
 Open access Proceedings Article DOI:10.1145/3159652.3159711

Curriculum Learning for Heterogeneous Star Network Embedding via Deep
Reinforcement Learning — Source link

Meng Qu, Jian Tang, Jiawei Han

Institutions: University of Illinois at Urbana–Champaign, HEC Montréal

Published on: 02 Feb 2018 - Web Search and Data Mining

Topics: Reinforcement learning, Star network, Feature learning, Node (networking) and Markov decision process

Related papers:

 node2vec: Scalable Feature Learning for Networks

 DeepWalk: online learning of social representations

 LINE: Large-scale Information Network Embedding

 PathSim: meta path-based top-K similarity search in heterogeneous information networks

 metapath2vec: Scalable Representation Learning for Heterogeneous Networks

Share this paper:

View more about this paper here: https://typeset.io/papers/curriculum-learning-for-heterogeneous-star-network-embedding-
48oy927rns

https://typeset.io/
https://www.doi.org/10.1145/3159652.3159711
https://typeset.io/papers/curriculum-learning-for-heterogeneous-star-network-embedding-48oy927rns
https://typeset.io/authors/meng-qu-ix3yltlp4j
https://typeset.io/authors/jian-tang-3in36fs0is
https://typeset.io/authors/jiawei-han-4ak39svihe
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/institutions/hec-montreal-334cqekf
https://typeset.io/conferences/web-search-and-data-mining-luwrznbp
https://typeset.io/topics/reinforcement-learning-19scn3xh
https://typeset.io/topics/star-network-3dvpmrgf
https://typeset.io/topics/feature-learning-2ix8avmc
https://typeset.io/topics/node-networking-2dv26b4f
https://typeset.io/topics/markov-decision-process-340ddo4p
https://typeset.io/papers/node2vec-scalable-feature-learning-for-networks-yhhqueundw
https://typeset.io/papers/deepwalk-online-learning-of-social-representations-4qo03z5zdj
https://typeset.io/papers/line-large-scale-information-network-embedding-nelm7n6nct
https://typeset.io/papers/pathsim-meta-path-based-top-k-similarity-search-in-146115h9di
https://typeset.io/papers/metapath2vec-scalable-representation-learning-for-1d50kkb9w2
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/curriculum-learning-for-heterogeneous-star-network-embedding-48oy927rns
https://twitter.com/intent/tweet?text=Curriculum%20Learning%20for%20Heterogeneous%20Star%20Network%20Embedding%20via%20Deep%20Reinforcement%20Learning&url=https://typeset.io/papers/curriculum-learning-for-heterogeneous-star-network-embedding-48oy927rns
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/curriculum-learning-for-heterogeneous-star-network-embedding-48oy927rns
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/curriculum-learning-for-heterogeneous-star-network-embedding-48oy927rns
https://typeset.io/papers/curriculum-learning-for-heterogeneous-star-network-embedding-48oy927rns

c© 2018 Meng Qu

CURRICULUM LEARNING FOR HETEROGENEOUS STAR NETWORK
EMBEDDING VIA DEEP REINFORCEMENT LEARNING

BY

MENG QU

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Adviser:

Professor Jiawei Han

ABSTRACT

Learning node representations for networks has attracted much attention recently due to

its effectiveness in a variety of applications. This paper focuses on learning node represen-

tations for heterogeneous star networks, which have a center node type linked with multiple

attribute node types through different types of edges. In heterogeneous star networks, we

observe that the training order of different types of edges affects the learning performance

significantly. Therefore we study learning curricula for node representation learning in het-

erogeneous star networks, i.e., learning an optimal sequence of edges of different types for

the node representation learning process. We formulate the problem as a Markov decision

process, with the action as selecting a specific type of edges for learning or terminating the

training process, and the state as the sequence of edge types selected so far. The reward is

calculated as the performance on external tasks with node representations as features, and

the goal is to take a series of actions to maximize the cumulative rewards. We propose an

approach based on deep reinforcement learning for this problem. Our approach leverages

LSTM models to encode states and further estimate the expected cumulative reward of each

state-action pair, which essentially measures the long-term performance of different actions

at each state. Experimental results on real-world heterogeneous star networks demonstrate

the effectiveness and efficiency of our approach over competitive baseline approaches.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Professor Jiawei Han of the Computer Science Depart-

ment at the University of Illinois at Urbana-Champaign. He gave me a lot of insightful

advice and suggestions during my master’s study. Under his guidance, my research skills

were greatly improved. Also, in the second year of my master’s study, which is the darkest

year in my life, Professor Jiawei Han has always encouraged me. His encouragement and

support enabled me to keep positive and overcome all the difficulties. I am so grateful to his

guidance!

Also, I would like to thank Xiang Ren, which is a former member in our group, and now a

professor at the University of Southern California. From him, I have learned a lot, including

how to formulate a research problem, how to solve a problem, and how to write a research

paper. Without his help, I cannot publish such many papers during my master’s study.

Finally, my research was sponsored in part by the U.S. Army Research Lab. under

Cooperative Agreement No. W911NF-09-2-0053 (NSCTA), National Science Foundation

IIS-1320617 and IIS 16-18481, and grant 1U54GM114838 awarded by NIGMS through funds

provided by the trans-NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.nih.gov).

The views and conclusions contained in this document are those of the author(s) and should

not be interpreted as representing the official policies of the U.S. Army Research Laboratory

or the U.S. Government. The U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copyright notation hereon.

iv

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 PROBLEM DEFINITION . 4

CHAPTER 3 PRELIMINARY . 6

CHAPTER 4 METHODOLOGY . 7

CHAPTER 5 EXPERIMENT . 13

CHAPTER 6 RELATED WORK . 21

CHAPTER 7 CONCLUSION . 22

REFERENCES . 23

v

LIST OF TABLES

5.1 Statistics of the Datasets. 13
5.2 Quantitative results in the unsupervised setting. 15
5.3 Quantitative results in the semi-supervised setting. 16

vi

LIST OF FIGURES

1.1 An example of heterogeneous star networks and curricula. 2

4.1 Framework overview. 7
4.2 Illustration of the simulation. 8
4.3 The network structure for the learning module. 10

5.1 Performance w.r.t. training steps on the DBLP dataset. 17
5.2 Performance v.s. the running time. 18
5.3 Performance w.r.t. #simulations on the IMDB dataset. 18
5.4 Performance w.r.t. penalty. 19
5.5 The learned curriculum on the DBLP dataset. 20

vii

CHAPTER 1: INTRODUCTION

Heterogeneous networks, which encode the relationships between different types of ob-

jects, are ubiquitous in the real world. Mining heterogeneous networks has been attracting

growing attention in recent years. Among all heterogeneous networks, the star network [1] is

popular and important. A star network has a center node type and multiple attribute node

types, which link to the center nodes through different types of edges. Figure 1.1 presents an

example of the bibliography star network. The center nodes are papers, linked with authors,

venues, keywords and references through four types of edges. Analyzing star networks is an

important problem in data mining, since a variety of real-world applications can be formu-

lated as certain problems on star networks, such as author identification [2], predictive text

embedding [3] and user attribute prediction [4].

