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Abstract— Recently, a curse-of-dimensionality-free method
was developed for solution of Hamilton-Jacobi-Bellman par-
tial differential equations (HJB PDEs) for nonlinear control
problems, using semiconvex duality and max-plus analysis. The
curse-of-dimensionality-free method may be applied to HJB
PDEs where the Hamiltonian is given as (or well-approximated
by) a pointwise maximum of quadratic forms. Such HJB PDEs
also arise in certain switched linear systems. The method
constructs the correct solution of an HJB PDE from a max-
plus linear combination of quadratics. The method completely
avoids the curse-of-dimensionality, and is subject to cubic com-
putational growth as a function of space dimension. However,
it is subject to a curse-of-complexity. In particular, the number
of quadratics in the approximation grows exponentially with
the number of iterations. Efficacy of such a method depends
on the pruning of quadratics to keep the complexity growth
at a reasonable level. Here we apply a pruning algorithm
based on semidefinite programming. Computational speeds are
exceptional, with an example HJB PDE in six-dimensional
Euclidean space solved to the indicated quality in approximately
30 minutes on a typical desktop machine.

I. INTRODUCTION

Dynamic programming is an extremely robust tool for

solving nonlinear optimal control problems. In the case of

deterministic optimal control, or in the case of deterministic

games where one player’s feedback is prespecified, the dy-

namic programming equation reduces to a Hamilton-Jacobi-

Bellman (HJB) PDE. The difficulty is that one must solve

the HJB PDE.

Various approaches have been taken to solving the HJB

PDE. The most common methods are grid-based meth-

ods (c.f., [6], [7]) which still suffer from the curse-of-

dimensionality, as the number of grid points and computa-

tions grow exponentially with the space dimension. However,

in recent years, entirely new classes of numerical methods for

HJB PDEs have emerged (c.f., [8], [15], [2], [1], [12]). These

methods exploit the max-plus linearity of the associated

semigroup.

In the previous work of the first author [12], [14], a new

method based on above semigroup linearity was proposed

for certain nonlinear HJB PDEs, and this method was free

from the curse-of-dimensionality. In fact, the computational
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growth in state-space dimension is cubic. However, there

is exponential computational growth in a certain measure

of complexity of the Hamiltonian. Under this measure,

the minimal complexity Hamiltonian is the linear/quadratic

Hamiltonian – corresponding to solution by a Riccati equa-

tion. If the Hamiltonian is given as a pointwise maximum

of M linear/quadratic Hamiltonians, then one could say the

complexity of the Hamiltonian is M . Such PDEs can also

arise in switched linear systems.

The algorithm constructs the semiconvex dual of the value

function as a max-plus sum, i.e., a pointwise maximum, of

certain quadratic functions. An infinite time-horizon problem

is considered, and as such, the value function is approxi-

mated by iterating a finite-horizon semigroup until a large

enough propagation horizon is reached. This finite-horizon

semigroup itself is approximated as maximum of a finite

number of quadratic forms, or as a semigroup for a system

switching between M linear-quadratic systems. The dual of

the approximate value at each iteration is stored as a set of

quadratic functions. Acting on this dual with the above dual

semigroup leads to a new approximation, where the number

of quadratics grows by a fixed factor at each iteration. This

is the curse-of-complexity. To attenuate this computational

growth, we develop a pruning method based on semidefinite

programming (SDP).

II. PROBLEM STATEMENT AND ASSUMPTIONS

The HJB PDEs we consider arise in infinite-horizon

nonlinear optimal control problems, and their Hamiltonians

are given as (or well-approximated by) pointwise maxima

of linear-quadratic functions. Note that pointwise maxima

of quadratic forms can approximate, arbitrarily closely, any

semiconvex function. More specifically, we consider

0 = −H̃(x,∇V ) = − max
m∈{1,2,...,M}

{Hm(x,∇V )}(1)

V (0) = 0 (2)

(i.e., with boundary condition V = 0 at the origin) where

each of the constituent Hamiltonians has the form

Hm(x, p) = 1
2x

TDmx+ 1
2p

T Σmp+ (Amx)T p

+(lm1 )Tx+ (lm2 )T p+ αm, (3)

where Dm,Σm are n×n symmetric matrices, lm1 , l
m
2 ∈ IRn

and αm ∈ IR.

