
IEEE Transactions on Power Systems, Vol. 9, No. 4, November 1994 2035 

CURTAILED NUMBER ANI) REDUCED CONTROLLER 
MOVEMENT OPTIMIZATION ALGORITHMS FOR REAL TIME 

VOLTAGE/REACTIVE ROWER CONTROL 

S.A. SOMAN Ii . PA KJ’H A S A l< AT 11 1’ r) . TI{ I r i i  .-I ri ,I 11 
Electrical Ellginerring Ihpart niriit 

Indian Institute o f  Scieiicr 
Hanga.lore, I iicl in. 

ABSTRACT 

This paper addresses the problem of curtailing the number of 
control actions and minimizing controller movements for real-time 
voltagelreactive power control. Algorithms are proposed to iden- 
tify the most effective subset of control actions and to minimize 
controller movements. An algorithmic objective function appro- 
priate for the treatment of system security and economy is also 
proposed. It eliminates trial and error adjustments of weightage 
factors for a combined objective. A single parameter decides the 
priority between movement of controls and gains in security as 
well as loss reduction. The algorithms are compared and con- 
trasted with SLP and SQP techniques by means of two practical 
systems. 
Keywords: OPF, voltage control, Real-time control, reactive 
power control. 

INTRODUCTION 

The development of Reactive Power Optimization( RPO) and 
control algorithms for real time applications is of prime impor- 
tance for optimal and secure operation of power systems. The 
Optimal Power Flow (OPF) is perhaps the most complex on-line 
EMS advanced application function under development. Signifi- 
cance of real tinie optimal operation of power systems stems from 
security and economic considerations. 

For secure power system operation, redundancy is required in 
the system for driving it to the normal state in case of credi- 
ble contingencies/emergencies. Redundancy in the power system 
w.r.t. reactive power control and optiniization implies availability 
of alternate configurations of the network with acceptable reactive 
power flows, in terms of line RIVA loading, bus voltages, MVA 
loading of transformers and generators. These factors determine 
the steady state security of the power system. With ever increas- 
ing load demands and system expansion costs, redundancy in the 
system has to be sacrificed. Instead, optimal use of reactive power 
control resources for maintaining real time steady state security 
becomes esseiitial. 

Econoniic benefits can be achieved by real time optimal control 
of power systems. This demands optimal scheduling of generation 
based on availability and generation cost (Unit commitment and 
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active power optimization problems) and optimal allocation of the 
reactive power resources for security or economic objective. 

The %ate of the art” OPF/RPO algoritlims assist the op- 
erator in deciding the best possible gains that ca.n be achieved 
for security or economy oriented objectives. However, with in- 
creasing system sizes aiid controls, variety in tlie type of controls, 
their distributed nature and the real time restrictions on the nuin- 
ber aiid the ainount of control, tlic operator is faced with the 
formidable task of identifying the effective subset of control ac- 
tions that can be implemei~ted. In t,liis sense, requirement of the 
real time OPFIRPO algorithm is to aid the operator i n  select- 
ing the minimum number of effective controls. In addition, the 
operator has to maintain adequate reserves to deal with proba- 
ble contingencies. Glavitsch et. al. in [2]  and Tiiiney et. al. in 
[I) outline the desirable features of a real time OPT: algorithm. 
Glavilsch and Bacher emphasise the requirenients of high compu- 
tational specd, robustness and reduced controller niovcments. We 
quote from [a ] ,  “ The OPF assigns an optimal value to each pos- 
sible cOntro1 variable. Assuming that there is a large number of 
possible control variables, the OPF algorithin would move most, of 
them from actual state to the optimal state. However, a practical 
real-tiine realization of this optimal state is not possible since the 
operator cannot. have, e.g., hundred generator voltages be moved 
to different settings within a reasonable time. Only the most ef- 
fective subset should be moved, which means that within tlie OPF 
the algorithmic problem of inoviiig the miniiniiin numbcr of con- 
trollers with maximum effect 1ia.s to be solved.” Tinney et. al.[l] 
have addressed the need to curtail the number of control actions 
to meet the real time requircments and the difficulties faced in 
the selection of minimal number of effective controls in order t,o 
achieve this. We quote, “ There is no way to select a subset of the 
most important cont.rol actions from total set of control actions. 
in an OPF solution. The actions are not ranked and importance 
of an action is not, necessarily related to its magnitude. Even if a 
given number of best actions could be selected from a OPF output, 
the correct magnitude for the selected actions would be unknown 
because they would have to be rea.djusted to compensate for the 
omitted actions.” The paper [l] proposes two possible formula- 
tions to meet these requirements. In the first formulation, the 
total number of control actions of each class were specified ( refer 
[3] for similar OPF algorithm development). However, they also 
point out that setting this limit i n  advance could causc the cost of 
tlie solution to be unacceptably high. The problem would also be 
well defined if a limit were specified on the increase in cost aliove 
minimum attainable, with all controls in use; but this could cause 
too many controls to lie used (for interesting related reading refer 
to the discussion of [4]). 

