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Abstract This work addresses the problem of semantic

scene understanding under fog. Although marked progress

has been made in semantic scene understanding, it is mainly

concentrated on clear-weather scenes. Extending semantic

segmentation methods to adverse weather conditions such as

fog is crucial for outdoor applications. In this paper, we pro-

pose a novel method, named Curriculum Model Adaptation

(CMAda), which gradually adapts a semantic segmentation

model from light synthetic fog to dense real fog in multi-

ple steps, using both labeled synthetic foggy data and unla-

beled real foggy data. The method is based on the fact that

the results of semantic segmentation in moderately adverse

conditions (light fog) can be bootstrapped to solve the same

problem in highly adverse conditions (dense fog). CMAda

is extensible to other adverse conditions and provides a new

paradigm for learning with synthetic data and unlabeled real

data. In addition, we present four other main stand-alone

contributions: 1) a novel method to add synthetic fog to real,

clear-weather scenes using semantic input; 2) a new fog den-

sity estimator; 3) a novel fog densification method for real

foggy scenes without known depth; and 4) the Foggy Zurich

dataset comprising 3808 real foggy images, with pixel-level

semantic annotations for 40 images with dense fog. Our ex-

periments show that 1) our fog simulation and fog density

estimator outperform their state-of-the-art counterparts with

respect to the task of semantic foggy scene understanding

(SFSU); 2) CMAda improves the performance of state-of-

the-art models for SFSU significantly, benefiting both from

our synthetic and real foggy data. The foggy datasets and

code are publicly available.
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1 Introduction

Adverse weather or illumination conditions create visibility

problems for both people and the sensors that power auto-

mated systems [15,23,44,59]. While sensors and the down-

stream vision algorithms are constantly getting better, their

performance is mainly benchmarked on clear-weather im-

ages [12, 30]. Many outdoor applications, however, cannot

escape from “bad” weather [44]. One typical example of ad-

verse weather conditions is fog, which degrades the visibil-

ity of a scene significantly [45, 64]. The denser the fog is,

the more severe this problem becomes.

During the past years, the community has made a

tremendous progress in image dehazing (defogging) to in-

crease the visibility in foggy images [28, 48, 69]. The last

few years have also witnessed a leap in object recognition.

A great deal of effort is made specifically in semantic road

scene understanding [3, 12, 16]. However, the extension of

these techniques to other weather/illumination conditions

has not received due attention, despite its importance in out-

door applications. For example, an automated car still needs

to detect other traffic agents and traffic control devices in the

presence of fog or rain. This work investigates the problem

of semantic foggy scene understanding (SFSU).

The current “standard” policy for addressing semantic

scene understanding is to train a neural network with nu-

merous annotated real images [12, 18, 57]. While this trend

of creating and using more human annotations may still con-

tinue, extending the same protocol to all conditions seems

to be problematic, as the manual annotation part is hard to
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Fig. 1 The illustrative pipeline of a two-stage instantation of CMAda for semantic scene understanding under dense fog

scale. The problem is more pronounced for adverse weather

conditions, as the difficulty of data collection and annota-

tion increases significantly. To overcome this problem, a few

streams of research have gained extensive attention: learn-

ing with limited, weak supervision [14, 43], transfer learn-

ing [10, 32], and learning with synthetic data [56, 59].

Our method falls into the middle ground, and aims to

combine the strength of these two kinds of methods. In par-

ticular, our method is developed to learn from 1) a dataset

with high-quality synthetic fog and the corresponding hu-

man annotations, and 2) a dataset with a large number of

unlabeled images with real fog. The goal of our method is to

improve the performance of SFSU without requiring extra

human annotations for foggy images.

To this end, this work proposes a novel fog simulator

to add high-quality synthetic fog to real images of clear-

weather outdoor scenes, and then leverage these partially

synthetic foggy images for SFSU. Our fog simulator builds

on the recent work of Sakaridis et al. [59], by introducing

a semantic-aware filter to exploit the structures of object in-

stances. We show that learning with our synthetic foggy data

improves the performance for SFSU. Furthermore, we learn

a fog density estimator from synthetic images of varying

fog density, and order unlabeled real images by increasing

fog density. This ordering forms the foundation of our novel

learning method Curriculum Model Adaptation (CMAda) to

gradually adapt a semantic segmentation model from clear

weather to dense fog, through light fog. CMAda is based on

the fact that recognition in moderately adverse conditions

(light fog) is easier and its results can be re-used via knowl-

edge distillation to solve a harder problem, i.e. recognition

in highly adverse conditions (dense fog).

CMAda is iterative by nature and can be implemented

for different numbers of steps. The pipeline of a two-step

implementation of CMAda is shown in Figure 1. CMAda

has the potential to be used for other adverse weather con-

ditions, and opens a new avenue for learning with synthetic

data and unlabeled real data in general. Experiments show

that CMAda yields the best results on two datasets with

dense real fog as well as a dataset with real fog of varying

density.

A shorter version of this work has been published to Eu-

ropean Conference on Computer Vision [58]. Compared to

the conference version, this paper makes the following six

additional contributions:

1. An extension of the formulation of CMAda to accommo-

date multiple adaptation steps instead of only two steps,

leading to improved performance over the conference

paper as well.

2. A novel fog densification method for real foggy scenes.

The fog densification method can close the domain

gap between light real fog and dense real fog; using it

in CMAda significantly increases the performance for

SFSU.

3. A method named Model Selection for the task of seman-

tic scene understanding in multiple weather conditions

where test images are a mixture of clear-weather images

and foggy images. This extension is important for real

world applications, as weather conditions change con-

stantly. Semantic scene understanding methods need to

be robust to such changes.
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4. An enlarged annotated dense foggy set for our Foggy

Zurich dataset, increasing its size from 16 to 40 images.1

5. More extensive experiments to diagnose the contribution

of each component of the CMAda pipeline, to compare

with more competing methods, and to comprehensively

study the usefulness of image dehazing for SFSU.

6. Other sections are also enhanced, including related work

as well as dataset collection and annotation.

The paper is structured as follows. Section 2 presents

the related work. Section 3 is devoted to our method for

simulating synthetic fog, which is followed by Section 4

for our learning approach. Section 5 summarizes our data

collection and annotation. Finally, Section 6 presents our

experimental results and Section 7 concludes this paper.

Our foggy datasets and fog simulation code are publicly

available at https://www.vision.ee.ethz.ch/

˜csakarid/Model_adaptation_SFSU_dense/.

2 Related Work

Our work is relevant to image defogging, joint image filter-

ing, foggy scene understanding, and domain adaptation.

2.1 Image Defogging/Dehazing

Fog fades the color of observed objects and reduces their

contrast. Extensive research has been conducted on im-

age defogging (dehazing) to increase the visibility of foggy

scenes [6, 19, 20, 28, 45, 48, 64]. Certain works focus par-

ticularly on enhancing foggy road scenes [46, 66]. Recent

approaches also rely on trainable architectures [65], which

have evolved to end-to-end models [41, 73]. For a com-

prehensive overview of defogging/dehazing algorithms, we

point the reader to [39,71]. Our work is complementary and

mainly focuses on SFSU, while it also investigates the use-

fulness of image dehazing in the context of SFSU.

2.2 Joint Image Filtering

Using additional images as input for filtering a target im-

age has been originally studied in settings where the target

image has low photometric quality [17, 52] or low resolu-

tion [35]. Compared to the bilateral filtering formulation of

these approaches, subsequent works propose alternative for-

mulations, such as the guided filter [29] and mutual structure

filtering [61], for better incorporating the reference image

into the filtering process. In comparison, we extend the clas-

sical cross-bilateral filter to a dual-reference cross-bilateral

1 Creating fine pixel-level annotations for dense foggy scenes is very

difficult.

filter by accepting two reference images, one of which is a

discrete label image that helps our filter adhere to the seman-

tics of the scene.

2.3 Foggy Scene Understanding

Typical examples in this line include road and lane de-

tection [4], traffic light detection [34], car and pedestrian

detection [24], and a dense, pixel-level segmentation of

road scenes into most of the relevant semantic classes [8,

12]. While deep recognition networks have been devel-

oped [25, 40, 54, 72, 75] and large-scale datasets have been

presented [12, 24], that research mainly focused on clear

weather. There is also a large body of work on fog detec-

tion [7, 21, 50, 63]. Classification of scenes into foggy and

fog-free has been tackled as well [51]. In addition, visibil-

ity estimation has been extensively studied for both day-

time [27,42,67] and nighttime [22], in the context of assisted

and autonomous driving. The closest of these works to ours

is [67], in which synthetic fog is generated and foggy images

are segmented to free-space area and vertical objects. Our

work differs in that our semantic scene understanding task

is more complex and we tackle the problem from a different

route by learning jointly from synthetic fog and real fog.