Hamiltonian H̃ is associated with an optimal control

problem for switched linear systems. Let M
.
= {1, 2, . . .M}.
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The corresponding value function is

Ṽ (x) = sup
w∈W

sup
µ∈D∞

sup
T<∞

J̃(x, T ;w, µ)

= sup
w∈W

sup
µ∈D∞

sup
T<∞

∫ T

0

Lµt(ξt) −
γ2

2 |wt|
2 dt (4)

where

Lµt(x) = 1
2x

TDµtx+ (lµt

1 )Tx+ αµt ,

D∞ = {µ : [0,∞) → M : measurable},

W
.
= Lloc

2 ([0,∞); IRk),

and the state dynamics are given by

ξ̇ = Aµtξ + lµt

2 + σµtwt, ξ0 = x (5)

where σm and γ are such that Σm = 1
γ2σ

m(σm)T . Here

µt is a switching control which appears in addition to the

control w.

To motivate the assumptions for this rather general prob-

lem class, we consider H̃ as being constructed so as to

resemble some given nonlinear control problem which has a

(finite) solution. That is, we think of H̃ as being chosen to

resemble some other Hamiltonian, which may correspond to

the originating object of interest. In particular, we suppose

that problem

0 = −
˜̃
H(x,∇V ), V (0) = 0 (6)

has finite value, and that we are choosing H̃ to approximate
˜̃
H . Let QK = {φ : IRn → IR |φ is semiconvex, and 0 ≤
φ(x) ≤ (K/2)|x|2 ∀x ∈ IRn}. We may take QK as the

domain of the semigroup. We make the following block of

assumptions.

Assume there exists unique viscosity solution,
˜̃
V ,

to (6) in QK for some K ∈ (0,∞).
Assume that H̃(x, p) = maxm∈MHm(x, p) ≤
˜̃
H(x, p) for all x, p ∈ IRn.

Assume H1(x, p) has coefficients satisfying the

following: l11 = l12 = 0; α1 = 0; there exists cA ∈
(0,∞) such that x′A1x ≤ −cA|x|

2 ∀x ∈ IRn; D1

is positive definite, symmetric; and γ2/|σ1|2 >
cD/c

2
A, where cD is such that x′D1x ≤ cD|x|2

∀x ∈ IRn.

Assume that system (5) is controllable in the sense

that given x, y ∈ IRn and T > 0, there exist

processes w ∈ W and µ measurable with range

in M, such that ξT = y when ξ0 = x and one

applies controls w, µ.

(A.m)

Note that the last of these assumptions, the controllability

assumption, is satisfied if there exists at least one m ∈
M such that σm(σm)T (which is n × n) has n positive

eigenvalues.
Assume there exist c1, c2 < ∞ such that for any

ε–optimal pair, µε, wε for the H̃ problem, one has

‖wε‖2
L2[0,T ] ≤ c1 + c2|x|

2

for all ε ∈ (0, 1], all T <∞ and all x ∈ IRn.

(A.w)

Note that the behavior specified in (A.w) is proved in the

purely quadratic case (c.f., [12]) under reasonable assump-

tions on the constituent-Hamiltonian matrices, but in this

more general case, we assume it instead. Lastly, we make

the following assumption.
Assume there exist T , c3 ∈ (0,∞) such that for

all x ∈ IRn, all ε ∈ (0, 1], and all µε, wε which

are ε–optimal for Ṽ (i.e., such that J̃(x, µε, wε) ≥
Ṽ (x) − ε ), one has

∫ T

0

Lµε

t (ξε
t ) dt ≥ c3

∫ T

0

|ξε
t |

2 dt ∀T ≥ T

where ξ̇ε
t = Aµε

t ξε
t + l

µε

t

2 + σµε

twε
t , ξε

0 = x.