A significant feature that differentiates a real time OPF from 
standard optimization problem is that suboptimal solution is ac- 
ceptable for the foriiier because of the real world constraints. Glav- 
itsch points out in  [2] that consideration of data uiicertdiiiities can 
bc used to sprcd up the algoiithm, for e.g., if the accuracy of 
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a large generator output power measurement is about five hlW, 
making a computation with an accuracy of one MW is useless and 
consumes unnecessary computing time. As per Tinney’s opinion 
[l], developing a method for curtailed control actions appears to  
be exceptional and coping with it will require unusual approaches. 

We have not observed in the literature any appropriate theory 
for reducing the number of control actions and its correlation to  
the increase in cost. An algorithm to reduce the number of control 
actions based on sensitivity analysis and space & time decomposi- 
tion of controls has been proposed in [3]. However, the algorithm 
cannot identify the most effective subset of controls. The heuristic 
judgement of the designer plays an ,important role in this process. 
This paper for the first time presents the appropriate algorithms 
with strong theoritical support and negligible heuristics for achiev- 
ing the important goals of minimizing the amount of controller 
movement(l1 Au j12=min) and curtailing the number of controllers 
in real time for VQ optimization. The proposed algorithm implic- 
itly strikes a balance between 

0 reducing voltage infeasibilities. 

0 reducing MW losses in the system. 

0 reducing the number of controls. 

The above three distinct and contrasting requirements are con- 
trolled via a single parameter t ,  resulting in simple and efficient 
algorithms. The approach is faster than standard optimization 
methods. The proposed algorithms are robust, have fast and easy 
convergence properties. The objective function has an automatic 
balancing feature to  ensure security and reduction of active power 
losses in the system. The algorithmic nature of the objective func- 
tion removes the requirement of trial and errors, with varying 
weightage factors for combined economy and security oriented ob- 
jective. Comparitive evaluation with Sequential Linear Program- 
ming(SLP) and Sequential Quadratic Programming( SQP) algo- 
rithms is also presented, wherein complete optimization is per- 
formed, to study the effects of curtailing the number of controls 
and corresponding increase in cost function. 

In the following sections, we first identify the important char- 
acteristics of the O P F  algorithm that can be exploited for devel- 
opment of fast, robust and reliable algorithms. Then the essential 
optimization theory required for minimal control action algorithms 
is presented, as no such theory has been presented earlier. It is fol- 
lowed by the algorithms for minimizing and curtailing the control 
actions for security cum economy oriented objectives. Simulations 
for practical power systems are presented. 

REAL TIME VQ OPTIMIZATION 

The secure and optimal operation of power systems require the 
following: 

0 Optimal Power Flow. 

0 Corrective rescheduling. 

0 Corrective switching. 

0 VQ optimization. 

The cycle time for a classical O P F  is about 60-90 niin [Ill. With 
changes in either the load profile or the network topology, cor- 
rective rescheduling of P and Q variables as well as corrective 
switching actions need to be carried out. 

V(2 optimization and control is required to minimize losses, 
provide adequate reactive power margins, improve the voltage pro- 
file and to avoid voltage critical problems like voltage instability. 
The inputs to a VQ optimization problem are the system load and 
voltage profile, network inforinat,ion and the active and reactive 
controller settings obtained from the real time data base. The VQ, 
optimization algorithm has to adjust the reactive power control 
variables to achieve one or more of the above objectives. To re- 
alize maximum ecoriomic benefits from VQ Optimization, a cycle 
time of 15 min is considered satisfactory [4] for an optimization 
and control frequency of 60 min. Howeyer, for improvements in 
system security and stability, smaller cycle time for VQ optimiza- 
tion is required. 