2.4 Domain Adaptation

Our work bears resemblance to transfer learning and model

adaptation. Model adaptation across weather conditions to

semantically segment simple road scenes is studied in [38].

More recently, domain adversarial based approaches were

proposed to adapt semantic segmentation models both at

pixel level and feature level from simulated to real environ-

ments [33, 60, 62, 70]. Most of these works are based on ad-

versarial domain adaptation. Our work is complementary to

methods in this vein; we adapt the model parameters with

carefully generated data, leading to an algorithm whose be-

havior is easy to understand and whose performance is more

predictable. Combining our method and adversarial domain

adaptation is a promising direction. Our work also shares

similarity to [74] in applying the general idea of curriculum

learning to domain adaptation.

The concurrent work in [15] on adaptation of seman-

tic segmentation models from daytime to nighttime using

solely real data, which was preceded by the conference ver-

sion of this paper, shows that real images captured at twi-

light are helpful for supervision transfer from daytime to

nighttime. CMAda constitutes a more complex framework,

since it leverages both synthetic foggy data and real foggy

data jointly for adapting semantic segmentation models to

fog, whereas the method in [15] uses solely real data for

https://www.vision.ee.ethz.ch/~csakarid/Model_adaptation_SFSU_dense/
https://www.vision.ee.ethz.ch/~csakarid/Model_adaptation_SFSU_dense/
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the adaptation. Moreover, the assignment of real foggy im-

ages to the correct target foggy domain through fog density

estimation is another crucial and nontrivial component of

CMAda and it is a prerequisite for using these real images

as training data in the method. By contrast, the partition of

the real dataset in [15] into subsets that correspond to dif-

ferent times of day from daytime to nighttime is trivially

performed by using the time of capture of the images.

3 Fog Simulation on Real Scenes Using Semantics

3.1 Motivation

We drive our motivation for fog simulation on real scenes

using semantic input from the pipeline that was used in [59]

to generate the Foggy Cityscapes dataset, which primarily

focuses on depth denoising and completion. This pipeline is

denoted in Figure 2 with thin gray arrows and consists of

three main steps: depth outlier detection, robust depth plane

fitting at the level of SLIC superpixels [2] using RANSAC,

and postprocessing of the completed depth map with guided

image filtering [29]. Our approach adopts the general con-

figuration of this pipeline, but aims to improve its postpro-

cessing step by leveraging the semantic annotation of the

scene as additional reference for filtering, which is indicated

in Figure 2 with the thick blue arrow.

The guided filtering step in [59] uses the clear-weather

color image as guidance to filter the depth map. However, as

previous works on image filtering [61] have shown, guided

filtering and similar joint filtering methods such as cross-

bilateral filtering [17, 52] transfer every structure that is

present in the guidance/reference image to the output target

image. Thus, any structure that is specific to the reference

image but irrelevant for the target image is transferred to the

latter erroneously.

Whereas previous approaches such as mutual-structure

filtering [61] attempt to estimate the common structure be-

tween reference and target images, we identify this common

structure with the structure that is present in the ground-truth

semantic labeling of the image. In other words, we assume

that edges which are shared by the color image and the depth

map generally coincide with semantic edges, i.e. locations in

the image where the semantic classes of adjacent pixels are

different. Under this assumption, the semantic labeling can

be used directly as the reference image in a classical cross-

bilateral filtering setting, since it contains exactly the mu-

tual structure between the color image and the depth map.

In practice, however, the boundaries drawn by humans when

creating semantic annotations are not pixel-accurate, and us-

ing the color image as additional reference helps to capture

the precise location and orientation of edges better. As a re-

sult, we formulate the postprocessing step of the completed

depth map in our fog simulation as a dual-reference cross-

bilateral filter, with color and semantic reference.

Before delving into the formulation of our filter, we

briefly argue against alternative usage cases of semantic an-

notations in our fog simulation pipeline which might seem

attractive at first sight. First, replacing SLIC superpixels

with superpixels induced by the semantic labeling for the

depth plane fitting step is not viable, because it induces very

large superpixels, for which the planarity assumption breaks

completely. Second, we have experimented with omitting

the robust depth plane fitting step altogether and applying

our dual-reference cross-bilateral filter directly on the in-

complete depth map which is output from the outlier detec-

tion step. This approach, however, is highly sensitive to out-

liers that have not been detected and invalidated in the pre-

ceding step. By contrast, these remaining outliers are han-

dled successfully by robust RANSAC-based depth plane fit-

ting.

3.2 Dual-reference Cross-bilateral Filter Using Color and

Semantics

Let us denote the RGB image of the clear-weather scene by

R and its CIELAB counterpart by J. We consider CIELAB,

as it has been designed to increase perceptual uniformity

and gives better results for bilateral filtering of color im-

ages [49]. The input image to be filtered in the postprocess-

ing step of our pipeline constitutes a scalar-valued transmit-

tance map t̂. We provide more details on this transmittance

map in Section 3.3. Last, we are given a labeling function

h : P → {1, . . . , C} (1)

which maps pixels to semantic labels, where P is the dis-

crete domain of pixel positions and C is the total number of

semantic classes in the scene. We define our dual-reference

cross-bilateral filter with color and semantic reference as

t(p) =







∑

q∈N (p)

Gσs
(‖q− p‖) [δ(h(q)− h(p))

+ µGσc
(‖J(q)− J(p)‖)] t̂(q)







/







∑

q∈N (p)

Gσs
(‖q− p‖) [δ(h(q)− h(p))

+ µGσc
(‖J(q)− J(p)‖)]







, (2)

where p and q denote pixel positions, N (p) is the neigh-

borhood of p, δ denotes the Kronecker delta, Gσs
is the
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Clear image

Semantics

Outlier detection Depth plane fitting

SLIC

Semantic-aware filter

Filtered transmittance

Synthetic foggy image

Input depth (with holes) Input depth (w/o outliers) Completed depth

Initial transmittance

Fig. 2 The pipeline of our fog simulation using semantics

spatial Gaussian kernel, Gσc
is the color-domain Gaussian

kernel and µ is a positive constant. The novel dual reference

is demonstrated in the second factor of the filter weights,

which constitutes a sum of the terms δ(h(q)−h(p)) for se-

mantic reference and Gσc
(‖J(q)− J(p)‖) for color refer-

ence, weighted by µ. The formulation of the semantic term

implies that only pixels q with the same semantic label as

the examined pixel p contribute to the output at p through

this term, which prevents blurring of semantic edges. At the

same time, the color term helps to better preserve true depth

edges that do not coincide with any semantic boundary but

are present in J, e.g. due to self-occlusion of an object.

The formulation of (2) enables an efficient implementa-

tion of our filter based on the bilateral grid [49]. More specif-

ically, we construct two separate bilateral grids that corre-

spond to the semantic and color domains respectively and

operate separately on each grid to perform filtering, com-

bining the results in the end. In this way, we handle a 3D

bilateral grid for the semantic domain and a 5D grid for the

color domain instead of a single joint 6D grid that would

dramatically increase computation time [49].

In our experiments, we set µ = 5, σs = 20, and σc = 10.

3.3 Remaining Steps

Here we outline the rest parts of our fog simulation pipeline

of Figure 2. For more details, we refer the reader to [59],

with which most parts of the pipeline are common. The stan-

dard optical model for fog that forms the basis of our fog

simulation was introduced in [36] and is expressed as

I(x) = R(x)t(x) + L(1− t(x)), (3)

where I(x) is the observed foggy image at pixel x, R(x)

is the clear scene radiance and L is the atmospheric light,

which is assumed to be globally constant. The transmittance

t(x) determines the amount of scene radiance that reaches

the camera. For homogeneous fog, transmittance depends on

the distance ℓ(x) of the scene from the camera through

t(x) = exp (−βℓ(x)) . (4)

The attenuation coefficient β controls the density of the fog:

larger values of β mean denser fog. Fog decreases the me-

teorological optical range (MOR), also known as visibility,

to less than 1 km by definition [1]. For homogeneous fog

MOR = 2.996/β, which implies

β ≥ 2.996× 10−3 m−1, (5)

where the lower bound corresponds to the lightest fog con-

figuration. In our fog simulation, the value that is used for β

always obeys (5).

The required inputs for fog simulation with (3) are the

image R of the original clear scene, atmospheric light L and

a complete transmittance map t. We use the same approach

for atmospheric light estimation as that in [59]. Moreover,

we adopt the stereoscopic inpainting method of [59] for

depth denoising and completion to obtain an initial complete

transmittance map t̂ from a noisy and incomplete input dis-

parity map D, using the recommended parameters. We filter

t̂with our dual-reference cross-bilateral filter (2) to compute

the final transmittance map t, which is used in (3) to synthe-

size the foggy image I.