To mine heterogeneous star networks more effectively, it is helpful to learn meaningful

node representations. Traditionally, nodes are represented as bag-of-neighbors, which are

both high-dimensional and sparse. Recently, there is a growing trend to embed networks

into low-dimensional spaces [5, 6, 7], in which each node is represented as a low-dimensional

vector. The learned node representations capture the proximities between nodes, which

can benefit various applications, such as node classification [5], link prediction [7] and node

visualization [8]. The essential idea for node representation learning is to capture the node

proximities encoded in edges. In practice, existing approaches usually sample a set of edges

as training data at each learning step. To learn node representations for heterogeneous

star networks, a natural solution could be applying these approaches and sampling edges of

different types as training data.

Towards the goal of sampling edges in heterogeneous star networks, existing studies

usually leverage the random sampling [3, 9] or weighted sampling [4, 2] strategy, without

considering the relative order of edges of different types. However, each type of edges encodes

a specific kind of knowledge, which may benefit the representation learning process at differ-

ent training stages. In other words, the training order of edge types matters during training.

For example, in Figure 1.1, consider learning paper representations that preserve paper se-

mantic meanings. The venue of each paper reflects its coarse semantic domains, whereas the

keywords and references capture more concrete semantic meanings. Inspired by the human

learning process, the coarse meanings are easier to understand, and may benefit the learning

of more concrete semantics. Based on the observation, a more reasonable strategy compared

with random or weighted sampling could be first learning from the paper-venue edges, and

then moving to the paper-keyword and paper-reference edges. Therefore, the training order

of different edge types is likely to affect the representation learning performance significantly.

1

Papers

Authors Venues

Keywords References

Heterogeneous Star Network

Curriculum

Paper-Author Paper-Venue Paper-Keyword Paper-Reference

Figure 1.1: An example of heterogeneous star networks and curricula.

Indeed, in the machine learning literature, the order of training data has been proved to

be an important factor in many applications. Learning a meaningful order of the training

data (a.k.a., curriculum learning) can benefit various tasks such as shape recognition [10],

handwritten text line recognition [11], word representation learning [12], sequence predic-

tion [13] and many others. The basic idea is to start small [14], that is, selecting easier

examples to learn at first, and then gradually increasing the difficulty. Though curricu-

lum learning is widely studied, how to learn a meaningful order of training data remains

unexplored for learning node representations in heterogeneous star networks.

This motivated us to study a new problem: curriculum learning for node representation

learning in heterogeneous star networks, aiming to learn an optimal curriculum for node

representation learning, in which a curriculum is defined as a sequence of edge types used

for training (Figure 1.1). The problem is essentially a sequential decision making task, and

we formulate it as a Markov decision process [15]. At each step, our action is to select a

certain type of edges for node representation learning, or terminate the training process, and

the state is defined as the sequence of edge types selected so far. After taking an action at

a state, we will move to another state and receive a scalar reward. The goal is to learn a

sequence of edge types that maximizes the total sum of the rewards. Despite its practical

importance, the task is nontrivial, as the search space is exponential to the sequence length.

Therefore, we are seeking an approach which can learn an effective curriculum efficiently.

In this paper, we propose such an approach based on deep reinforcement learning. Our

approach learns the optimal curriculum by estimating the Q value of each state-action pair,

2

which is defined as the expected cumulative reward after taking the action from the state.

Once the Q values are learned, the optimal curriculum can be determined by sequentially

selecting the action with the maximum Q value at each step. In our approach, we learn the

Q value from two sources, i.e., a planning module and a learning module. Given a state,

the planning module calculates Q by looking ahead, which explores some subsequent actions

through simulations and approximates Q with the simulated rewards. On the other hand,

the learning module estimates Q by looking back on the past experience. Specifically, it

employs a deep neural network (LSTM models [16]) to learn from the past experience and

further make predictions. With both modules, our approach can estimate the Q value with

high accuracy and low time costs. Therefore, we are able to learn a meaningful curriculum

both effectively and efficiently.

We conduct experiments on several real-world heterogeneous star networks under the

task of node classification. Experimental results in both unsupervised and semi-supervised

settings prove the effectiveness and efficiency of our proposed approach.

To summarize,we make the following contributions:

• We define a new problem of curriculum learning for node representation learning in het-

erogeneous star networks, aiming to learn a sequence of edge types for node representation

learning.

• We formulate the problem as a Markov decision process, and propose an approach based

on deep reinforcement learning.

• We conduct experiments on real-world star networks, which prove the effectiveness and

efficiency of our proposed approach.

3

CHAPTER 2: PROBLEM DEFINITION

Heterogeneous networks encode the relationships between different types of objects, which

are widely studied recently. In this paper, we focus on a special type of heterogeneous

networks, the heterogeneous star network, which is formally defined below:

Definition 2.1: (Heterogeneous Star Network.) A Heterogeneous Star Net-

work G = (V0 ∪ {Vk}
K
k=1, {Ek}

K
k=1) contains a set of center nodes V0 and different types of

attribute nodes {Vk}
K
k=1, which connect to the center nodes V0 through different types of

edges Ek = (V0, Vk). Each edge is associated with a weight w > 0, indicating the strength of

the relationship between the linked nodes.

An example of heterogeneous star networks is the bibliography star network (Figure 1.1),

in which the center nodes are papers, with the attribute nodes as authors, venues, keywords

and references. There are four types of edges in the network: paper-author, paper-venue,

paper-keyword and paper-reference.

For many problems of heterogeneous star network analysis, it is critical to learn mean-

ingful node representations. To learn such representations, we can directly apply existing

node representation learning algorithms [5, 6, 7] by sampling a set of edges of different types

as training data. In practice, we observe that the order of the sampled edges affects the

representation learning performance significantly. Therefore we study learning curricula for

node representation learning in heterogeneous star networks. In other words, we aim at

learning a meaningful order of different types of edges for the given node representation

learning algorithm.