VQ PROBLEM CHARACTERISTICS 

In this section typical VQ optimization problem characteris- 
tics are identified to  enable the development of reliable, fast and 
efficient algorithms. Firstly, a VQ optimization problem is char- 
acterized by two distinct type of constraints viz., soft and hard 
constraints. We define them as follows. 
Defn-1: A Hard cons t ra in t  in an optimization problem is a 
constraint that has to  be strictly satisfied. These constraints in 
a VQ optimization problem are device constraints, generator Q- 
limits and possible line loading limits. 
Defn-2: A Soft  cons t ra in t  in an optimization problem is a 
constraint whose h i t s  (lower and upper) can be characterized as 
“desirable” rather than “essential” and hence, need not be “neces- 
sarily” satisfied. These limits in a VQ optimization problem corre- 
spond to  voltage bounds for the PQ-nodes. These constraints in- 
troduce an extra freedom which the optimization algorithm should 
be able to  exploit. In general penalty function approaches and 
their variations, e.g., augmented lagrangias methods enforce these 
constraints in a soft way. However, the price is paid in terms of 
possible numerical instability and reduced computation speeds. 
The approach presented in this paper is not a penalty function 
approach. Specifically, in this paper we propose algorithms that 
are fast and numerically stable; they do exploit the softness of 
voltage constraints. 

Secondly, an important feature of a VQ optimization problem 
is that the number of constraints (lower and upper voltage bounds, 
generator Q-limits, (2-injection variables and On Load Tap Chang- 
ing transformer (OLTC) tap limits) far exceed the number of con- 
trol variables. MVAR line loading constraints can also be consid- 
ered in the above set. An optimization algorithm, while reducing 
voltage deviations should be able to  exploit this redundancy in 
constraints for selecting the “best descent direction”. The “best 
descent direction” is characterized mainly by the property of mini- 
mizing the voltage infeasibilities with minimum amount of control. 
The above ideas can be expressed within the mathematical frame- 
work of “best approximation” defined as follows. 
Defn-3: A vector xo is a best approximation of the solution of 
the equations f (x)  = G ( G can be a vector or a matrix)[S], if for 
all x, either 

Part-1 of the definition is significant because it recognizes that 
infeasibilities cannot necessarily be reduced to zero; a significant 
aspect in enforcing soft constraints. This has been exploited to  
develop robust algorithms. Importance of part-2 arises from the 
fact that it ensures minimal norm solution in case of multiple min- 
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longing to the set of violated line tiows with dominant hlVAR 
loading. 

The element h, represcnts the j - th  element of the vector h 
which contains all the eneration Q-injection variables and the 
MVAR flow variables ( $ j l o w l )  for lines with violated MVA and 
dominant MVAR loading. Pj,ow, represents MW flow in the line 1 
at  the k-th itera.tion in either of the two directions. If real power 
limits are exceeded in a line, the reactive power control is unlikely 
to eliminate the violations of the line MVA loading limits. Such 
violations are corrected by resheduling the active power control 
variables (121. Therefore, only those lines having MVA violations 
with significant MVAR loa.dings are considered in (1) .  The formu- 
lation is based on the assumption that changes in real power in the 
lines due to small changes in reactive power cont,rol variables are 
negligible. Let bkT = [desk', / i d e s * T ] T .  The elements of the vector 
bk depend on the system volhge profile, generator Q-injections, 
line hlVAR flows andaniteration count, E; they are set as follows. 
For all i belonging to set of PQ-nodes 

if u : " ~  < - U," 5 uTar then corresponding bf = uf-' 
if u: > v r a z  then corresponding bk = uTas 
if U," < vf"'" then corresponding bf = uTin 

if  QyifL 5 Q," 5 QY"" then corresponding bf = Qf 
if Qt > QT"" then corresponding b$ = Qf""" 
if Qf-' < Qy'" then corresponding b: = QY'" 

For all i belonging to set of PV-nodes 

The elements of bk for MVAR line flow constraints considered in 
h are set in a similar fashion. Note that as correction to the volt- 
age profile is being done, reduced control action is implicit in the 
above objective. We also provide an economic bias to the security 
oriented objective by including active power loss reduction in  the 
algorithm. 

iina having same cost. Specifically in VQ optimization, this can 
be used to gmrantee minimum control action for minimizing the 
deviation of voltage profile of the system. 