(A.ξ)

Note that these last two assumptions might be difficult to

verify. Easily verifiable assumptions appear in [12], [14], but

these generate a significantly smaller class of systems than

those for which these methods apply.

Now, define the operator

S̃T [φ] = sup
w∈W

sup
µ∈DT

∫ T

0

Lµt(ξt) −
γ2

2 |wt|
2 dt+ φ(ξT )

where DT = {µ : [0, T ) → M : measurable}. Under the

above assumptions, a viscosity solution, Ṽ of (1),(2) exists,

satisfies 0 ≤ Ṽ ≤
˜̃
V and is given by Ṽ = limT→∞ S̃T [V0]

for any V0 ∈ QK such that 0 ≤ V0 ≤ Ṽ , [13], [14].

In the max-plus algebra, addition and multiplication are

defined as a⊕b = max{a, b} and a⊗b = a+b, respectively.

It is well known that S̃T forms a max-plus linear semigroup.

III. CURSE-OF-DIMENSIONALITY-FREE ALGORITHM

The key steps in the curse-of-dimensionality-free algo-

rithm developed in [14] are given below. Since we are inter-

ested in understanding how the curse-of-complexity arises in

this algorithm, we shall sidestep the theoretical foundations

which are well covered in [14], [12], and focus on the

algorithmic flow.

A. Approximate propagation

Define the consituent-Hamiltonian semigroup operators as

Sm
τ [φ] = sup

w∈W

∫ τ

0

Lm(ξt) −
γ2

2 |wt|
2 dt+ φ(ξτ ).

Importantly, propagation of a quadratic φ by an Sm
τ operator

can be reduced to solution of a differential Riccati equation.

Define the time-indexed operators

S̄τ [φ](x) = max
m∈M

Sm
τ [φ](x) =

⊕

m∈M

Sm
τ [φ](x).

Fix any T <∞. Under the above assumptions, we have (c.f.,

[13])

lim
N→∞

{
ST/N

}N
[φ] = S̃T [φ]

where the superscript N represents repeated application of

the operator, N times.
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B. Duals of the semigroup operators

This algorithm uses the concept of semiconvex dual (c.f.,

[12]). For a function φ which is uniformly semiconvex with

constant β such that β − c < 0, the semiconvex dual, a, is

given by

a(z) = − max
x∈IRN

ψ(x, z) − φ(x), (7)

and the dual relationship is given by

φ(x) = max
z∈IRn

[ψ(x, z) + a(z)] (8)

where ψ(x, z) = −(c/2)|x− z|
2
.

We may obtain the duals of the Sm
τ operators, Bm

τ ,

and these are also max-plus linear semigroup operators. In

particular, they are max-plus integral operators with kernels

Bm
τ (x, z) = − max

y∈IRN

{ψ(y, x) − Sm
τ [ψ(·, z)](y)} .

Importantly, note that as the Sm
τ [ψ(·, z)](y) are quadratic

functions, the Bm
τ are quadratic functions. Each of these is

obtained only once, at the outset of the algorithm.

Rather than computing directly the value function Ṽ , we

shall approximate its semiconvex dual function ā, defined

as in Eqn (7), using the iterative scheme described in the

next section. Then, the approximated value function will be

recovered from ā by the inverse formula, as in Eqn (8).

C. Dual space propagation and the curse-of-complexity

Once the kernels Bm
τ of the dual semigroup are obtained,

one can begin the iteration. One may begin with an initial

quadratic (in the dual space), say

a0(z) = â0(z) = (1/2)(z − ẑ)T Q̂(z − ẑ) + r̂.