Results of the presented pipeline for fog simulation on

example images from Cityscapes [12] are provided in Fig-

ure 3 for β = 0.02, which corresponds to visibility of ca.
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(a) Cityscapes (b) Foggy Cityscapes (c) Our foggy image - Foggy Cityscapes-DBF

Fig. 3 Comparison of our synthetic foggy images against Foggy Cityscapes [59]. This figure is better seen on a screen and zoomed in

150m. We specifically leverage the instance-level semantic

annotations that are provided in Cityscapes and set the la-

beling h of (1) to a different value for each distinct instance

of the same semantic class in order to distinguish adjacent

instances. We compare our synthetic foggy images against

the respective images of Foggy Cityscapes that were gener-

ated with the approach of [59]. Our synthetic foggy images

generally preserve the edges between adjacent objects with

large discrepancy in depth better than the images in Foggy

Cityscapes, because our approach utilizes semantic bound-

aries, which usually encompass these edges. The incorrect

structure transfer of color textures to the transmittance map,

which deteriorates the quality of Foggy Cityscapes, is also

reduced with our method.

We have applied our fog simulation using seman-

tics to the entire Cityscapes dataset. The resulting foggy

dataset is named Foggy Cityscapes-DBF (Dual-reference

cross-Bilateral Filter). Foggy Cityscapes-DBF is pub-

licly available at the Cityscapes website https://www.

cityscapes-dataset.com.

4 Semantic Foggy Scene Understanding

In this section, we first present a standard supervised learn-

ing approach for semantic segmentation under dense fog us-

ing our synthetic foggy data with the novel fog simulation of

Section 3, and then elaborate on our novel CMAda approach

which uses both synthetic and real foggy data.

4.1 Learning with Synthetic Fog

Generating synthetic fog from real clear-weather scenes

grants the potential of inheriting the existing human anno-

tations of these scenes, such as those from the Cityscapes

dataset [12]. This is a significant asset that enables train-

ing of standard segmentation models. Therefore, an effective

way of evaluating the merit of a fog simulator is to adapt a

segmentation model originally trained on clear weather to

the synthesized foggy images and then evaluate the adapted

model against the original one on real foggy images. The

primary goal is to verify that the standard learning methods

for semantic segmentation can benefit from our simulated

fog in the challenging scenario of real fog. This evaluation

policy has been proposed in [59]. We adopt this policy and

fine-tune the RefineNet model [40] on synthetic foggy im-

ages from our Foggy Cityscapes-DBF dataset. The perfor-

mance of our adapted models on real fog is compared to

that of the original clear-weather model as well as the mod-

els that are adapted on Foggy Cityscapes [59], providing an

objective comparison of our simulation method against [59].

The learned model can be used as a standalone approach

for semantic foggy scene understanding as shown in [59],

or it can be used as an initialization step for our CMAda

method, which is described next and learns both from syn-

thetic and real data.

https://www.cityscapes-dataset.com
https://www.cityscapes-dataset.com
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4.2 Curriculum Model Adaptation (CMAda)

In the previous section, the proposed method learns to adapt

semantic segmentation models from the domain of clear

weather to the domain of foggy weather in a single step.

While considerable improvement can be achieved (as shown

in Section 6.1.1), the method falls short when it is presented

with dense fog. This is because domain discrepancies be-

come more accentuated for denser fog: 1) the domain dis-

crepancy between synthetic foggy images and real foggy

images increases with fog density; and 2) the domain dis-

crepancy between real clear-weather images and real foggy

images increases with fog density. This section presents a

method to gradually adapt the semantic segmentation model

which was originally trained with clear-weather images to

images with dense fog by using both labeled synthetic foggy

images and unlabeled real foggy images. The method, which

we term Curriculum Model Adaptation (CMAda), uses syn-

thetic fog with a range of varying fog density—from light

fog to dense fog—and a large dataset of unlabeled real foggy

scenes with variable, unknown fog density. The goal is to

improve the performance of state-of-the-art semantic seg-

mentation models on dense foggy scenes without using any

human annotations of foggy scenes. Below, we first present

our fog density estimator and our method for densification

of fog in real foggy images without depth information, and

then proceed to the complete learning approach.

4.2.1 Fog Density Estimation

Fog density is usually determined by the visibility of the

foggy scene. An accurate estimate of fog density can bene-

fit many applications, such as image defogging [11]. Since

annotating images in a fine-grained manner regarding fog

density is very challenging, previous methods are trained on

a few hundreds of images divided into only two classes:

foggy and fog-free [11]. The performance of the system,

however, is affected by the small amount of training data

and the coarse class granularity.

In this paper, we leverage our fog simulation applied

to Cityscapes [12] for fog density estimation. Since simu-

lated fog density is directly controlled through β, we gen-

erate several versions of Foggy Cityscapes-DBF with vary-

ing β ∈ {0, 0.005, 0.01, 0.02} and train AlexNet [37] to

regress the value of β for each image, lifting the need to

handcraft features relevant to fog and to collect human an-

notations as [11] did. The predicted fog density with our

method on real images correlates well with human judg-

ments of fog density, based on a user study conducted on

our large real Foggy Zurich dataset via Amazon Mechani-

cal Turk (cf. Section 6.1.2 for results). The fog density es-

timator is used to order images in Foggy Zurich according

to fog density, paving the way for our curriculum adaptation

which learns from images with progressively denser fog. We

denote the estimator by f : x → R
+, where x is an image.

4.2.2 CMAda with Synthetic and Real Fog

The CMAda algorithm has a source domain denoted by

S, an ultimate target domain denoted by T , and an or-

dered sequence of intermediate target domains indicated by

(Ṫ1, ..., ṪK) with K being the number of intermediate do-

mains. In this work, S is clear weather, T is dense fog, and

Ṫk’s correspond to fog density that increases with k, ranging

between the density of S (zero) and T . Our method adapts

semantic segmentation models through the sequence of do-

mains (S, Ṫ1, Ṫ2, . . . , ṪK , T ). The intermediate target do-

mains Ṫk’s are optional; when K = 0, the method reduces

to a single-stage adaptation as presented in Section 4.1. Sim-

ilarly, K = 1 leads to a two-stage adaptation approach

as presented in the conference version of this paper [58],

K = 2 to a three-stage adaptation approach, and so on.

We abbreviate these instantiations of CMAda as CMAda1

(K = 0), CMAda2 (K = 1), CMAda3 (K = 2), and so on.

Let us denote by z ∈ {1, ..., Z} the domain index in

the above ordered sequence (S, Ṫ1, Ṫ2, . . . , ṪK , T ), with

Z = K + 2. In this work, the sequence of domains is sorted

in ascending order with respect to fog density. For instance,

it could be (clear weather, light fog, dense fog), with clear

weather being the source domain, dense fog the ultimate

target domain and light fog the intermediate target domain.

The approach proceeds progressively and adapts the seman-

tic segmentation model from the current domain (fog den-

sity) to the subsequent one by learning from the correspond-

ing synthetic foggy dataset and the corresponding real foggy

dataset. Once the model for the subsequent domain has been

trained, its knowledge is distilled on unlabeled real foggy

images from that domain, and then used along with a denser

version of synthetic foggy data to adapt this model to the

next domain (i.e. the immediately higher fog density).

Since the method proceeds in an iterative manner, we

only present the algorithmic details for model adaptation

from z − 1 to z. Let us use βz to indicate the fog density

for domain z, represented as the attenuation coefficient. In

order to adapt the semantic segmentation model φz−1 from

the previous domain z − 1 to the current domain z, we gen-

erate synthetic fog of the exact fog density βz and inherit

the human annotations of the original clear-weather images.

Thus, the synthetic foggy dataset for adapting to z is

Dz
syn = {(x̄βz

m ,y1
m)}Mm=1, (6)

where M is the total number of synthetic foggy images,

y1
m(i, j) ∈ {1, ..., C} is the label of pixel (i, j) of the clear-

weather image xβ1

m (β1 = 0), and C is the total number of

classes.
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For real foggy images, since no human annotations are

available, we rely on a strategy of self-learning or curricu-

lum learning. Objects in lighter fog are easier to recognize

than in denser fog, hence models trained for lighter fog are

more generalizable to real data. The model φz−1 for the pre-

vious domain z − 1 can be applied to all real foggy images

with fog density less than βz−1 in order to generate supervi-

sory labels for training model φz for domain z. Specifically,

the real foggy dataset for adapting to z is

Dz
real = {(xn, ŷ

z−1
n ) | f(xn) ≤ βz−1}

N
n=1, (7)

where ŷ
z−1
n = φz−1(xn) denotes the predicted labels of

image xn using the model φz−1.