Finally, objective function evaluation, e.g., active power loss or 
power system voltage profile for a given control can be performed 
by a Power Flow(PF) program. As the network is very sparse, 
sparse computations dra.stically bringdown the required computa- 
tional effort. Therefore, line-search based optimization algorithms 
are very suitable for OPF from computational viewpoint. Note 
this is in contra.st with many other optimization problems, e.g., 
VLSI design, wherein computation of new objective function may 
require extensive simulations. In such cases, line-search methods 
become inefficient. 
Thus, an efficient real time VQ optimization algorithm should in- 
corporate the following cha.racteristics. 

It should differentiate between hard and soft constraints, 
while being robust (numerically stable and fast). 

It should be able to exploit the redundancy and softness of 
the constraints to minimize control a.ction. 

It should be predominantly a line-search based algorithm to 
facilitate simple and fast computing. 

Objective should reflect the requirements and the tradeoffs 
of real-time control. 

Various security or econoiny oriented objectives, have been pro- 
posed in the litera.ture for rea.ctive power control. It has been 
pointed out in [3] that neither active power loss minimization nor 
uniform distribution of reactive reserves to generators operation in 
secondary control can meet the real-time objectives. If the OPF 
objective is active power loss minimization, the OPF results in 
high vohges  in network. Also, reactive overloads appear a t  all 
generators electrically close to load centers. On the other hand, 
security oriented objective has a nega.tive impact on system volt- 
age profile. Therefore, a security cum economy oriented objective 
function is required in real-time with an implicit balancing fea- 
ture to control the above mentioned effects. Also, the objective 
function should have the characteristic of implicitly reducing the 
required amount of control. 

FORMULATING A MINIMUM CONTROL ACTION 
PROBLEM 

The previous section outlined the utility of best approximate solu- 
tion in defining a minimal control action problem. A more precise 
and desirable problem froin minimum control point of view can 
be defined by consideriiig a constiained non-linear minimization 
problem with objective function f(u). Let u0 represent the initial 
control vcctor and let H = {U : f ( u )  is a local minimum for the 
constrained problem} Then the minimal control action problem 
can be foimulated as follows. 
Find U* E H such that 1 1  U* - U' l lz<ll U - U' 112 for all U E H .  
Because of the difficulties involved in solving the above problem, 
we consider an zterutzon dependent  non-linear security oriented 
objective function for RPO. At the k-th iteration, the following 
optimization problem is attcmpted. 
minimize for all z E P Q  nodcs and j E PV nodes and lines with 
violated MVA flows having do*minant MVAR loading 

subject to unLZn 5 U 5 uniar 
E, ( vt - v y  )2 + E, ( h ,  - /p )2 

(1 1 

THEORY FOR MINIMAL CONTROL ACTION 

The minimal control action problem for feasibility restoration 
has been precisely defined i n  the previous section. However, the 
load bus voltage vector (u~), generator Q-injection and hlVAR line 
flow vector ( h )  cannot be expressed explicitly as a function of U. 
Therefore, compact modelling of Doinmcl and Tinney [.5] is used 
to linearize (1).  Without loss of generality, we assume that the 
vector bk can be partitioned into two sub-vectors b: and b t  corre- 
sponding to the constraint sets 7 1 ~  and / I  respectively. Linearizing 
(1) a t  the E-th iteration, we have 

[ 31 = [ $ ] A u =  [ bk - ( 2 )  

Let SkT = [St', Si'] and b fT  = [[b t  - $ I T ,  [bt - h k ] ] ' ] .  
bt is a "restoration vector" with non-zero elements for violated 
load bus voltages, generator Q-injections and MV.4R line flows of 
vector h. 

The above set of equations represent an overdetermined sys- 
tem. It is evident that AIL must correspond to the "best approxi- 
mation" for the linea.rized set of equations (2). Following theorem 
outlines the methodology of obt,aining the best approximation. 
Theorem-1: The "best a.pproximate" solution of the equations 
A X  = B is X, = A+B. .4+ is the pseudo-inverse of A [SI. 
If A is ( m  x n)  matrix, m > IZ and nu11(.4)=0, then A T A  is non- 
singular and A+ = ( A T A ) - ' A T .  If ,Sk is a full rank matrix, an 
efficient way to compute the best approximation is by QR factor- 
ization of Sk; a unique solution for AIL exists that minimizes the 
infeasibilities at, each iteration. However, in practice the overde- 
termined system need not be full rank; therefore the following two 
important questions arise. 