Given approximation, ak at step k, one obtains the next

iterate from

ak+1(z) =
⊕

m∈M

∫ ⊕

IRn

Bm
τ (z, y) ⊗ ak(y) dy

= max
m∈M

max
y∈IRn

[Bm
τ (z, y) + ak(y)].

If ak has the form ak(z) =
⊕

{mi}k

i=1
∈Mk âk

{mi}k

i=1

(z)

where each â{mi}k

i=1
is a quadratic form, then ak+1 takes

the form

ak+1(z) =
⊕

{mi}
k+1

i=1
∈Mk+1

âk+1

{mi}
k+1

i=1

(z)

where the âk+1

{mi}
k+1

i=1

are also quadratic. Consequently, the

computations reduce to obtaining the coefficients of these

quadratics at each step, and these computations are ana-

lytic (modulo matrix inverses). This is the reason that the

computational growth in the space dimension is only cubic.

However, note that the number of quadratics comprising the

ak grows by a factor of M at each iteration — hence the

curse-of-complexity. It has been noted that quite typically,

most of the quadratics do not contribute to the value (as

they never achieve the maximum at any point, z), and may

be pruned wihtout consequence. We now proceed to discuss

the use of semidefinite programming as a means of pruning

the constituent quadratics, the âk
{mi}

k+1

i=1

.

Lastly, note that once one has propagated sufficiently far

(say k = K steps), the value function approximation is

recovered from aK via (8).

IV. PRUNING ALGORITHMS

In the above curse-of-dimensionality-free algorithm, at

step k, ak is represented as a max-plus sum of quadratics.

Let us index the elements of this sum by integers i ∈ Ik

(rather than by the sequences {mi}
k
i=1). That is, we have

ak(z) =
⊕

i∈Ik

âk
i (z)

where we let each âk
i be given in the form

âk
i (z) = âi(z) = zTAiz + 2bTi z + ci

where we delete the superscript k for simplicity of notation

here and in the sequel.

Recall that we are reducing computational cost by pruning

quadratics (âi) which do not contribute to the solution

approximation (not achieving the maximum at any z ∈
IRn). Consequently, we want to determine whether the pth

quadratic contributes to the pointwise maximum. i.e. whether

there is a region where it is greater than all other quadratics.

Fix p ∈ Ik. Thus we want to ensure feasibility of

âp(z) ≥ âi(z) ∀i 6= p. (9)

Alternatively, we consider the problem:

Maximize G(z, ν)
.
= ν subject to (10)

âp(z) − âi(z) ≥ ν ∀i 6= p.

Then, the maximum value of ν, ν̄, is the maximum amount

by which the pth quadratic can be lowered before it sub-

merges below the max-plus sum of the rest. If ν̄ ≤ 0, then

pth quadratic does not contribute to the max-plus sum, and

hence it can be pruned without consequence. If ν̄ > 0,the

quadratic contributes to the max-plus sum, and ν̄ can serve

as some measure of contribution of the pth quadratic to the

value function, enabling us to rank the quadratics. This is

useful in over-pruning.

Note that (10) implies that the importance metric,

ν̄ = max
z∈ℜn

min
i6=p

âp(z) − âi(z). (11)

This ranking scheme is independent of the location of the

quadratic. Since in the curse-of-dimensionality-free method,

the solution is grown from the origin, and the region of

interest is often near the origin, we would like to have

ranking scheme which reflects this bias. Hence we consider

following importance metric

ν0 = max
z∈ℜn

1

1 + |z|2
min
i6=p

(âp(z) − âi(z)) (12)

which discounts the quadratics which contribute to the

value function far away from origin. The extent of this
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bias between location and contribution, can be tweaked by

multiplier on the term |z|2. Similar to (10), the above metric

can be reformulated as

Maximize G(z, ν)
.
= ν subject to (13)

âp(z) − âi(z) ≥ ν(1 + |z|2) ∀i 6= p.

and âp(z) can be pruned if and only if the maximum value

ν0 ≤ 0.