Once the two training sets are formed, the aim is to learn

φz from Dz
syn and Dz

real. The proposed scheme balances the

contributions of both the synthetic foggy dataset Dz
syn from

domain z with human annotations and the real foggy dataset

Dz
real from domain z − 1 with labels inferred using model

φz−1:

min
φz

(

∑

(x′,y′)
∈D

z

syn

L(φz(x′),y′) + λ
∑

(x′′,y′′)
∈D

z

real

L(φz(x′′),y′′)

)

,

(8)

where L(., .) is the cross entropy loss function and λ =

w R
M

is a hyper-parameter balancing the weights of the two

datasets, with w serving as the relative weight of each real

noisily labeled image compared to each synthetic labeled

one and R being the number of images in Dz
real. We empir-

ically set w = 1 in our experiments, but an optimal value

can be obtained via cross-validation if needed. The opti-

mization of (8) is implemented by generating a hybrid data

stream and feeding it to a CNN for standard supervised train-

ing. More specifically, during training, training images are

fetched from the randomly shuffled Dz
syn and Dz

real with a

ratio of 1 : w.

We now describe the initialization stage of our method,

which is also a variant of our method when no intermediate

target domains are used. When z = 1, we are in the clear-

weather domain and the model φ1 is directly trained on a la-

beled real dataset, so no adaptation is required. For the case

z = 2, there are no real foggy images falling into the domain

z − 1 = 1 which is the clear-weather domain. In this case,

the model φ2 is trained with the synthetic dataset D2
syn only,

as specified in Section 4.1. For the remaining steps from

z = 3 on, we iteratively apply the adaptation approach intro-

duced above to adapt to domain Z, which constitutes the ul-

timate target domain T . In this work, we have experimented

with three instantiations of our method for Z = {2, 3, 4},

which we name CMAda1, CMAda2 and CMAda3 respec-

tively. The sequences of attenuation coefficients (fog den-

sities) for the three versions are (0, 0.01), (0, 0.005, 0.01)

and (0, 0.0025, 0.005, 0.01) respectively.

Figure 1 provides an overview of CMAda2. Below, we

summarize the complete operations of CMAda2 to further

help understand the method. With the chosen sequence of

attenuation coefficients (0, 0.005, 0.01), the whole pipeline

of CMAda2 is as follows:

1. generate a synthetic foggy dataset with multiple versions

of varying fog density;

2. train a model for fog density estimation on the dataset of

step 1;

3. rank the images in the real foggy dataset with the model

of step 2 according to fog density;

4. generate a dataset with light synthetic fog (β = 0.005),

and train a segmentation model on it;

5. apply the segmentation model from step 4 to the light-

fog images of the real dataset (ranked lower in step 2) to

obtain noisy semantic labels;

6. generate a dataset with dense synthetic fog (β = 0.01);

7. adapt the segmentation model from step 4 to the union

of the dense synthetic foggy dataset from step 6 and the

light real foggy one from step 5 according to (8).

4.2.3 Discussion

CMAda adapts segmentation models from clear weather to

dense fog and is inspired by curriculum learning [5], in the

sense that we first solve easier tasks with our synthetic data,

i.e. fog density estimation and semantic scene understanding

under light fog, and then acquire new knowledge from the

already “solved” tasks in order to better tackle the harder

task, i.e. semantic scene understanding under dense real fog.

CMAda also exploits the direct control of fog density for

synthetic foggy images.

This learning approach also bears resemblance to model

distillation [26, 31] or imitation [9, 13]. The underpinnings

of our proposed approach are the following: 1) in light fog

objects are easier to recognize than in dense fog, hence mod-

els trained on synthetic data are more generalizable to real

data in case both data sources contain light rather than dense

fog; and 2) models trained on the source domain can be suc-

cessfully applied to the target domain when the domain gap

is small, hence incremental (curriculum) domain adaptation

can better propagate semantic knowledge from the source

domain to the ultimate target domain than single-step do-

main adaptation approaches.

The goal of CMAda is to train a semantic segmentation

model for the ultimate target domain z. The standard recipe

is to record foggy images xβz ’s and then to manually cre-

ate semantic labels yβz ’s for those foggy images so that the

standard supervised learning can be applied. As discussed

in Section 1, there is difficulty to apply this recipe to all ad-

verse weather conditions because manual creation of yβz ’s

is very time-consuming and expensive. To address this prob-

lem, this work develops methods to automatically create two
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proxy datasets for (xβz ,yβz ). The two proxies are defined in

(6) and in (7). These two proxies reflect different and com-

plementary characteristics of (xβz ,yβz ). On the one hand,

dense synthetic fog features a similar overall visibility ob-

struction to dense real fog, but includes artifacts. On the

other hand, light real fog captures the true nonuniform and

spatially varying structure of fog, but at a different density

than dense fog. Learning jointly from both proxy datasets in

CMAda reduces the influence of their individual drawbacks.

The CMAda pipeline presented in Section 4.2.2 is an

extension of the original method proposed in the confer-

ence version [58] of this paper from a two-stage approach

to a general multiple-stage approach. CMAda is a stand-

alone approach and already outperforms competing meth-

ods for SFSU, as discussed in Section 6. In the next section,

we present an extension of CMAda, CMAda+, that further

boosts performance.

4.3 CMAda+ with Synthetic and Densified Real Fog

As defined in (6), images in the synthetic training set Dz
syn

have exactly the same fog density βz as images in the target

domain z. Images in the real dataset Dz
real, however, have

lower fog density than the target fog density βz , as defined

in (7). While the lower fog density of the real training im-

ages facilitates the self-learning stream of CMAda with real

foggy images, the remaining domain gap due to the dis-

parity in fog density hampers finding a better solution. In

Section 4.3.1, we present a method to densify fog in real

foggy images so that it matches the desired fog density. The

fog densification method is general and can be applied be-

yond CMAda. In Section 4.3.2, we use our fog densification

method to upgrade the dataset defined in (7) to a densified

foggy dataset, which is used in CMAda+ along with the syn-

thetic dataset to train the model φz .

4.3.1 Fog Densification of a Real Foggy Scene

We aim at synthesizing images with increased fog density

compared to already foggy real input images for which no

depth information is available. In this way, we can generate

multiple synthetic versions of each split of our real Foggy

Zurich dataset, where each synthetic version is character-

ized by a different, controlled range of fog densities, so that

these densified foggy images can be leveraged in our cur-

riculum adaptation. To this end, we utilize our fog density

estimator and propose a simple yet effective approach for

increasing fog density when no depth information is avail-

able for the input foggy image, by using the assumption of

constant transmittance in the scene.

More formally, we denote the input real foggy image

with Il and assume that it can be expressed through the

optical model (3). Contrary to our fog simulation on clear-

weather scenes in Section 3, the clear scene radiance R is

unknown and the input foggy image Il cannot be directly

used as its substitute for synthesizing a foggy image Id with

increased fog density, as Il does not correspond to clear

weather. Since the scene distance ℓ which determines the

transmittance through (4) is also unknown, we make the

simplifying assumption that the transmittance map for Il is

globally constant, i.e.

t(x) = tl, (9)

and use the statistics for scene distance ℓ computed on

Cityscapes, which features depth maps, to estimate tl. By

using the distance statistics from Cityscapes, we implic-

itly assume that the distribution of distances of Cityscapes

roughly matches that of our Foggy Zurich dataset, which is

supported by the fact that both datasets contain similar, road

scenes. In particular, we apply our fog density estimator on

Il to get an estimate βl of the input attenuation coefficient.

The values for scene distance ℓ of all pixels in Cityscapes are

collected into a histogram H = {(ℓi, pi) : i = 1, . . . , N}
with N distance bins, where ℓi are the bin centers and pi are

the relative frequencies of the bins. We use each bin center

as representative of all samples in the bin and compute tl as

a weighted average of the transmittance values that corre-

spond to the different bins through (4):

tl =
N
∑

i=1

pi exp (−βlℓi) . (10)

The calculation of tl via (10) enables the estimation of

the clear scene radiance R by re-expressing (3) for Il when

(9) holds as

R(x) =
Il(x)− L

tl
+ L. (11)

The globally constant atmospheric light L which is involved

in (11) is estimated in the same way as in Section 3.3.

For the output densified foggy image Id, we select a

target attenuation coefficient βd > βl and again estimate

the corresponding global transmittance value td similarly to

(10), this time plugging βd into the formula. The output im-

age Id is finally computed via (3) as

Id(x) = R(x)td + L (1− td) . (12)

If we substitute R in (12) using (11), the output image is

expressed only through tl, td, the input image Il and atmo-

spheric light L as

Id(x)= Il(x) +
td − tl
tl

(Il(x)− L)

=
td
tl
Il(x) +

(

1−
td
tl

)

L. (13)
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Fig. 4 Top row, left to right: example input image from Foggy Zurich and synthesized output image with our fog densification. Bottom row, left to

right: R, G, and B histogram of the input image, R, G, and B histogram of the output image

Equation (13) implies that our fog densification method can

bypass the explicit calculation of the clear scene radiance

R in (11), as the output image does not depend on R. In

this way, we completely avoid dehazing our input foggy im-

age as an intermediate step, which would pose challenges as

it constitutes an inverse problem, and reduce the inference

problem just to the estimation of the attenuation coefficient

by assuming a globally constant transmittance. Moreover,

(13) implies that the change in the value of a pixel Id(x)

with respect to Il(x) is linear in the difference Il(x) − L.