QY'" 5 Qz 5 QY"" for all i belonging to the set of PV-nodes. 
-,/- 5 Qjlowl 5 d F  for all 1 be- 



2038 

curity and economy, for e.g., minimizing the amount of control 
action versus minimizing the active power losses can be handled 
simultaneously by this procedure. An estimate of the,change in 
active power loss along the best approximate direction is derived in 
appendix-B. As has already been pointed out line-search is compu- 
tationally efficient for VQ optimization. It will involve repetitive 
P F  computations wherein strict enforcement of hard Q-generation 
constraints is done. The developed procedure will have inherent 
numerical stability because of the use of orthogonal matrices and 
explicit treatment of rank deficient matrices. Also note that such 
an algorithm will enforce the voltage constraints in a soft man- 
ner without recourse to penalty function or augmented lagrangian 
methods. A model algorithm is now presented: 
AG1: Feasibility res torat ion a n d  loss reduct ion a lgo r i thm 
wi th  min imum cont ro l  act ion 
STEP 0: Set iteration count k = 0. Select €1 & e. 
STEP 1: Do a PF and determine P i  & restoration vector b;. 
STEP 2: If Voltage and generator Q-constraints satisfied or if 
k > 0 and Pi-' - P j  < e, stop. 
STEP 3: Compute Sk (appendix-A). 
STEP 4: Compute nearest rank deficient approximation Sk' to 
S k  . 
STEP 5: Compute Auk = Skti bt 
STEP 6: Set sk = Auk 
STEP 7: Do a line search along sk to minimize PL. Let the op- 
timal step size be ak where 0 5 ak 5 1. Set U'+' = uk + a k s k ,  
P;" = PL and compute b,"+'. 
STEP 8: Increment the iteration count k = k + 1. Go to step 2. 

Is the overdetermined matrix Sk rank deficient? 
If yes, how do we then compute the best approximation for 

The rank of a matrix A and its pseudo-inverse can be computed by 
Singular Value Decomposition (SVD) of'A. An important mathe- 
matical result is given below: 
Theorem-2: Let A e PXn, then there are orthogonal matrices 
P and Q, such that [71. 

AU? 

' . A = Q ( f  : ) P T  

where C = diag(ul, up, ...., ur), u1 2 u2 2 .... 2 U, > 0, 
U; is the i-th singular value and T the rank of matrix A. It  can 
also be proved that 

2. f o r a n x n m a t r i x A , m  2 nwithsingularvaluesul,uZ, ..., U,; 

U1 2 u2 2 ... 2 U,, a (rn x n) matrix B with rank r and A /  defined 
as 

where C1 = diag(ul, q, ...., ur), u1 2 u2 2 .... 2 U, > 0 
11 A - A/ I I F =  min 11 A - B I I F  and 

3. the best approxipation for an overdetermined system is 

) QTb X 0  = A+b = P ( 
From the above properties, we can construct a matrix A/ of rank 
r, which is nearest to A in its frobenius norm. The above results 
are significant because of the fact that Gaussian Elimination can- 
not be  used in practice for determination of the rank of a matrix, 
as numerical computations are approximate and w such produce 
non-zero diagonal entries, even in case of rank deficiency. As such 
in practice, possibility of rank deficiency (and also the probable 
rank) and the nearest rank deficient matrix are computed using 
SVD in the following manner [7]. 
Let the elements of Sk be accurate to quantities of order e. Find 
r such that u:+~ + U:+, + ... + u;f < 2. Then, the probable rank 
of Sk is r. By property 2 & 3 of Theorem-2, with u,+1 to U, set 
to zero, nearest rank deficient matrix Skt and the corresponding 
best approximate solution Au can be computed. In actual imple- 
mentation, the matrices P and Q need not be stored explicitly. A 
variation of the above method used to compute the best approxi- 
mation for possible rank deficient matrix is to set all ui < du1 to 
zero [SI. An important observation is that the best approximation 
Auk so determined with non-zero e ,  minimizes infeasibilities with 
minimum control action i.e., if there exists a control U/ such that 
11 bt - SkAu/ 112=11 b," - SkAuk 112, then 11 Auk 112<11 A d  112. 