The problem is essentially a sequential decision making task, which can be naturally

formulated as a Markov decision process. At each step, the action is to select a certain edge

type and leverage edges of that type for node representation learning (denoted as a = yt

where yt ∈ {1, 2...K} represents an edge type), or terminate the training process (denoted

as a = STOP). The state is defined as the sequence of edge types selected so far (denoted

as s = (y1, y2...yt−1)). After taking an action at a state, we will move to another state

and receive a reward, which is calculated by a given reward function (denoted as R(s, a)

where s is the current state and a is the action we take). For different tasks, we may select

different reward functions. For example, in the node classification task, we can define the

reward as the accuracy gain after taking an action at a state, with the accuracy calculated

on a held-out dataset. Given the above definition, our goal is to take a series of actions to

maximize the cumulative rewards. In other words, we aim at learning an optimal sequence

of edge types for node representation learning. Formally, we define our problem as follows:

Definition 2.2: (Problem Definition.) Given a heterogeneous star network G =

4

(V0 ∪ {Vk}
K
k=1, {Ek}

K
k=1) and a reward function R(s, a) for each state-action pair (s, a), we

aim at taking a series of actions to maximize the total cumulative rewards. In other words,

our goal is to learn a sequence of edge types for training.

5

CHAPTER 3: PRELIMINARY

In this section, we introduce LINE [6], which is a representative node representation

learning algorithm. Given a network, LINE samples a number of edges from the network as

training data for node representation learning.

Specifically, LINE defines the probability of a node u generated by another node v as

follows:

p(u|v) =
exp(vTu)∑

u′∈V exp(vTu′)
, (3.1)

where x is the representation of each node x, and V is the node set.

To preserve the relationships between nodes, LINE minimizes the KL-divergence between

the estimated neighborhood distribution p(·|v) and the empirical neighborhood distribution

p̂(·|v) for every node v. The empirical distribution is defined as p̂(u|v) = wuv/dv, where wuv

is the weight of the edge (u, v) and dv is the degree of v. The final objective function of

LINE can be simplified as:

Oline = −
∑

(u,v)∈E

wuv log p(u|v). (3.2)

Directly optimizing the above objective is computationally expensive because it involves

traversing all nodes when computing the softmax function. Therefore LINE adopts the

negative sampling techniques [17, 18], which modify the conditional probability p(u|v) in

Eqn. 3.2 as follows:

log σ(uTv) +
N∑

n=1

Ev′∼Pneg(v)[log σ(−uTv′)], (3.3)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. The first term tries to maximize

the probabilities of some observed edges (u, v), and the second term tries to minimize the

probabilities of N noisy edges (u, v′), with v′ sampled from a noisy distribution Pneg(v) ∝ d
3/4
v

and dv is the degree of node v in the network.

The objective function can be efficiently optimized with edge sampling [6]. In each

iteration, the algorithm randomly samples an observed edge with N noisy edges, and then

maximizes Eqn. 3.3.

Next, we take LINE as an example to introduce our approach.

6

CHAPTER 4: METHODOLOGY

In this section, we introduce a deep reinforcement learning approach to the proposed

curriculum learning problem. Given a heterogeneous star network, our action at each step is

to select an edge type for representation learning or terminate the training process, and the

state is the sequence of edge types selected so far. The reward of each action is calculated

on an external task, and our goal is to take a series of actions to maximize the cumulative

rewards. In other words, we aim at learning the optimal sequence of edge types for training.

As the number of possible sequences is exponentially large, learning an effective sequence

efficiently is very challenging.

We learn such sequence by estimating the Q value Q(s, a) of each state-action pair (s, a),

which is defined as the expected cumulative reward after taking action a from state s. Once

the Q value is learned, the optimal series of actions can be easily determined by sequentially

selecting the action with the maximum Q value.

Our approach predictsQ from two sources, i.e., a planning module and a learning module,

and we denote the values calculated by them as Qp and Ql respectively. After Qp and Ql are

learned, we further combine them as a more precise estimation Q̂. To learn Q values, given

an edge type sequence as state, the planning module will simulate some actions, which either

select a type of edges as training data or stop the training process, then the obtained rewards

are leveraged to estimate Qp. Different from the planning module, the learning module learns

from the previous simulation results, and infers Ql based on these past experience. With both

modules, our approach can effectively predict the Q value (see Figure 5.3(a)). Moreover, by

carefully utilizing the past experience with the learning module, we can also calculate the Q

value very efficiently (see Figure 5.3(b)).

Even though our approach can learn a curriculum both effectively and efficiently, in prac-

tice, we may still have different emphasis on effectiveness and efficiency. To allow flexible

trade-off between them, our approach tries to penalize each action. Specifically, when calcu-

lating the reward for an action, we will subtract a constant penalty from the original reward

(𝐴, 𝐴, 𝐵, 𝐵, 𝐶)

Action

𝐵

𝐶

𝐴

Reward

0.5

0.6

0.3

State

(𝐵, 𝐶)

(𝐵, 𝐵, 𝐶)

(𝐴,𝐵, 𝐵, 𝐶)

State

Learning Module

Past Experience Deep Neural Network

(𝐴, 𝐴, 𝐵, 𝐵, 𝐶)

𝐴

𝐵

𝐶

Planning Module

Monte Carlo Tree Search
0.3

0.5

0.6

0.7

Rewards

Node Representation

Learning Algorithm

𝐶

Action

Edge Types:

[𝐴, 𝐵, 𝐶]

𝐶

𝐴

𝐶

𝐵
𝑸𝒑

𝑨	 	 	 𝑩	 	 	 𝑪

𝑸𝒍

𝑨	 	 	 𝑩	 	 	 𝑪

𝑸6

𝑨	 	 	 𝑩	 	 	 𝑪

Figure 4.1: Framework overview.

7

(𝑩, 𝑪)

(𝑩,𝑪, 𝑪)

(𝑩,𝑪,𝑩)

(𝑩,𝑪,𝑨)

(𝑩,𝑪,𝑨,𝑨)

(𝑩,𝑪,𝑨,𝑩)

(𝑩,𝑪,𝑨,𝑨)

(𝑩,𝑪,𝑨,𝑩)

𝑨

𝑩

𝑪

𝑨

𝑩

𝑨

𝑩

Node Representation

Learning Algorithm

Reward

Function

𝒓 = 𝟎. 𝟑
𝒓 = 𝟎. 𝟒

Edge Types:

[𝐴, 𝐵, 𝐶]

Figure 4.2: Illustration of the simulation.

calculated by the reward function R(s, a). A small penalty encourages our approach to

learn a longer curriculum, which has better performance but is less efficient; whereas a large

penalty leads to a shorter curriculum, with worse performance but less time costs. Overall,

the two factors can be well balanced by choosing different penalties (see Figure 5.4).