This means that distant parts of the scene, where Il(x) ≈ L,

are not modified significantly in the output, i.e. Id(x) ≈
Il(x). On the contrary, our fog densification modifies the

appearance of those parts of the scene which are closer to

the camera and shifts their color closer to that of the esti-

mated atmospheric light irrespective of their exact distance

from the camera. This can be observed in the example of

Figure 4, where the closer parts of the input scene such as

the red car on the left and the vegetation on the right have

brighter colors in the synthesized output. The overall shift

to brighter colors is verified by the accompanying RGB his-

tograms of the input and output images in Figure 4.

4.3.2 Fog Densification of a Real Foggy Dataset

When applying our fog densification to an entire dataset in

the context of CMAda+, a simple choice is to specify the

same target fog density βz for all images in the dataset. This

may completely close the domain gap due to different fog

density, but it ignores the variability of the true fog density

across different images in the dataset and introduces other

domain discrepancies, as our fog densification makes sim-

plifying assumptions. Thus, we propose to define the target

fog density independently for each input image.

Given the dataset Dz
real defined in (7), instead of map-

ping all βl ∈ [0, βz−1] to βd = βz , we choose to perform

a linear mapping from [0, βz−1] to [βz−1, βz]. In particular,

given a real foggy image with its estimated attenuation co-

efficient βl ∈ [0, βz−1], the target attenuation coefficient is

determined as

βd = βz−1 +
βl(βz − βz−1)

βz−1
. (14)

Using ψβl→βd
(xn) to indicate the densified image for

xn, the densified real foggy dataset for CMAda+ at step z is

Dz
real = {(ψβl→βd

(xn), ŷ
z−1
n ) | f(xn) ≤ βz−1}

N
n=1. (15)

This densified dataset is then used in CMAda+ for training,

along with the synthetic dataset defined in (6), based on the

same formulation (8) as CMAda.

4.4 Semantic Scene Understanding in Multiple Weather

Conditions

In Section 4.2.2 and Section 4.3, specialized approaches

have been developed for semantic scene understanding un-

der fog. However, in real world applications weather con-

ditions change constantly, e.g. the weather can change from

foggy to sunny or vice versa at any time. We argue that se-

mantic scene understanding methods need to be robust and

adaptive to these changes. With this aim, we propose Model

Selection, a method for selecting the appropriate model de-

pending on the encountered weather condition.
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4.4.1 Model Selection

Our method uses two expert models, one specialized for

clear weather and the other for fog. In particular, a two-class

classifier is trained to distinguish clear weather from fog,

with images from the Cityscapes dataset used as samples

of the former class and images from three versions of our

Foggy Cityscapes-DBF dataset with attenuation coefficients

0.005, 0.01, and 0.02 as samples of the latter class. We select

AlexNet [37] as the architecture of this classifier.

Denoting the semantic segmentation model specialized

for fog by φZ , the respective model for clear weather by φ1,

and the aforementioned classifier by g, the semantic labels

of a test image x are obtained through

ŷ =

{

φ1(x), if g(x) = 1,

φZ(x) otherwise,
(16)

where label 1 indicates the clear weather class and label 0

indicates fog.

The method is not limited to these two conditions and

can be directly generalized to handle multiple adverse con-

ditions, such as rain or snow.

5 The Foggy Zurich Dataset

We present the Foggy Zurich dataset, which comprises 3808

images depicting foggy road scenes in the city of Zurich and

its suburbs. We provide annotations for semantic segmenta-

tion for 40 of these scenes that contain dense fog.

5.1 Data Collection

Foggy Zurich was collected during multiple rides with a

car inside the city of Zurich and its suburbs using a Go-

Pro Hero 5 camera. We recorded four large video sequences,

and extracted video frames corresponding to those parts of

the sequences where fog is (almost) ubiquitous in the scene

at a rate of one frame per second. The extracted images are

manually cleaned by removing the duplicates (if any), re-

sulting in 3808 foggy images in total. The resolution of the

frames is 1920×1080 pixels. We mounted the camera inside

the front windshield, since we found that mounting it out-

side the vehicle resulted in significant deterioration in image

quality due to blurring artifacts caused by dew.

In particular, the small water droplets that compose fog

condense and form dew on the surface of the lens very

shortly after the vehicle starts moving, which causes severe

blurring artifacts and contrast degradation in the image, as

shown in Figure 5(b). On the contrary, mounting the cam-

era inside the windshield, as we did when collecting Foggy

Zurich, prevents these blurring artifacts and affords much

(a) Camera inside windshield

(b) Camera outside windshield

Fig. 5 Comparison of images taken in fog with the camera mounted

(a) inside and (b) outside the front windshield of the vehicle. We opt

for the former configuration for collecting Foggy Zurich

sharper images, to which the windshield surface incurs min-

imal artifacts, as shown in Figure 5(a).

5.2 Annotation of Images with Dense Fog

We use our fog density estimator presented in Section 4.2.1

to order all images in Foggy Zurich according to fog density.

Based on this ordering, we manually select 40 images with

dense fog and diverse visual scenes, and construct the test

set of Foggy Zurich therefrom, which we term Foggy Zurich-

test. The aforementioned selection is performed manually in

order to guarantee that the test set has high diversity, which

compensates for its relatively small size in terms of statisti-

cal significance of evaluation results. We annotate these im-

ages with fine pixel-level semantic annotations using the 19

evaluation classes of the Cityscapes dataset [12]: road, side-

walk, building, wall, fence, pole, traffic light, traffic sign,

vegetation, terrain, sky, person, rider, car, truck, bus, train,

motorcycle and bicycle. In addition, we assign the void la-

bel to pixels which do not belong to any of the above 19

classes, or the class of which is uncertain due to the presence

of fog. Every such pixel is ignored for semantic segmenta-

tion evaluation. Comprehensive statistics for the semantic

annotations of Foggy Zurich-test are presented in Figure 6.

Furthermore, we note that individual instances of person,
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rider, car, truck, bus, train, motorcycle and bicycle are an-

notated separately, which additionally induces bounding box

annotations for object detection for these 8 classes, although

we focus solely on semantic segmentation in this paper.

We also distinguish the semantic classes that occur fre-

quently in Foggy Zurich-test. These “frequent” classes are:

road, sidewalk, building, wall, fence, pole, traffic light, traf-

fic sign, vegetation, sky, and car. When performing evalu-

ation on Foggy Zurich-test, we occasionally report the av-

erage score over this set of frequent classes, which feature

plenty of examples, as a second metric to support the corre-

sponding results.

Despite the fact that there exists a number of prominent

large-scale datasets for semantic road scene understanding,

such as KITTI [24], Cityscapes [12] and Mapillary Vis-

tas [47], most of these datasets contain few or even no foggy

scenes, which can be attributed partly to the rarity of the

condition of fog and the difficulty of annotating foggy im-

ages. Through manual inspection, we found that even Map-

illary Vistas, which was specifically designed to also in-

clude scenes with adverse conditions such as snow, rain or

nighttime, in fact contains very few images with fog, i.e. in

the order of 10 images out of 25000, with relatively more

images depicting misty scenes, which have MOR ≥ 1km,

i.e. significantly better visibility than foggy scenes [1].

To the best of our knowledge, the only previous dataset

for semantic foggy scene understanding whose scale ex-

ceeds that of Foggy Zurich-test is Foggy Driving [59], with

101 annotated images. However, most images in Foggy

Driving contain relatively light fog and most images with

dense fog are annotated coarsely. Compared to Foggy Driv-

ing, Foggy Zurich comprises a much greater number of high-

resolution foggy images. Its larger, unlabeled part is highly

relevant for unsupervised or semi-supervised approaches

such as the one we have presented in Section 4.2.2, while

the smaller, labeled Foggy Zurich-test set features fine se-

mantic annotations for the particularly challenging setting

of dense fog, making a significant step towards evaluation of

semantic segmentation models in this setting. In Table 1, we

compare the overall annotation statistics of Foggy Zurich-

test to some of the aforementioned existing datasets; we

note that the comparison involves a test set (Foggy Zurich-

test) and unions of training plus validation sets (KITTI and

Cityscapes), which are much larger than the respective test

sets. The comparatively lower number of humans and vehi-

cles per image in Foggy Zurich-test is not a surprise, as the

condition of dense fog that characterizes the dataset discour-

ages road transportation and reduces traffic.