Infact, in practice, parameter can be used to restrict the amount 
of control action. It is proved in appendix-D that the second norm 
of the control action (11 Au 112) obtained from best approximate 
solution of (2) decreases with the increase in control parameter 
d. Our experience suggests 0.001 to 0.005 as a suitable range for 
d .  This results in matrix Sk' close to the original matrix Sk; the 
change in frobenius norm is around 0.001% 

A-LGORITHM F O R  M I N I M A L  C O N T R O L  A C T I O N  

As VQ control is a nonlinear optimization problem and the 
amount of control Azc suggested after linearization may not be 
feasible, an iterative procedure incorporating a line-search along 
the direction of best approximation to minimize a selected objec- 
tive needs to be formulated. The choice of objective function for 
line-search is not unique. Therefore, there exists an additional 
flexibility in the algorithm, as conflicting rcquirements like se- 

If the voltage profile is not satisfactory t'] :n €1 should be reduced 
in the next VQ cycle. To provide an economic bias during the 
line-search to the security oriented objective , we minimize active 
power losses. The algorithm automatically strikes a balance be- 
tween security and economy in the corresponding order. When the 
system profile changes drastically, complete optimization (OPF) 
should be performed. The merits and desirable features of the 
algorithm (AG1) are: 

1. Automatic balancing features for the conflicting requirements 
of attaining the maximum possible economic gains versus 
minimizing the control action and maintaining the security 
of the system. 

2. Rapid convergence to the optimal solution ( table-11). This 
results because of marginal changes in  the singular values of 
the sensitivity matrix. This may also be used to speed-up 
the algorithm by avoiding SVD at each iteration. 

3. Accurate modelling of the non-linearities of the system as 
repeated PF's are performed during the line-search. 

4. Unimodal behaviour of the active power losses of the system. 
Thus, the possibility of the multiple minima along the search 
direction are eliminated. 

Curtai l ing t h e  number  of control  act ions 

Curtailing a variable movement, in it's natural sense, can be 
thought of as restraining the movement of the variable in a phys- 
ical or a numerical process. In a numerical process, variables will 
tend to move marginally, from their initial values because of the 
"small" nonzero terms introduced in the numerical computation. 
However, such a movement will have negligible influence on the 
objective function. Therefore, we curtail the movement of a vari- 
able (z,), if 

where superscripts * and o denote the final and initial values re- 
I z: - q I< E l  & I f ( l : )  - f(.P) (< €2 
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TEST RESULTS 

A realistic assessment of the algorithms will require repetitive VQ 
optimization using a day's load curve and the snapshots of the 
control variables on that day. In absence of the load curve in- 
formation, a more conservative estimate can be obtained by com- 
paring the performance of AG1, AG2, SLP and SQP algorithms. 
However, in practice as the load profile varies gradually and the 
results of the previous cycle of VQ optimization are available; con- 
vergence and speed characteristics of the algorithms in practice 
will be much better compared to  the simulations presented. The 
results of simulations on practical 89 and 319 nodes systems are 
summarised below. 

P L  

ComD 
APL% 

spectively. The choice of c l  and €2 will depend on the uncertainity 
in the real time data base (obtained by state estimation) and the 
accuracy of the transducers used. Suitable values of €1 and e2 are 
suggested in the result section. For a VQ optimization problem a 
subset of variables for strict curtailment (cl = 0) can be identified 
as follows. 
1. Compute the loss derivatives gkT = [e, 2 ,...., 2 1 ' .  

2. Compute sk = Sk'+ x 6:, the minimal norm vector to minimize 
infeasibilities. 
3. Now if, gf > 0 and sf < 0 or gf < 0 and sf > 0, then the i-th 
control action reduces both the MW losses and the voltage infea- 
sibilities. If however, gt and s! are of same sign, it implies tha.t 
the i-th control reduces the voltage infeasibilities but increases 
the MW losses. In such a case, the corresponding control can be 
eliminated by setting sf = 0. Notice that the choice of controllers 
used to attain the objective is not unique. The outlined proce- 
dure automatically identifies the most effective subset of controls 
to reduce active power losses as well as voltage infeasibilites. The 
effect of such a measure is most evident in case of the Q-injection 
variables (SVC's and capacitor banks) where s; > 0 and g; > 0 
will imply that losses increase with increase in capacitive injec- 
tion. Simihrly s; < 0 and g; < 0 will imply increase in losses 
and reduction of infeasibility with increase in inductive compen- 
sation. An estimate of the change in active power loss along the 
modified search direction is derived in appendix-B. An improved 
algorithm(AG2) biased for active power loss reduction with cur- 
tailed controller actions is presented below. 
AG2: Curta i l ing  t h e  n u m b e r  of controls  for  vol tage pro- 
file correct ion a n d  act ive power loss reduct ion 
STEP 0: Select c,  cl, ~ 2 %  € 3 ,  €1. 
Set for all j=l,nc; alossvar(j) = 0. The variable alossvar(j) accu- 
mulates an estimate of change in PL due to j - th  controller move 
ment using piecewise linear approximation for loss function. 
STEP 1: Do a P F  and determine PL & restoration vector bg. 
STEP 2: If Voltage and generator Q-constraints satisfied or if 
k > 0 and PL-' - PL < c, go to step 10. 
STEP 3 to STEP 6: same as in AG1. 
STEP 7: If gf > 0 and sf > 0: sf = 0. 
If gf < O and sf < 0: sf = 0. 
STEP 8: [Line search] i=O. Select a:. 
REPEAT 