The overall framework is summarized in Figure 4.1. Next, we introduce the details of

our approach and analyze its time complexity.

4.1 PLANNING MODULE

The planning module of our approach estimates Qp by looking ahead and simulating

some subsequent actions starting from the given state. In each simulation, we first choose

a series of actions to explore, which either select a type of edges for training or terminate

the training process. Then we simulate the actions with the node representation learning

algorithm and calculate the rewards, which are further utilized to approximate the expected

cumulative reward Qp. Figure 4.2 presents an illustration of the workflow.

Specifically, in the planning module, the Qp(s, a) value of each state-action pair (s, a) is

calculated with a look-up table. Following existing studies on Monte-Carlo tree search [19,

20, 21], given a state s, in each simulation we will recursively select some actions to explore

(e.g., actions along the black path in Figure 4.2), until we reach an unvisited state (e.g., the

yellow state in Figure 4.2). Inspired by the UCT algorithm [21], at each state s, we select

the following action a to explore:

a = argmax
a

{
Qp(s, a)N(s, a)

N(s, a) + 1
+

Ql(s, a)

N(s, a) + 1
+ λ

√
lnN(s)

N(s, a) + 1
}. (4.1)

For each state-action pair (s, a), Qp(s, a) and Ql(s, a) are the Q values calculated by the

planning and learning modules respectively, N(s, a) is the visit count and N(s) =
∑

a N(s, a)

8

is the total visit count of the state s.

Such selection rule is quite intuitive. The first term is the Q value calculated by the

planning module; while the second term is calculated by the learning module, which serves

as priors and decays with repeated visits. Both terms encourage the model to exploit actions

with larger Q values in the past, as these actions are more likely to be the optimal ones. For

the third term, it favors those actions with less visit counts, as such actions can eventually

become superior than others in some cases. To balance the exploitation of the promising

actions with the exploration of others, we introduce a parameter λ. A small λ will encourage

the exploitation while a large one will encourage the exploration.

After reaching an unvisited state, we will simulate the selected actions with the node

representation learning algorithm, that is, leveraging the corresponding types of edges to

update the node representations or stop the training process. Then the rewards are calculated

by applying the reward function on the learned node representations. Suppose the sequence

of the visited states and the selected actions is (st, at, ..., st+l, at+l, su), and the corresponding

reward sequence is (rt, ..., rt+l) where ri = R(si, ai). Then we update Qp based on the

temporal difference learning method [22]:

Qp(si, ai) = Qp(si, ai) + α[ri +Qp(si+1, ai+1)−Qp(si, ai)], (4.2)

where α = 1
N(si,ai)

is the learning rate. Basically, ri is the immediate reward after taking

ai at si and Qp(si+1, ai+1) estimates the long-term reward, and we will use their sum to

approximate the expected total reward Qp(si, ai) from state si after taking action ai.

4.2 LEARNING MODULE

Different from the planning module, the learning module of our approach estimates Ql

by looking back on the past experience, without look-ahead search. More specifically, we

train a deep neural network to memorize the historical data, that is, the previously explored

state-action pairs together with the simulated rewards. Then we infer Ql based on the neural

network.

Formally, the value Ql(s, a) of each state-action pair (s, a) is calculated by a deep neural

network. In the deep neural network, we represent each edge type y ∈ {1, 2...K} and action

a ∈ {1, 2...K} with an embedding vector. Then for a state s = (y1, y2...yt), we encode it

using an LSTM layer [16]. After that, we concatenate the encoding vectors of state s and

action a, and leverage two fully connected layers to calculate Ql(s, a). Figure 4.3 shows

the structure of the neural network. By leveraging LSTM layers to encode states, we can

effectively capture the correlations of different states, which enables us to effectively infer the

9

𝑠	 	 = 	 	 (𝑦&	 	 	 	 	 	 	 	 	 	 𝑦' 	 	 	 	 ……	 	 	 	 	 𝑦)*&) 𝑎 = 𝑦)

…LSTM

Embedding

Embedding

State Action

𝑸𝒍(𝒔, 𝒂)

Figure 4.3: The network structure for the learning module.

Ql values of new state-action pairs based on their similarities with the previously explored

pairs.

To learn the parameters of the deep neural network, we treat the state-action pairs and

the corresponding rewards explored by the planning module as training data. Formally,

suppose the state-action sequence obtained in a simulation is (st, at, ..., st+l, at+l, su), and the

corresponding reward sequence is (rt, ..., rt+l), then we update the parameters based on the

temporal difference learning method [22] as follows:

wl = wl + α[ri +Ql(si+1, ai+1)−Ql(si, ai)]▽wl
Ql(si, ai), (4.3)

where wl is the parameter set of the neural network, α is the learning rate, which is updated

with the RMSProp algorithm [23] and the initial value is set as 0.001. Basically, the imme-

diate rewards ri and the long-term reward Ql(si+1, ai+1) are leveraged to approximate the

cumulative reward Ql(si, ai) of the state-action pair (si, ai).

4.3 INTEGRATING BOTH MODULES

Finally in each step, Qp and Ql are integrated as Q̂, which gives a more precise estimation

of the Q value. Then we decide the optimal action with the integrated value.

Specifically, given the current state s, we calculate Q̂(s, a) for each action a as follows:

Q̂(s, a) = {
Qp(s, a)N(s, a)

N(s, a) + 1
+

Ql(s, a)

N(s, a) + 1
}, (4.4)

where Qp(s, a) is calculated by the planning module, Ql(s, a) is calculated by the learning

module, and N(s, a) is the visit count. We see that Q̂ is a weighted average of Qp and Ql. As

Qp is estimated with look-ahead search, which is more precise, we will assign larger weight

10

to this term. For Ql, it is learned from the past experience, which serves as priors and we

will continuously decrease its weight with repeated visits.

The Q̂ value estimates the expected future rewards after taking a at s, and the action a∗

with the maximum Q̂ value should be the optimal selection at the current step. Therefore,

we will take action a∗, that is, either selecting a type of edges for node representation learning

or terminating the training process.

The overall node representation learning process with our curriculum learning approach

is summarized in Algorithm 4.1.

Algorithm 4.1 Representation learning with our approach.