In order to ensure a sound training and evaluation, we

manually filter the unlabeled part of Foggy Zurich and

exclude from the resulting training sets that are used in

CMAda those images which bear resemblance to any image

in Foggy Zurich-test with respect to the depicted scene.

Table 1 Absolute and average number of annotated pixels, hu-

mans and vehicles for Foggy Zurich-test, Foggy Driving, KITTI

and Cityscapes. Only the training and validation sets of KITTI and

Cityscapes are considered. “h/im” stands for humans per image, “v/im”

for vehicles per image and “Foggy Zurich” for Foggy Zurich-test

Pixels Humans Vehicles h/im v/im

Foggy Zurich 66.1M 27 135 0.7 3.4

Foggy Driving 72.8M 290 509 2.9 5.0

KITTI 0.23G 6.1k 30.3k 0.8 4.1

Cityscapes 9.43G 24.0k 41.0k 7.0 11.8

6 Experiments

Our model of choice for experiments on semantic seg-

mentation with our CMAda pipeline is the state-of-the-art

RefineNet [40]. We use the publicly available RefineNet-

res101-Cityscapes model, which has been trained on the

clear-weather training set of Cityscapes. In all experiments

of this section, we use a constant learning rate of 5 × 10−5

and mini-batches of size 1. Moreover, we compile all ver-

sions of Foggy Cityscapes-DBF by applying our fog sim-

ulation (which is denoted by “SDBF” in the following for

short) on the same refined set of Cityscapes images that was

used in [59] to compile Foggy Cityscapes-refined. This set

comprises 498 training and 52 validation images; we use the

former for training. In our experiments, we use the values

0.005 and 0.01 for attenuation coefficient β both in SDBF

and the fog simulation of [59] (denoted by “SGF”) to gener-

ate different versions of Foggy Cityscapes-DBF and Foggy

Cityscapes respectively with varying fog density.

6.1 Performance on Foggy Scenes

For evaluation, we use 1) Foggy Zurich-test, 2) a subset of

Foggy Driving [59] containing 21 images with dense fog,

which we term Foggy Driving-dense, and 3) the entire Foggy

Driving [59].

We summarize our main experimental results in Ta-

ble 2. Overall, our method significantly improves the per-

formance of semantic segmentation under dense fog com-

pared to the original RefineNet model which has been

trained on clear-weather images of Cityscapes. More specif-

ically, we improve the performance (mIoU) from 34.6% to

46.8% on Foggy Zurich-test and from 35.8% to 43.0%

on Foggy Driving-dense. With the new extensions, our

fully-fledged CMAda3+ method significantly outperforms

CMAda2, which was originally presented in the conference

version of this paper [58].

It is worthwhile to mention that these improvements are

achieved without using any extra human annotations on top

of the original Cityscapes. Also, images in Foggy Driving

were taken by different cameras than the GoPro Hero 5 cam-
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Fig. 6 Number of annotated pixels per class for Foggy Zurich-test

era used for Foggy Zurich, showing that CMAda also gen-

eralizes well to different sensors from that corresponding to

the real training set of the method.

In the rest of Section 6.1, we analyze the effect of the in-

dividual components of our approach. This analysis demon-

strates the benefit for semantic segmentation of real foggy

scenes of: 1) our fog simulation for generating synthetic

training data, 2) our fog density estimator against a state-of-

the-art competing method, 3) combining our synthetic foggy

data from Foggy Cityscapes-DBF with unlabeled real data

from Foggy Zurich through our CMAda pipeline to adapt

gradually to dense real fog in multiple steps, and 4) using

our fog densification method to further close the gap be-

tween light real fog and dense real fog. Finally, we provide

some qualitative results.

6.1.1 Benefit of Adaptation with Our Synthetic Fog

Our first segmentation experiment shows that our semantic-

aware fog simulation (SDBF) performs competitively com-

pared to the fog simulation of [59] (SGF) for generating syn-

thetic data to adapt RefineNet to real dense fog. RefineNet-

res101-Cityscapes is fine-tuned on Foggy Cityscapes-DBF

and alternatively Foggy Cityscapes, both with attenuation

coefficient β = 0.01, for 8 epochs. The corresponding re-

sults in Table 2 are presented in the top two rows under

the group “CMAda1”. Training on synthetic fog with ei-

ther type of fog simulation helps to beat the baseline clear-

weather RefineNet model on all three test sets, the improve-

ment being more significant on Foggy Zurich-test and Foggy

Driving. In addition, SDBF slightly outperforms SGF con-

sistently.

Moreover, in all cases that both synthetic and real foggy

data are used in the two-stage CMAda pipeline, correspond-

ing to the rows of Table 2 grouped under “CMAda2”, SDBF

yields significantly higher segmentation performance on

Foggy Zurich-test compared to SGF, while the two methods

are on a par on the other two sets.

6.1.2 Benefit of Our Fog Density Estimator on Real Data

The second component of the CMAda pipeline that we ab-

late is the fog density estimator. In particular, Table 2 in-

cludes results for the single-stage pipeline with adaptation

on real images from the unlabeled part of Foggy Zurich and

the two-stage pipeline with adaptation on synthetic and real

images from Foggy Cityscapes and Foggy Zurich respec-

tively, where the ranking of real images according to fog

density is performed either with the method of [11] or with

our AlexNet-based fog density estimator described in Sec-

tion 4.2.1. In all experimental settings, our fog density es-

timator outperforms [11] significantly in terms of mIoU on

all datasets. This fully lifts the need of manually designing

features and labeling images for fog density estimation, as

was done in [11].

For further verification of our fog density estimator, we

conduct a user study on Amazon Mechanical Turk (AMT).

In order to guarantee high quality, we only employ AMT

Masters in our study and verify the answers via a Known

Answer Review Policy. Each human intelligence task (HIT)

comprises five image pairs to be compared: three pairs are

the true query pairs with images from the real Foggy Zurich

dataset, and the rest two pairs contain synthetic fog of dif-

ferent densities and are used for validation. The participants

are shown two images at a time, side by side, and are sim-

ply asked to choose the one which is more foggy. The query

pairs are sampled based on the ranking results of our esti-

mator. In order to avoid confusing cases, i.e. two images of

similar fog densities, the two images of each pair need to be

ranked at least 20 percentiles apart from each other by our

estimator.

We have collected answers for 12000 pairs in 4000 HITs.

The HITs are considered for evaluation only when both val-

idation questions are correctly answered. 87% of all HITs

are valid for evaluation. On these 10400 pairs, the agree-

ment between our fog density estimator and human judg-

ment is 89.3%. This high agreement confirms that fog den-

sity estimation is a relatively easier task which can be solved
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Table 2 Performance comparison on Foggy Zurich-test (FZ), Foggy Driving-dense (FDD) and Foggy Driving (FD) of different variants of our

CMAda pipeline as well as competing approaches, using with the mean intersection-over-union (mIoU) metric over all classes

Clear-weather Synthetic fog Real fog Density Estimator FZ FDD FD

Cityscapes [12] SGF [59] SDBF (ours) GoPro FADE [11] Ours mIoU (%) mIoU (%) mIoU (%)

Comparison

RefineNet [40] ✓ 34.6 35.8 44.3

SFSU [59] ✓ ✓ 35.7 35.9 46.3

AdSegNet [68] ✓ ✓ ✓ 25.0 15.8 29.7

CMAda2 [58] ✓ ✓ ✓ ✓ 42.9 37.3 48.5

CMAda3+ ✓ ✓ ✓ ✓ 46.8 43.0 49.8

Ablation Study

Baseline [40] ✓ 34.6 35.8 44.3

CMAda1

✓ ✓ 35.7 35.9 46.3

✓ ✓ 36.3 36.1 46.3

✓ ✓ ✓ 37.5 36.4 45.7

✓ ✓ ✓ 38.9 36.6 46.0

CMAda2

✓ ✓ ✓ ✓ 39.8 35.7 47.5

✓ ✓ ✓ ✓ 41.5 37.0 48.5

✓ ✓ ✓ ✓ 40.6 35.5 47.7

✓ ✓ ✓ ✓ 42.9 37.3 48.5

CMAda3 ✓ ✓ ✓ ✓ 43.7 40.6 48.9

CMAda2+ ✓ ✓ ✓ ✓ 43.4 40.1 49.9

CMAda3+ ✓ ✓ ✓ ✓ 46.8 43.0 49.8

Fig. 7 Foggy images from Foggy Zurich, sorted from left to right in ascending order with respect to estimated fog density using our estimator

by using synthetic data, and the acquired knowledge can

be further exploited for solving high-level tasks on foggy

scenes. Figure 7 shows foggy images in ascending order of

estimated fog density using our estimator.