A. Pairwise pruning

Before undertaking the pruning using semidefinite pro-

gramming, pairwise pruning is used, which checks between

all pairs of quadratic basis functions, and prunes those which

are completely dominated by another. Let A = Ai−Aj , b =
bi−bj , c = ci−cj , and define q(z) = zTAz+2bT z+c. Then

q is nonnegative everywhere if and only if the homogeneous

quadratic form, zTAz + 2tbT z + ct2 is nonnegative for all

z ∈ IRn and all t ∈ IR (easily proved using q(t−1z) ≥ 0
when t 6= 0). Latter statement is true if and only if

[
c bT

b A

]
� 0. (14)

If we define for any index p, Qp =

[
cp bTp
bp Ap

]
. Using (14),

in the pairwise comparison between i’th and j’th quadratics,

later can be pruned if Qi − Qj � 0. Pairwise pruning

reduces the computational effort of the semidefinite pruning

by getting rid of obviously dominated quadratics.

B. Shor’s semidefinite relaxation based pruning

The problem of evaluating an individual quadratic âp(z)
for pruning, (13), can be rephrased as below. Let qi(z) =
âp(z) − âi(z) for all i 6= p. Then, âp can be pruned if and

only if

ν0 .
= max

z,ν

{
ν : qi(z) − ν(1 + |z|2) ≥ 0 ∀i 6= p

}
≤ 0.

(15)

Lemma 4.1: With λ ∈ ℜ#Ik−1 such that λi ≥ 0 and

λ 6= 0, ν ∈ ℜ is an upper bound on ν0 if following condition

is satisfied.
∑

i6=p

λi(qi(z) − ν(1 + |z|)2) ≤ 0 ∀z (16)

Proof: From (15), ∃z such that, qi(z)− v0(1 + |z|2) ≥
0, ∀i 6= p, therefore,

∑

i6=p

λi

(
qi(z) − v0(1 + |z|2)

)
≥ 0 (17)

Subtracting (16) from (17)

(ν − ν0)(1 + |z|2)
∑

i

λi ≥ 0

with assumptions on λ,
∑

i6=p λi > 0, so that we can divide

by it, to get, ν ≥ ν0. Hence proved.

Now we will seek to minimize this upper bound ν by

varying λ and ν subject to constraint (16). Also note that,

if (λ, ν) are feasible, so is (kλ, ν) for k > 0. using this we

can normalize λ by dividing by
∑
λi. Which implies, λ lies

within a simplex S, λi ≥ 0,
∑
λi = 1.

ν0 = min
λ∈S,ν∈ℜ



ν :

∑

i6=p

λiqi(z) ≤ ν(1 + |z|)2 ∀z



 (18)

Since qi(z) = âp − âi, using linear superposition and

result (14), (18) can be reposed with following semidefinite

program:

ν0 = min
λ∈S,ν



ν :

∑

i6=p

λi (Qp −Qi) � νI



 (19)

Note that if such minimal ν0 < 0 value, the by Lemma 4.1,

ν0 ≤ ν0 ≤ 0. Hence as per (15), p’th quadratic, âp(z) can

be pruned. Since this gives sufficient condition for pruning,

it leads to conservative pruning. If ν0 > 0, the prunability

is not conclusive. Nevertheless, it does give us a working

indication of the importance of the quadratic. Since (19) can

be restated as,

ν0 = min
λ∈S,ν



ν : Qp � νI +

∑

i6=p

λiQi



 (20)

if ν0 > 0, it indicates that the pth quadratic has to come

down by at least ν0(1 + |z|2), before it is dominated by the

convex hull of the remaining quadratics.

An additional way to develop intuition for result (20) is as

follows. The above test evaluates the pth quadratic âp, which

can be pruned if ν = 0 satisfies the inequality in (20). Thus

âp can be pruned if, Qp �
∑

i6=p λiQi. Thus, if the convex

hull of remaining quadratics intersects the semidefinite cone

of quadratics greater than âp for all z ∈ ℜn, then âp can be

pruned.

