
cosφd,

∂2S(λ2, mp)

∂m2
p

∣

∣

∣

∣

mp=0

∝ R((eiλ2(1 − R)2 + 2R)(2 − ε) + 4R
√

1 − ε cosΦd)

Nε(1 − R)eiλ2/2(eiλ2(1 − R)2 + 4R)3/2
. (B.2)

For the Mach-Zehnder interferometer, the function S(0, mp) depends only on the
transmission probability of the first beam splitter, TA, and the coupling parameter
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ε in agreement with our findings of sections 2.3 and 4.2. Also for this example the
cumulants linear in ∆Vp but to any order in current do not depend on the Aharonov-
Bohm phase Φ or on the coupling strength, but on both TA and TB. We omit to print
the whole expression which is lengthy. Remarkably, higher order correlations contain
interfering terms, for example

∂3S(Λ, mp)

∂m2
p∂λ3

∝ RATA

Nε

(

(RA − TA)(RB − TB)(2 − ε) + 4
√

RATARBTB(1 − ε) cosΦ
)

.

This is an example how full counting statistics can give additional information which
is not present in the auto- and cross correlations.
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[19] C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46, 1889 (1992).
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