6.1.3 Benefit of Adaptation with Synthetic and Real Fog

The main segmentation experiment showcases the effective-

ness of our CMAda pipeline. Foggy Cityscapes-DBF and

Foggy Cityscapes [59] are the two alternatives for the syn-

thetic foggy training sets in steps 4 and 6 of the pipeline, cor-

responding to the two alternatives for fog simulation (SDBF

and SGF respectively). Foggy Zurich serves as the real foggy

training set. We use the results of our fog density estimation

to select 1556 images from Foggy Zurich with light fog and

name this set Foggy Zurich-light. We implement CMAda2

by first fine-tuning RefineNet on Foggy Cityscapes-DBF (al-

ternatively Foggy Cityscapes) with β = 0.005 for 6k itera-

tions and then further fine-tuning it on the union of Foggy

Cityscapes-DBF (alternatively Foggy Cityscapes) with β =

0.01 and Foggy Zurich-light, where the latter set is labeled

by the aforementioned initially adapted model. Two-stage

curriculum adaptation to dense fog with synthetic and real

data, which corresponds to the results in the rows that are

grouped under “CMAda2” in Table 2, consistently outper-

forms single-stage adaptation with either only synthetic or

only real training data (“CMAda1”), irrespective of the se-

lected fog simulation and fog density estimation methods.

The combination of our fog simulation SDBF and our fog

density estimator delivers the best result on all three test sets

among all variants of CMAda2, improving upon the baseline

RefineNet model on Foggy Zurich-test by 8.3%. The same

combination also provides a clear generalization benefit of

4.2% against the baseline on Foggy Driving, even though

this dataset involves different camera sensors and scenes

than Foggy Zurich, which is the sole real-world dataset used

in our training.

We note that the significant performance benefit deliv-

ered by CMAda both on Foggy Zurich-test and Foggy Driv-

ing is not matched by the state-of-the-art domain-adversarial
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approach of [68] for adaptation of semantic segmentation

models, which we also trained both on our synthetic Foggy

Cityscapes-DBF set and our unlabeled real Foggy Zurich-

light set. This can be attributed to the fact that images cap-

tured under adverse conditions such as fog have large intra-

domain variance as a result of poor visibility, effects of ar-

tificial lighting sources and motion blur. However, we be-

lieve that domain-adversarial approaches have the potential

to be used for transferring knowledge to adverse weather

domains.

6.1.4 Benefit of Adaptation at Finer Scales

We also experiment with the three-stage instantiation of

CMAda, CMAda3, using the optimal configuration of all

components of the pipeline based on the previous compar-

isons. Compared to CMAda2, CMAda3 adapts the seman-

tic segmentation model at a finer scale, i.e. 1) from clear-

weather to mist with synthetic misty data; 2) then to light fog

with synthetic light foggy data and real misty data; and 3) fi-

nally to dense fog with synthetic dense foggy data and real

light foggy data. The exact fog densities at each stage are

defined in Section 4.2.2. In particular, the extra stage com-

pared to CMAda2 consists in labeling a split of Foggy Zurich

with very light estimated fog, which we term Foggy Zurich-

light+, via the clear-weather RefineNet model and using it

in conjunction with Foggy Cityscapes-DBF with β = 0.005
to form the training set for the first stage of CMAda.

Including this extra stage affords higher segmenta-

tion performance on all three test sets as reported in row

“CMAda3” of Table 2, outperforming the respective best

CMAda2 instance by 3.3% on Foggy Driving-dense. The

improvement of CMAda3 over CMAda2 shows that our ap-

proach benefits from adaptation at finer scales, which is in

line with the rationale of curriculum learning [5]. However,

training for a large number of stages increases the computa-

tional cost significantly. Thus, selecting the “optimal” num-

ber of stages and the exact fog densities that correspond to

the intermediate target domains needs further investigation

and could be solved to some extent by cross-validation.

6.1.5 Benefit of Fog Densification

The final component of our proposed pipeline that we

evaluate is our fog densification method, introduced in

Section 4.3. Table 2 shows the results of CMAda2+ and

CMAda3+ on the three test datasets, along with the results

of their counterparts CMAda2 and CMAda3. CMAda2+ and

CMAda2 use the same training parameters. The same holds

for CMAda3+ and CMAda3. Applying our fog densifica-

tion to the real foggy training sets used in CMAda signif-

icantly improves performance for both numbers of adap-

tation stages that are examined. For instance, CMAda3+

outperforms CMAda3 by 3.1%, 2.4% and 0.9% on Foggy

Zurich-test, Foggy Driving-dense and Foggy Driving respec-

tively. This is because without fog densification, the images

in the synthetic dataset Dz
syn of each adaptation stage (de-

fined in (6)) have the exact same fog density βz as images

in the target domain of that stage, whereas the images in

the real dataset Dz
real have lower fog density than βz (cf.

(7)). This lower fog density of the real training images fa-

cilitates the self-learning, bootstrapping strategy. However,

it also creates a domain gap between training and test images

due to the difference in their fog density. On the contrary, the

dataset with densified fog defined in (15) matches the target

fog density of the test images, which helps close this domain

gap and significantly boosts the performance of CMAda.

6.1.6 Qualitative Results and Discussion

In Figure 8, we show segmentation results on Foggy Zurich-

test generated with our best-performing method CMAda3+,

our conference paper method CMAda2 and the single-stage

version CMAda1 using only synthetic training data from

Foggy Cityscapes-DBF, compared to the method of [59] that

only uses synthetic data from Foggy Cityscapes [59] and the

clear-weather RefineNet model [40]. This visual comparison

demonstrates that our multiple-stage methods CMAda3+

and CMAda2 yield significantly better results and generally

capture the road layout more accurately than the two com-

peting approaches and our single-stage method CMAda1.

Moreover, the more stages CMAda involves, the more ac-

curate the segmentation result is in general. For instance,

on the leftmost image of Figure 8, CMAda3+ segments the

wall and the vegetation on the right side much better than

the other methods and only misclassifies some parts of them

as building, which is a much less detrimental error from a

driving perspective than confusing these classes with road,

as is the case for the other methods. Similarly, the buildings

and the tree trunk in the third image are better segmented by

CMAda3+.

To further demonstrate the behavior of CMAda, we also

show semantic segmentation results of the clear-weather Re-

fineNet model [40] and the three aforementioned variants of

our method for variable fog density in Figure 9. In particular,

we have applied our fog density estimator to Foggy Driving

and use four images therefrom for which the estimated fog

density ranges from very low to very high. First, we observe

that the clear-weather baseline performs comparably well

for very light fog due to the small domain shift from clear

weather, but for higher fog densities CMAda variants out-

perform this baseline. The advantage gets more pronounced

as fog density increases. Second, comparing the different

CMAda variants, we conclude that having more adaptation

stages leads to increasing returns as fog density increases.

For instance, the bus in the highly foggy rightmost image
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Fig. 8 Qualitative results for semantic segmentation on Foggy Zurich-test

is correctly recognized only after all three adaptation stages

have been applied.

While we observe a significant improvement with

CMAda, semantic segmentation performance on foggy

scenes is still much worse than the reported performance

by existing papers on clear-weather scenes. Foggy scenes

are indeed more challenging than clear-weather scenes with

respect to understanding their semantics. There are more

underlying causal factors of variation that generated foggy

data, which requires either more training data or more intel-

ligent learning approaches to disentangle the increased de-

grees of freedom. While our method shows considerable im-

provement by transferring semantic knowledge from clear-

weather to fog, the models are adapted in an “unsupervised”

manner, i.e. without using human annotations of real foggy

data. Incorporating a moderate amount of human annota-
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tions of real foggy scenes into our learning approach is a

promising research direction, if significantly better results

are desired.

Our method involves two data streams: partially syn-

thetic data with annotations and real data without annota-

tions. Learning from the real data stream is based on a “self-

learning” mechanism, which creates a risk of entering a neg-

ative reinforcement loop by adapting to mistakes made at

previous stages. In practice, we find that our training pro-

cess is stable. In order to further investigate this, we follow

the literature [53] to identify and exclude the erroneous pre-

dictions from training. In particular, the confidence scores

of the predictions are used as a proxy for prediction qual-

ity and we generate pseudo-labels only for pixels where this

confidence is higher than a defined threshold. This predic-

tion selection step, however, does not provide clear benefit

and thus is not included in our approach.

We believe that the low risk of entering the negative rein-

forcement loop and the steady improvement of our method

can be ascribed to two factors: 1) the accurate human an-

notations of the partially synthetic data stream restrict the

space of adapted models, ruling out solutions that would

create severe errors in the inferred labels of the real data;

and 2) each adaptation stage is initialized with the solu-

tion of the previous stage, which helps smoothly traverse

the model space from the initial clear-weather model to the

target foggy model.