C. Dual of Shor’s relaxation based pruning

If qi(z) = âp(z)− âi(z) = zT Āiz+2b̄i
T
z+ c̄i, and if we

define,

Q̄i =

[
c̄i b̄i

T

b̄i Āi

]
= Qp −Qi and Z(z) =

[
1 zT

z zzT

]

Then value of a quadratic form qi(z) can be written as

Frobenius inner product of Q̄i and Z(z).

qi(z) = zT Āiz + 2b̄i
T
z + c̄i

=

[
1
z

]T

Q̄i

[
1
z

]
= Tr

(
Q̄i

[
1
z

] [
1
z

]T
)

= 〈Q̄i, Z(z)〉

Similarly, qi(z) − ν(1 + z2) = 〈Q̄i − νI, Z(z)〉 Thus from

(15), âp can be pruned if and only if

ν0 = max
z∈ℜn,ν∈ℜ

{
ν : 〈Q̄i − νI, Z(z)〉 ≥ 0 ∀i 6= p

}
≤ 0

(21)

Let Z be the nonlinear manifold of set of all symmetric

dyadic matrices Z(z), z ∈ ℜn. All matrices in Z are positive

semidefinite with northwestern entry 1. Let Z̄ be set of all
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such matrices. Replacing Z with Z̄ ⊃ Z , , we get relaxation

and an upper bound for the maximum in (21).

ν0 ≤ ν̄0 .
= max

Z∈Z̄,ν∈ℜ

{
ν : 〈Q̄i − νI, Z〉 ≥ 0 ∀i 6= p

}

If ν̄0 ≤ 0, then ν0 ≤ 0, implying prunability. Thus âp can

be pruned if

max
Z,ν∈ℜ

{
ν

〈Q̄i − νI, Z〉 ≥ 0 ∀i 6= p
Z � 0, Z11 = 1

}
≤ 0 (22)

Since Z � 0 and Z11 = 1, Tr(Z) > 0. Also note that

〈I, Z〉 = Tr(Z). If we define Y = Z/Tr(Z), then Y � 0,

Tr(Y ) = 1. Also

〈Q̄i − νI, Z〉 = 〈Q̄i, Z〉 − νTr(Z) = Tr(Z){〈Q̄i, Y 〉 − ν}

constraint set in (22) can be simplified to following semidef-

inite program. Thus âp(z) can be pruned if

max
Y,ν∈ℜ

{
ν

〈Q̄i, Y 〉 ≥ ν ∀i 6= p
Y � 0,Tr(Y ) = 1

}
≤ 0 (23)

This program is a dual of (19).

Intuitively, L(Q) = 〈Q, Y 〉 can be thought as a linear

functional over space of n × n symmetric matrices, taking

constant values over hyperplanes normal (in the sense of

above inner product) to Y . So we are searching in the

space of hyperplane normals Y � 0,Tr(Y ) = 1, which

is a slice of the cone of semidefinite matrices. If we can

find a hyperplane, separating Qp from convex hull of rest

of Qi, ∀i 6= p, then prunability of p’th quadratic is not

conclusive. Hence it need not be pruned.

Since above is the sufficient condition for pruning, it leads

to conservative pruning. It is not a necessary condition, due

to the nonconvexity of Z , manifold of dyadic matrices. To

achive better pruning, higher order pruning techniques can

be used.

V. COMPUTATIONAL COMPLEXITY

Since our aim is to reduce the curse-of-complexity without

loosing the freedom from the curse-of-dimensionality, it is

worthwhile to discuss the computational overhead involved

in these pruning methods. They are polynomial in both

dimensionality and the number of quadratic functions. In

particular, they are free from the curse-of-dimensionality.