Input: Star network G, reward function R, the number of simulations S.
Output: Node representations.
1: for each step do

2: Update the learning module:

3: Collect past experience as training data for the learning module.
4: Update the learning module according to Eqn. (4.3).
5: Update the planning module:

6: while simulation ≤ S do

7: Select a series actions according to Eqn. (4.1).
8: Simulate the actions with the embedding algorithm (Eqn. (3.2)).
9: Calculate the rewards with the reward function R.
10: Update the planning module according to Eqn. (4.2).
11: end while

12: Integrating both modules:

13: Calculate Q̂ value for each action according to Eqn. (4.4).
14: Select the optimal action a∗ based on Q̂.
15: if a∗ is STOP then

16: Terminate the training process.
17: end if

18: Use the corresponding type of edges for training based on Eqn. (3.2).
19: Move to the next state based on the selected action a∗.
20: end for

4.4 TIME COMPLEXITY

Finally, we analyze the time complexity of the node representation learning process with

our approach. In each step, we will simulate a series of actions, update both modules and

decide the optimal action. The time costs mainly come from the simulation process. Suppose

we conduct S simulations in each step, and we randomly sample Es edges for training if an

edge type is selected in an action. Then the overall time complexity is O(ISEs), where

I is the number of training steps. Compared with single edge type based approaches (e.g.,

DeepWalk, LINE, node2vec), the time complexity of our approach (O(ISEs)) is S time larger

11

than theirs (O(IEs)). In the experiment part, we will show that our approach requires very

limited simulations S to achieve satisfactory results (see Figure 5.3). We will also show that

our approach is quite efficient compared with several baseline approaches (see Figure 5.2).

12

CHAPTER 5: EXPERIMENT

In this section, we evaluate our approach on several real-world heterogeneous star net-

works. We compare different approaches on the center node classification task in both the

unsupervised and semi-supervised settings.

Specifically, for each compared algorithm, we treat the learned center node representa-

tions as features and train one-vs-rest linear classifiers using the LibLinear package [24] 1

for classification. In the unsupervised setting, we treat all center nodes in the training set

as the held-out data, and the reward of an action is defined as the classification accuracy

gain on the held-out dataset after taking that action. Note that in the unsupervised set-

ting, the labeled center nodes are only used for reward calculation. In some cases, we also

expect to improve node representations with the labeling information. Therefore, in the

semi-supervised setting, we treat labels as an additional type of attribute nodes to guide the

learning process. We use 70% center nodes in the training set to construct edges between

center nodes and labels, and treat the remaining 30% as the held-out data. The reward of

an action is defined as the classification accuracy gain on the held-out dataset after taking

that action. The classification performance is evaluated using the Macro-F1 and Micro-F1

scores. Note that Micro-F1 is equal to accuracy in our setting since each node has only one

label.

Table 5.1: Statistics of the Datasets.
Dataset DBLP Yelp IMDB

Center Nodes 107,833 77,445 10,692
Attribute Type Citation Author Word Review Name User User Movie Keyword Actor Actress Director Writer

Attribute Nodes 107,833 46,297 23,818 127,203 29,791 552,339 69,878 10,676 58,952 54,171 104,473 3,127 8,164
Edges 655,030 117,415 346,100 20,858,371 218,034 2,225,213 10,000,054 5,318,912 564,019 90,027 206,290 6,698 15,917

Training Nodes 13,643 17,468 1,006
Test Nodes 30,000 30,000 3,000

5.1 EXPERIMENT SETUP

5.1.1 DATASETS

• DBLP: A bibliography star network constructed from the DBLP dataset [25]2. The

papers are the center nodes and the authors, citations, words in the titles are treated as

the attribute nodes. The weights of all edges are set as 1. For the center nodes (i.e.,

papers), we select eight diverse research fields as labels including “machine learning”,

“natural language processing”, “programming language”, “data mining”, “database”,

“system technology”, “hardware and theory”. For each research domain, several

representative conferences are selected, and only papers published in these conferences

1https://www.csie.ntu.edu.tw/ cjlin/liblinear/
2https://aminer.org/AMinerNetwork

13

are collected to construct the networks.

• Yelp: A business network constructed from the Yelp dataset 3, with business as the

center node type, and user, word in business names, word in business reviews as

attribute nodes. The weight of the edge between a business and a user is the number of

reviews written by the user for the business. The weight of the edge between a business

and a word is the frequency of the word in the business name/reviews. We select six

categories including “Restaurants”, “Hotels”, “Shopping”, “Health & Medical”, “Beauty

& Spas”, “Arts & Entertainment” as labels. Businesses with multiple labels are excluded

from the labeled set.

• IMDB: A movie network constructed from the IMDB dataset 4. We treat the movies as

the center nodes and other entities as the attribute nodes, including users, movies,

keywords, actors, actresses, directors, writers. For each (movie, user) pair, the edge

weight is set as 1 if the user once rated the movie. For each (movie, movie) pair, the

weight is defined as the number of users who watch one movie immediately after

watching the other one. We treat the movie genres as classification labels and movies

with more than one genre are excluded from the labeled set.

5.1.2 COMPARED ALGORITHMS

• LINE: A node representation learning algorithm for networks with a single type of

edges [6]. We report the best results of LINE with each single type of edges (LINE).

Besides, we also apply LINE to multiple types of edges by assigning different sampling

weights to different edge types, with the weights learned by grid search on the held-out

dataset (LINE-Weight). Such weight selection strategy is widely adopted by existing

methods [4, 2].

• node2vec: Another node representation learning approach for a single edge type [7].

Similarly, the best results on a single type of edges (node2vec) and the results on

multiple types of edges through weight learning (node2vec-Weight) are reported.

• Rand: Randomly select a type of edges at each training step, and use LINE for node

representation learning [3]. The number of training steps is set as 300 in all datasets to

ensure convergence.

• Greedy: Greedily select the action (i.e., selecting an edge type or terminating training)

with the maximum immediate reward at each step, and learn node representations with

LINE.

• DRL: Learn curricula with our Deep Reinforcement Learning approach, and learn node

representations with LINE.

3https://www.yelp.com
4http://files.grouplens.org/datasets/movielens/ml-10m-README.html

14

• DRL-Shuf : Shuffle the curriculum learned by our approach, and learn node

representations with LINE.

• DRL-P: Learn curricula with only the planning module, and keep Ql calculated by the

learning module as 0.

• DRL-L: Learn curricula with only the learning module, and keep Qp calculated by the

planning module as 0.