6.2 Performance in Multiple Weather Conditions

We first note that the results which have been presented in

Table 2 on the Foggy Driving dataset [59], which contains

images of varying fog densities from very low to high, show

that adaptation with CMAda to dense fog also brings a sig-

nificant benefit for lower fog densities.

In the following, we turn to evaluation of our Model Se-

lection method presented in Section 4.4.1 for the task of

semantic scene understanding in multiple weather condi-

tions. We consider two conditions: foggy weather and clear

weather. This means that the test set comprises a mixture

of images captured either in clear weather or under fog.

In particular, we report the performance of three domain-

specific methods and two variants of our Model Selection

on three datasets. The three domain-specific methods are:

1) RefineNet, which is trained on Cityscapes dataset [40]

for clear weather, 2) CMAda2, which is trained for foggy

weather, and 3) CMAda3+, which is also trained for foggy

weather. The first variant of Model Selection uses RefineNet

and CMAda2 as its two expert models and the second one

uses RefineNet and CMAda3+ respectively. The three test

datasets are Cityscapes-lindau-40, Foggy Zurich-test, and

Clear-Foggy-80, which is the union of the two previous sets.

Table 3 Performance comparison of RefineNet (trained for clear

weather), CMAda2 (trained for foggy weather), CMAda3+ (trained

for foggy weather), and our Model Selection method on three

datasets: Cityscapes-lindau-40 (clear weather), Foggy Zurich-test

(foggy weather) and the union of the two Clear-Foggy-80 (clear +

foggy weather). “MS R2” stands for Model Selection with RefineNet

and CMAda2 as the two expert models and “MS R3+” for Model Se-

lection with RefineNet and CMAda3+ as the two expert models

Mean IoU over all classes (%)

Weather RefineNet CMAda2 CMAda3+ MS R2 MS R3+

Clear 67.2 65.1 59.6 67.2 67.2

Foggy 34.6 42.9 46.8 42.9 46.8

Clear + Foggy 54.3 59.1 58.1 59.3 62.2

Cityscapes-lindau-40 contains the first 40 images (in alpha-

betical order) from the city of Lindau in the validation set of

Cityscapes.

The performance of all five methods on the three datasets

is reported in Table 3. We share a few observations. First,

as discussed in previous sections, our adapted models sig-

nificantly improve the recognition performance on foggy

scenes. Second, it seems that some knowledge initially

learned for recognition in clear-weather scenes is forgotten

by our models during the adaptation process. This is also

evidenced by the visual comparison in Figure 10, where

the sky in the first image is misclassified after the adapta-

tion. This is because during the adaptation stages, we aim

for the best expert model for (dense) foggy scenes and

have not included any clear weather images. Adding some

clear-weather images into the training data will alleviate

this problem, but at a cost of lower performance on foggy

scenes. Last but not least, both variants of our Model Se-

lection method demonstrate higher performance than their

constituent expert models. The second variant of Model Se-

lection with RefineNet and CMAda3+ yields the best per-

formance. It works especially well on the Clear-Foggy-

80 dataset which contains 40 foggy images and 40 clear

weather images, due to the good performance of the two

expert models in their own domains. The improved perfor-

mance with Model Selection implies that training multiple

expert models—each for a different condition—and adap-

tively selecting the best one at testing time based on the input

is a promising direction for semantic scene understanding in

adverse conditions. We also demonstrate the improvement

with Model Selection in Figure 10 when both clear weather

and fog are considered.

6.3 Investigating the Utility of Dehazing Preprocessing

For completeness, we conduct an experimental comparison

of the baseline RefineNet model of Table 2 and our single-

stage CMAda pipeline using only synthetic training data

against a dehazing preprocessing baseline, and report the re-
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Fig. 9 Qualitative semantic segmentation results on images from Foggy Driving with varying fog density. Foggy images in the top row are sorted

from left to right in ascending order of estimated fog density using our estimator

sults on Foggy Zurich-test and Foggy Driving-dense in Ta-

bles 4 and 5 respectively. In particular, we consider dehazing

as an optional preprocessing step before feeding the input

foggy images to the segmentation model, and experiment
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Fig. 10 Qualitative semantic segmentation results under two weather

conditions: clear weather (left) and foggy weather (right).

with four options with respect to this dehazing preprocess-

ing: no dehazing at all (already examined in Section 6.1.1),

multi-scale convolutional neural networks (MSCNN) [55],

dark channel prior (DCP) [28], and non-local dehazing [6].

Apart from directly applying the original clear-weather Re-

fineNet model on the dehazed test images, the results of

Table 4 Performance comparison on Foggy Zurich-test of RefineNet

(“w/o FT”) versus fine-tuned versions of it (“FT”) trained on Foggy

Cityscapes-DBF with attenuation coefficient β = 0.005, for four op-

tions regarding dehazing: no dehazing, MSCNN [55], DCP [28], and

Non-local [6]

Mean IoU over all classes (%)

No dehazing MSCNN DCP Non-local

w/o FT 34.6 34.4 31.2 27.6

FT 36.7 36.1 34.2 29.1

Mean IoU over frequent classes (%)

No dehazing MSCNN DCP Non-local

w/o FT 51.8 48.6 42.9 41.1

FT 51.7 49.8 46.6 44.2

which are included in the “w/o FT” rows of Tables 4 and

5, we also fine-tune this model on the dehazed versions of

our synthetic Foggy Cityscapes-DBF dataset, and compare

against fine-tuning directly on the synthetic foggy images

(already examined in Section 6.1.1). Our experimental pro-

tocol is consistent: the same dehazing option is used both

before fine-tuning and at testing time. The attenuation co-

efficient for Foggy Cityscapes-DBF is β = 0.005. The rest

details are the same as in Section 6.1.1. Not applying de-

hazing generally leads to the best results irrespective of us-

ing the original model or fine-tuned versions of it. Fine-

tuning without dehazing performs best in all cases but one

(Foggy Driving-dense and evaluation on all classes), which

confirms the merit of our approach. This lack of signifi-

cant improvement with dehazing preprocessing is in congru-

ence with the findings of [59], which has dissuaded us from

including dehazing preprocessing in our default CMAda

pipeline.

Figure 11 illustrates the results of the examined dehaz-

ing methods on sample images from Foggy Zurich-test and

reveals the issues these methods face on real-world outdoor

images with dense fog. Only MSCNN are able to slightly

enhance the image contrast while introducing only minor ar-

tifacts. This correlates with the superior performance of the

segmentation model that uses MSCNN for dehazing prepro-

cessing compared to the models that use the other two meth-

ods, as reported in Table 4. Still, directly using the origi-

nal foggy images generally outperforms all dehazing pre-

processing alternatives.

7 Conclusion

In this article, we have shown the benefit of using partially

synthetic as well as unlabeled real foggy data in a cur-

riculum adaptation framework to progressively improve per-

formance of state-of-the-art semantic segmentation models

in dense real fog. To this end, we have proposed a novel
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(a) (b) (c) (d)

Fig. 11 Representative images from Foggy Zurich-test and dehazed versions of them obtained with the three dehazing methods that we consider in

our experiments on utility of dehazing preprocessing. (a) Foggy Zurich-test image. (b) MSCNN [55]. (c) DCP [28]. (d) Non-local [6]. This figure

is better seen on an screen and zoomed in

Table 5 Performance comparison on Foggy Driving-dense of Re-

fineNet (“w/o FT”) versus fine-tuned versions of it (“FT”) trained

on Foggy Cityscapes-DBF with attenuation coefficient β = 0.005,

for four options regarding dehazing: no dehazing, MSCNN [55],

DCP [28], and Non-local [6]

Mean IoU over all classes (%)

No dehazing MSCNN DCP Non-local

w/o FT 35.8 38.3 33.2 32.8

FT 36.6 40.0 35.8 37.5

Mean IoU over frequent classes (%)

No dehazing MSCNN DCP Non-local

w/o FT 57.6 55.5 47.4 50.7

FT 60.8 60.6 54.6 58.9

fog simulation approach on real scenes, which leverages

the semantic annotation of the scene as additional input to

a novel dual-reference cross-bilateral filter, and applied it

to the Cityscapes dataset [12] to obtain Foggy Cityscapes-

DBF. In addition, we have introduced a simple CNN-based

fog density estimator which can benefit from large syn-

thetic datasets such as Foggy Cityscapes-DBF that provide

straightforward ground truth for this task. On the real data

side, we have presented Foggy Zurich, a large-scale real-

world dataset of foggy scenes, including pixel-level seman-

tic annotations for 40 scenes with dense fog. Through exten-

sive evaluation, we have showcased that: 1) our curriculum

model adaptation exploits both our synthetic and our real

data in a synergistic manner and significantly boosts per-

formance on real fog without using any labeled real foggy

image, and 2) our fog simulation and fog density estimation

methods outperform their state-of-the-art counterparts.
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