A generic semi-definite program P is given by

P0 = min
η∈IRN



c

T η : A0 +

N∑

j=1

ηjAj ≥ 0, ||η||2 ≤ R





where the Aj are symmetric matrices with M̃ diagonal

blocks of size ki × ki, i = 1, . . . M̃ . We say that ηε is an

ε–optimal solution if

‖ηε‖2 ≤ R, A0 +
N∑

j=1

ηε
jAj ≥ −ǫI, cT ηε ≤ P0 + ǫ.

In [4], the authors derive the computational complexity of

obtaining such an ηε.

C(P , ǫ) = O(1)


1 +

fM∑

1

ki




1/2

(24)

·N


N2 +N

fM∑

1

k2
i +

fM∑

1

k3
i


D(P , ǫ)

where D(P , ǫ) depends on the specific problem data (as

indicated by the P in the argument as well as ǫ). Using this

expression, we can obtain an upper bound for the arithmetic

complexity of the pruning algorithms. Assuming the worst

case scenario where no quadratic gets pruned, we find the

complexity of testing one quadratic for pruning as follows.

For the Shor’s relaxation pruning of (19), we have η =
[ν λT ]T . Hence N = #Ik. In addition to main LMI, we

have λi ≥ 0 and an equality
∑

λi
= 1, which can be split

up into two inequalities, giving number of LMI blocks M̃ =
#Ik + 2, and k1 = n + 1, k2 = k3 = . . . = kfM

= 1.

Substituting these into (24), complexity is

C(P , ǫ) = O(1) (#Ik + n+ 3)
1/2

#I2
k (25)

·
[
3#Ik + 2 + (n+ 1)2(n+ 2)

]
D(P , ǫ).

The complexity grows as n3.5 and #I3.5
k .

For the dual of Shor’s relaxation pruning of (23), in-

dependent variables are Y , which has (n + 1)(n + 2)/2
free variables (corresponding to the upper triangle), and ν.

Thus N = 1
2 (n2 + 3n + 4). Number of block LMIs is

M̃ = #Ik + 2, and k1 = . . . = kfM−3
= 1, kfM−2

= n+ 1,

kfM−1
= kfM

= 1. Substituting these into (24), complexity

grows as n6.5 and #I1.5
k .

Note that these computational cost growth rates as a

function of space dimension, n, are poorer than the cu-

bic growth of the basic algorithm. However, they are still

tremendously helpful for real-world problems, and the curse-

of-dimensionality is still very far off.

VI. IMPORTANCE-BASED OVER-PRUNING

Both the Shor’s relaxation and its dual pruning schemes

generate importance metric for unpruned quadratics. Over-

pruning keeps a limited number of more important quadrat-

ics, due to memory/computational constraints. This is useful

in containing the complexity growth, while ensuring an

accurate solution in a region of interest. At end of k’th

iteration, the algorithm sorts âk
i according to importance

metric, and keeps at most L(k) quadratics, pruning the rest.

However, there does not yet exist a theory which allows

us to map the importance measure of a quadratic at step

k to an error bound in the approximation at the terminal

step. Regardless, application of these methods has proven

extremely fruitful, as can be seen in the example below.

VII. SIX-DIMENSIONAL, SIX-HAMILTONIAN EXAMPLE

We applied the curse-of-dimensionality-free method to the

following problem over IR6 with six constituent quadratic
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Hamiltonians. Note that the problem was tweaked to exhibit

sufficiently complex and interesting behavior, such that there

is interaction amongst dimensions, and each operator is

important somewhere in the domain. Hence the following

data yields a reasonably rich problem.

We shall specify the matrices in terms of the following

building blocks for the dynamics:

Aa =

[
−1 .5
.1 −1

]
, Ab = Aa,

Ac = Aa, Ad =

[
−1 .5
.3 −1

]
,

Ae = Aa, Af =

[
−1 .5
.1 −1

]
,

Σa = 0.4 ×

[
0.27 −.01
−.01 0.27

]
, Σb = 0.4Σa,

Σc = Σa, Σd = 0.4Σa,

Σe = Σa, Σf = 0.4Σa,

and the following building blocks for the payoff functions:

Da =

[
1.5 .2
.2 1.5

]
, Db = 1.4 ×Da,

Dc = 1.4 ×

[
0.2 1.5
1.5 0.2

]
, Dd = 1.2 ×

[
1.6 0
0 0

]
,

De = 1.1 ×

[
0.3 1.5
1.5 0.3

]
, Df = 1.3 ×

[
0 0
0 1.6

]
.