5.1.3 PARAMETER SETTINGS

For all approaches, we set the dimension of the node representations as 100. For node2vec,

we set the window size as 10, the walk length as 40, as suggested in [5]. The parameters p

and q for controlling the random walk process are selected on the held-out dataset. For

LINE, the number of negative samples is set as 5, and the learning rate is set as 0.015. For

all the curriculum learning based approaches, if an action is to select an edge type for

training, we will randomly sample 1M edges of that type as training data to update the

node representations. For the learning module of our approach, the dimensions of the

embedding layer and the hidden layer are set as 10. For the planning module of our

approach, the parameter λ for balancing the exploitation and exploration is set as 0.2, and

the penalty of each action is set as 10−4 by default. The number of simulations at each step

is set as 12 for the DBLP and Yelp datasets, and 20 for the IMDB dataset.

5.2 QUANTITATIVE RESULTS

In this section, we report the quantitative results on the center node classification task in

both the unsupervised setting and the semi-supervised setting.

Table 5.2: Quantitative results in the unsupervised setting.

Type Algorithm
DBLP Yelp IMDB

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Single Type
LINE 75.59 76.26 80.91 87.63 28.26 72.60

node2vec 78.40 79.79 72.44 81.05 24.28 70.13

Weight Learning
LINE-Weight 79.76 80.99 86.78 91.32 30.63 75.60

node2vec-Weight 80.50 81.42 85.42 90.63 26.43 74.03

Curriculum Learning

Rand 76.85 78.37 82.16 88.61 28.35 73.93
Greedy 79.60 80.96 85.89 91.02 28.81 74.57
DRL-P 81.04 81.95 88.87 92.85 29.55 75.93
DRL-L 80.15 81.18 86.43 91.46 29.19 72.70

DRL-Shuf 79.36 80.42 86.28 91.20 28.29 75.37
DRL-MCT 81.33 82.46 89.30 93.31 33.09 78.60

5.2.1 UNSUPERVISED SETTING

Table 5.2 presents the results in the unsupervised setting. We see that considering multiple

types of edges achieves much better results compared with single type based approaches

15

(single type). For different strategies combining multiple edge types, we observe that

learning their orders (curriculum learning) consistently outperforms learning the sampling

weights (weight learning), which demonstrates that curriculum learning is a more effective

strategy for the node representation learning problem in star networks. For different

curriculum learning approaches, the performance of random sampling (Rand) is the worst.

The approach of greedily selecting the action with the maximum immediate reward

(Greedy) performs much better.

With both the learning and planning modules, our deep reinforcement learning based

approach (DRL) significantly improves the performance. Comparing our approach with its

variants, we see that ignoring either the planning module or the learning module (DRL-P

and DRL-L) leads to much worse results, which proves that the two modules can indeed

mutually complement to improve the performance. Besides, if we shuffle the learned

curriculum (DRL-Shuf), the results significantly drop. This shows that the training order

of different edge types can indeed affect the performance. Overall, our approach can learn

an effective curriculum to improve the node representation learning process.

Table 5.3: Quantitative results in the semi-supervised setting.

Type Algorithm
DBLP Yelp IMDB

Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1

Single Type
LINE 75.59 76.26 80.91 87.63 28.26 72.60

node2vec 78.40 79.79 72.44 81.05 24.28 70.13

Weight Learning
LINE-Weight 82.09 82.75 87.41 91.85 31.68 76.73

node2vec-Weight 82.17 83.12 87.05 91.18 27.14 74.57

Curriculum Learning

Rand 79.88 80.23 88.30 89.23 28.79 74.40
Greedy 80.26 81.49 87.42 92.17 30.08 76.33
DRL-P 82.98 83.80 89.09 93.39 31.62 77.13
DRL-L 82.26 83.16 88.07 92.41 29.52 73.87

DRL-Shuf 81.73 82.22 87.06 91.74 31.09 76.07
DRL 83.63 84.49 89.76 93.97 35.51 79.67

5.2.2 SEMI-SUPERVISED SETTING

The results in the semi-supervised setting are presented in Table 5.3. Similar results are

observed as in the unsupervised setting. The curriculum learning based approaches still

outperform those weight learning based approaches. Besides, our deep reinforcement

learning based approach (DRL) significantly outperforms other curriculum learning

approaches with random (Rand) or greedy (Greedy) strategies.

Comparing Table 5.3 with Table 5.2, we can see that the results of our approach (DRL) are

consistently improved by considering the labeled nodes during training, which shows that

our approach can also effectively integrate the labeled and unlabeled information to learn

more effective node representations.

5.3 CONVERGENCE COMPARISON

16

●
● ● ● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

0 10 20 30 40 50

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Training Step

M
ic

ro
−

F
1

● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ●

● ●
●

● ●

●

● ● ● ● ● ● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

LINE−Weight

Rand

Greedy

DRL

(a) DBLP (unsupervised)

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

0 10 20 30 40 50

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Training Step

M
ic

ro
−

F
1

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ●

● ●
● ●

●

●

●

●

●

●

●
●

●

●
● ● ●

●
●

● ● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

● ●

●

●

●

●

LINE−Weight

Rand

Greedy

DRL

(b) DBLP (semi-supervised)

Figure 5.1: Performance w.r.t. training steps on the DBLP dataset.

The quantitative results above show that our curriculum learning approach is able to learn

an effective sequence of edge types for node representation learning. To intuitively

understand how such strategy affects the training process, in this part we report the

performance of different approaches at each training step. We take the DBLP dataset as an

example, and the results in both settings are reported. To ensure the convergence of all

approaches, we constrain the number of training steps as 50.

Figure 5.1 presents the results. Compared with the weight learning based approaches

(LINE-Weight) and other curriculum learning based approaches (Rand and Greedy), DRL

converges faster and has better performance. Therefore, our approach can both help

accelerate the convergence and improve the learned representations.

5.4 EFFICIENCY COMPARISON

In the above sections, we have compared the effectiveness of different approaches. Next, we

further evaluate their efficiency. To better illustrate the efficiency of our approach, we

introduce another baseline approach Brute-Force, which learns the optimal action at each

step through brute-force search based on the obtained rewards, and the maximal search

depth is set as 3. We take the DBLP and the IMDB datasets as examples, and report both

the performance and running time of each compared algorithm. The number of training

threads is set as 16 for all approaches. For our approach, the planning module is trained on

CPU with 16 threads, whereas the learning module is learned using a GPU.