We will use a parameter to adjust the interaction in the

dynamics across the dimensions, and this will be γ = −0.1.

Now we are ready to define each of the Hamiltonians. We

need to specify parameters for the dynamics (A, Σ, l2) and

the payoff (D, l1, α). For the example below, l1 = 0 and

l2 = 0 for all the Hamiltonians. The remaining parameters

are as follows.

For the first Hamiltonian, H1, we let

A1 =



Aa γI γI
γI Aa 0
γI 0 Aa


 , Σ1 =




Σa 0 0
0 Σa 0
0 0 Σa




D1 =



Da 0 0
0 Da 0
0 0 Da


 , α1 = 0 .

For the second Hamiltonian, H2, we let

A2 =



Ab γI γI
γI Ab 0
γI 0 Ab


 , Σ2 =




Σb 0 0
0 Σb 0
0 0 Σb




D2 =



Db 0 0
0 Db 0
0 0 Db


 , α2 = −0.4 .

For the third Hamiltonian, H3, we let

A3 =



Ac γI γI
γI Ac 0
γI 0 Ac


 , Σ3 =




Σc 0 0
0 Σc 0
0 0 Σc




D3 =



Dc 0 0
0 Dc 0
0 0 Dc


 , α3 = 0.

For the fourth Hamiltonian, H4, we let

A4 =



Ad γI γI
γI Ad 0
γI 0 Ad


 , Σ4 =




Σd 0 0
0 Σd 0
0 0 Σd




D4 =



Dd 0 0
0 Dd 0
0 0 Dd


 , α4 = −0.4 .

For the fifth Hamiltonian, H5, we let

A5 =



Ae γI γI
γI Ae 0
γI 0 Ae


 , Σ5 =




Σe 0 0
0 Σe 0
0 0 Σe




D5 =



De 0 0
0 De 0
0 0 De


 , α5 = 0.

For the sixth Hamiltonian, H6, we let

A6 =



Af γI γI
γI Af 0
γI 0 Af


 , Σ6 =




Σf 0 0
0 Σf 0
0 0 Σf




D6 =



Df 0 0
0 Df 0
0 0 Df


 , α6 = −0.4 .

For this example, we let the time-discretization step-size

be τ = 0.2, and propagation was carried out with the

Shor’s semidefinite relaxation based pruning. The overprun-

ing threshold was set heuristically to L(k) = 20 + 6k. That

is, a maximum of L(k) quadratics, âk
i , were retained at the

kth step. In this test, 25 iteration steps were carried out in

30 minutes, yielding a rather accurate solution in a compact

domain in all six dimensions. This computation-time is for

an Apple mac desktop, from roughly 2005. Slices of statistics

for this value function along the 1-2 axes are shown in the

accompanying figures. The backsubstitution error depends

on the propagation as well as the time-discretization. The

theoretical error bounds in [13] are of the form ε(1 + |x|2)
(over the entire space) where ε ↓ 0 as the number of

propagation steps goes to infinity and time-discretization

go to zero, with the convergence rates derived in above

reference.

VIII. CONCLUSIONS

Thus in this paper, two semi-definite programming

schemes for pruning the quadratics were proposed

for containing the curse-of-complexity in the curse-of-

dimensionality free method. Computational complexity for

both is polynomial in space dimension. Both give us an
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importance metric to rank the quadratics according the

importance, which is a function of contribution to the point-

wise maximum and its location. This is useful in case we

need to over-prune. These methods have been applied to

solve a sample 6 dimensional, 6 hamiltonian problem in

reasonable amount of time.
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