Figure 5.2 presents the results. Comparing our approach (DRL) with the approaches based

17

●

0 500 1000 1500 2000

7
6

7
7

7
8

7
9

8
0

8
1

8
2

Time (s)

M
ic

ro
−

F
1

●

●●

●

●

●

●

●

●

●

●

LINE

LINE−Weight

Rand

Greedy

Brute−Force

DRL

(a) DBLP (unsupervised)

●

0 10000 20000 30000 40000

7
3

7
4

7
5

7
6

7
7

7
8

Time (s)

M
ic

ro
−

F
1

●

●●

●

●

●

●

●

●

●

●

LINE

LINE−Weight

Rand

Greedy

Brute−Force

DRL

(b) IMDB (unsupervised)

Figure 5.2: Performance v.s. the running time.

on weight learning (LINE-Weight) and brute-force search (Brute-Force), we see that our

approach achieves close results but is much more efficient. On the other hand, our

approach significantly outperforms other curriculum learning approaches (Rand and

Greedy), and the efficiency is close. Overall, our approach can help learn more effective

node representations with close efficiency.

5.5 PARAMETER SENSITIVITY

●

●

●

●
●

7
0

7
2

7
4

7
6

7
8

8
0

Simulations

M
ic

ro
−

F
1

5 10 20 40 80

●

●

●

●

●

●

●

●

●
●

●

●

●

DRL−P

DRL−L

DRL

(a) Micro-F1 w.r.t. #simulations

●

●

●

●
●

0 500 1000 1500 2000 2500 3000

7
0

7
2

7
4

7
6

7
8

8
0

Time (s)

M
ic

ro
−

F
1

●

●

●

●

●

●

●

●

●
●

●

●

●

DRL−P

DRL−L

DRL

(b) Curves of Micro-F1 and time

Figure 5.3: Performance w.r.t. #simulations on the IMDB dataset.

18

Performance w.r.t. the number of simulations. At each training step, our approach

conducts several simulations to evaluate actions. Next, we study the performance of our

approach under different numbers of simulations. We take the IMDB dataset in the

unsupervised setting as an example. We report the Micro-F1 with respect to #simulations

in Figure 5.3(a), and show the curves of Micro-F1 and running time with different

#simulations in Figure 5.3(b) (5, 10, 20, 40, 80 simulations from left to right).

From Figure 5.3(a), we see that with both planning and learning strategies, our approach

(DPL) requires very limited simulations to achieve compelling results, which shows that

integrating them indeed improves the effectiveness. From Figure 5.3(b), we observe that

compared with either module (DRL-L and DRL-P), our approach (DRL) achieves close

results with lower time costs, demonstrating that both modules can work together to

improve the efficiency.

●

●

●

●
●

8
0
.0

8
0
.5

8
1
.0

8
1
.5

8
2
.0

8
2
.5

8
3
.0

Penalty

M
ic

ro
−

F
1

10^−1 10^−2 10^−3 10^−4 10^−5

● DRL

(a) Micro-F1

●

●

●

●

●

1
6
0

1
8
0

2
0
0

2
2
0

2
4
0

Penalty

T
im

e
 (

s
)

10^−1 10^−2 10^−3 10^−4 10^−5

● DRL

(b) Time

Figure 5.4: Performance w.r.t. penalty.

Performance w.r.t. the penalty. To balance the effectiveness with efficiency, our

approach introduces a penalty for each action when calculating the rewards. A small

penalty emphasizes the effectiveness while a large penalty emphasizes the efficiency. In this

part, we study the performance under different penalties. We take the DBLP dataset in

the unsupervised setting as an example, and report both the Micro-F1 and curriculum

length (i.e., the number of training steps in the curriculum) under different penalties.

Figure 5.4 presents the results. When the penalty is large, we observe that the performance

is quite limited but the whole training process is very efficient. As we decrease the penalty,

the results are significantly improved, but the training process also takes longer time.

19

Overall, with proper penalties, we can effectively trade off between the effectiveness and

efficiency.

5.6 CASE STUDY

0 25 50

Paper-Word Paper-Author

Paper-Citation Paper-Label

(a) DBLP (unsupervised)

0 25 50

Paper-Word Paper-Author

Paper-Citation Paper-Label

(b) DBLP (semi-supervised)

Figure 5.5: The learned curriculum on the DBLP dataset.

Finally, we present some intuitive examples to show that the curriculum learned by our

approach is indeed reasonable. Taking the DBLP dataset as an example, we present the

learned curriculum in Figure 5.5, in which we constrain the number of training steps as 50

and each color corresponds to a type of edges.

In the unsupervised setting, the edges between papers and title words are selected at the

beginning steps. The reason may be that the paper titles provide the most general

information, which can benefit the learning of other knowledge. In the semi-supervised

setting, the learned curriculum is very interesting. At the first training step, the labeled

data (i.e., edges between papers and labels) are selected, which is very intuitive. Overall,

both the labeled data (red) and unlabeled data (other colors) are selected during training,

showing that both information is useful for learning meaningful node representations, and

our approach can effectively integrate both kinds of information.

20

CHAPTER 6: RELATED WORK

Our work is related to node representation learning, which learns low dimensional vector

representations for nodes in networks. Most existing approaches including DeepWalk [5],

LINE [6] and node2vec [7] aim to preserve the structure information of networks, such that

nodes with similar neighbors tend to have similar representations. There are also some

studies [3, 4, 2, 9, 26, 27] focusing on heterogeneous networks, which exploit multiple types

of edges. However, all these approaches ignore the training order of different types of edges,

while in this paper we aim at learning a meaningful training order of edges of different

types to improve the representation learning performance.

Another category of related work is curriculum learning, which aims at learning a

meaningful order of the training data. Bengio et al. [10] first proposed the concept of

curriculum learning, and applied the idea to the tasks of shape recognition and language

modeling. The strategy was then successfully applied to various research domains such as

computer vision [28, 11, 29, 30] and natural language processing [13, 31, 12]. The basic

idea of these approaches is to start training with easy examples to first learn some simple

aspects of a given task, and then gradually increase the difficulty to learn more complex

aspects. Our work shares similar intuition with these studies, but we focus on learning

node representations for heterogeneous star networks, which remains unexplored yet.

Our work is also related to reinforcement learning and planning approaches, which aim to

solve the sequential decision making problems by either interacting with environments or

conducting simulations. These approaches have achieved impressive results in a variety of

applications, including the GO game [32, 33], real-time video games [34, 35], image

classification [36], dialogue generation [37] and optimization [38, 39]. All these approaches

either leverage the learning strategy or the planning strategy, whereas we integrate both of

them in our approach. There are also some studies combining learning and planning

strategies [40, 41], which leverage linear models to approximate Q values. Different from

them, we utilize deep neural networks (LSTM) to calculate Q values, and we focus on

different applications from theirs.

21

CHAPTER 7: CONCLUSION

In this paper, we studied the problem of curriculum learning for node representation

learning in heterogeneous star networks. We proposed a deep reinforcement learning based

approach, which integrates the learning and planning strategies. Experimental results

proved the effectiveness and efficiency of our approach. In the future, we plan to apply our

framework to general heterogeneous networks, in which a curriculum is defined as a

sequence of meta-paths [42] or hyper-edges [9].

22

REFERENCES

[1] Y. Sun, Y. Yu, and J. Han, “Ranking-based clustering of heterogeneous information
networks with star network schema,” in Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 2009, pp.
797–806.

[2] T. Chen and Y. Sun, “Task-guided and path-augmented heterogeneous network
embedding for author identification,” arXiv preprint arXiv:1612.02814, 2016.

[3] J. Tang, M. Qu, and Q. Mei, “Pte: Predictive text embedding through large-scale
heterogeneous text networks,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2015, pp. 1165–1174.

[4] J. Li, A. Ritter, and D. Jurafsky, “Learning multi-faceted representations of
individuals from heterogeneous evidence using neural networks,” arXiv preprint
arXiv:1510.05198, 2015.

[5] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social
representations,” in Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2014, pp. 701–710.

[6] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale
information network embedding,” in Proceedings of the 24th International Conference
on World Wide Web. International World Wide Web Conferences Steering
Committee, 2015, pp. 1067–1077.

[7] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in
Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2016, pp. 855–864.

[8] J. Tang, J. Liu, M. Zhang, and Q. Mei, “Visualizing large-scale and high-dimensional
data,” in Proceedings of the 25th International Conference on World Wide Web.
International World Wide Web Conferences, 2016, pp. 287–297.

[9] H. Gui, J. Liu, F. Tao, M. Jiang, B. Norick, and J. Han, “Large-scale embedding
learning in heterogeneous event data,” in Data Mining (ICDM), 2016 IEEE 16th
International Conference on. IEEE, 2016, pp. 907–912.

[10] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learning,” in
Proceedings of the 26th annual international conference on machine learning. ACM,
2009, pp. 41–48.

[11] J. Louradour and C. Kermorvant, “Curriculum learning for handwritten text line
recognition,” in Document Analysis Systems (DAS), 2014 11th IAPR International
Workshop on. IEEE, 2014, pp. 56–60.

23

[12] Y. Tsvetkov, M. Faruqui, W. Ling, and C. Dyer, “Learning the curriculum with
bayesian optimization for task-specific word representation learning,” arXiv preprint
arXiv:1605.03852, 2016.

[13] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling for sequence
prediction with recurrent neural networks,” in Advances in Neural Information
Processing Systems, 2015, pp. 1171–1179.

[14] J. L. Elman, “Learning and development in neural networks: The importance of
starting small,” Cognition, vol. 48, no. 1, pp. 71–99, 1993.

[15] R. Bellman, “A markovian decision process,” DTIC Document, Tech. Rep., 1957.

[16] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[17] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances in
neural information processing systems, 2013, pp. 3111–3119.

[18] A. Mnih and Y. W. Teh, “A fast and simple algorithm for training neural probabilistic
language models,” arXiv preprint arXiv:1206.6426, 2012.

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Machine learning, vol. 47, no. 2-3, pp. 235–256, 2002.

[20] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in European
conference on machine learning. Springer, 2006, pp. 282–293.

[21] S. Gelly and D. Silver, “Combining online and offline knowledge in uct,” in Proceedings
of the 24th international conference on Machine learning. ACM, 2007, pp. 273–280.

[22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, vol. 1, no. 1.

[23] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude,” COURSERA: Neural networks for machine learning,
vol. 4, no. 2, pp. 26–31, 2012.

[24] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Liblinear: A
library for large linear classification,” The Journal of Machine Learning Research,
vol. 9, pp. 1871–1874, 2008.

[25] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: extraction and
mining of academic social networks,” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 2008, pp.
990–998.

[26] M. Qu, J. Tang, J. Shang, X. Ren, M. Zhang, and J. Han, “An attention-based
collaboration framework for multi-view network representation learning,” arXiv
preprint arXiv:1709.06636, 2017.

24

[27] J. Li, H. Dani, X. Hu, J. Tang, Y. Chang, and H. Liu, “Attributed network embedding
for learning in a dynamic environment,” arXiv preprint arXiv:1706.01860, 2017.

[28] A. Pentina, V. Sharmanska, and C. H. Lampert, “Curriculum learning of multiple
tasks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 5492–5500.

[29] Y. J. Lee and K. Grauman, “Learning the easy things first: Self-paced visual category
discovery,” in CVPR. IEEE, 2011, pp. 1721–1728.

[30] K. J. Geras and C. Sutton, “Scheduled denoising autoencoders,” arXiv preprint
arXiv:1406.3269, 2014.

[31] V. I. Spitkovsky, H. Alshawi, and D. Jurafsky, “Baby steps: How “less is more” in
unsupervised dependency parsing,” NIPS: Grammar Induction, Representation of
Language and Language Learning, pp. 1–10, 2009.

[32] S. Gelly, Y. Wang, O. Teytaud, M. U. Patterns, and P. Tao, “Modification of uct with
patterns in monte-carlo go,” 2006.

[33] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering the
game of go with deep neural networks and tree search,” Nature.

[34] T. Pepels, M. H. Winands, and M. Lanctot, “Real-time monte carlo tree search in ms
pac-man,” IEEE Transactions on Computational Intelligence and AI in Games, vol. 6,
no. 3, pp. 245–257, 2014.

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[36] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual attention,” in
Advances in neural information processing systems, 2014, pp. 2204–2212.

[37] J. Li, W. Monroe, A. Ritter, M. Galley, J. Gao, and D. Jurafsky, “Deep reinforcement
learning for dialogue generation,” arXiv preprint arXiv:1606.01541, 2016.

[38] R. Munos, “From bandits to monte-carlo tree search: The optimistic principle applied
to optimization and planning,” 2014.

[39] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,”
arXiv preprint arXiv:1611.01578, 2016.

[40] R. S. Sutton, “Integrated architectures for learning, planning, and reacting based on
approximating dynamic programming.”

[41] D. Silver, R. S. Sutton, and M. Müller, “Sample-based learning and search with
permanent and transient memories,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 968–975.

25

[42] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks,” Proceedings of the VLDB
Endowment, vol. 4, no. 11, pp. 992–1003, 2011.

26