i=i+l  
uf = U k  + f f F S k  

For all j=1 ,nc, alossvar(j) =alossvar(j) +g, (U:-, )(cr;-a;-, )ss. 
Select > a: 

UNTIL ( P L ( u ~ - ~ )  - P L ( u ~ )  > €3 .4ND 5 1) 
STEP 9: k = 6 + 1; uk = U"-'. Compute 6:. Go to step 2. 
STEP 10: Do for j=l,nc; if I U$ -us I< €1 and I alossvar(j) I< €2; 
cuhail the control. 
STEP 11: Stop. 

SLP AND SQP ALGORITHMS 

To evaluate the effects of minimizing control action, curtailing the 
number of controls and the use of algorithmic objective function on 
the sub-optimality of the solution, SLP and SQP algorithms have 
been implemented. Constrained active power loss minimization is 
used as the reference. The other motivation for these implemen- 
tations is to evaluate the cffects of exploitation of softness of the 
voltage constraints on the total infeasibilities and the MW losses 
a t  the optimal point. Finally, these studies have been beneficial 
in evaluating the numerical performance of SLP and SQP algo- 
rithms. Rcduced model formulation (refer appendix-A) of Dom- 
me1 and Tinney [.5] have beeii used in the sensitivity computations. 
The SLI' and SQP algorithms a.re detailed in appendix-C. 

STATE 
144.67 113.36 111.74 129.21 119.25 

140 458.575 453.12 145.27 231.35 
- -21.64 -22.76 -10.63 -17.57 

In the systems considered, less than 2% change in generator 
voltages, 0.75 MVAR change in capacitor banks and less than half 
the transformer tap movement is curtailed, if the effect on losses 
is less than 0.1 MW. 

S"" 
P U  

89-bus s y s t e m  
This system comprises of 400, 220, 132, 66, and 33 I<V voltage 
levels. There are 12 generators, 21 switchable VAR compensators 
and 19 tap changing transformers. Voltage feasibility range for the 
PQ-nodes is between 95-105%. Comparitive evaluation of SLP, 
SQP, minimal control action and reduced controller algorithms 
are presented in table-I. 

4.430 0.024 I 0.03 I 0.553 I 0.103 
0.919 1.015 I 1.022 I 0.981 I 0.998 

TABLE-I: Resul t s  for t h e  89 bus power  system 

I INITIAL I SLP Alg. I SQP Alg. I AG1 I AG2 I 

- I ,  I N,, I 49 I 3 1  2 I 22 I 5 1  

0" I 0.081 I 0.029 I 0.028 I 0.044 I 0.037 I 
First, it is observed from table-I that minimal control action 

algorithm (AG1) drastically brings down the control action with 
significant reduction in MW losses and improvement in voltage 
profile. For e.g., it is observed that total compensation increases 
from 140 MVAR to 145 MVAR with AG1. As SLP and SQP al- 
gorithms have MW loss minimization as their primary objective, 
reduction in MW losses is more significant for these algorithms, 
but at the cost of large control action. For e.g., Q-compensation 
in the system is increased from 140 MVAR to 458 MVAR . Sec- 
ondly, it has been found by simulations that almost 34% of the 
controls could be curtailed using AG2. The performance of AG2 
is better than that of AG1 in all respects. The primary reason for 
this is that AG1 reduces capacitive compensation ( because of the 
negative elements introduced in the search direction for the capac- 
itive variables). However AG2 inhibits the reduction of capacitive 
injections (g! and s," have same sign) and therefore, in totality 
improves the results. Finally, it is observed that tuned SLP algo- 
rithm's performance is comparable to that of the SQP algorithm 
performance; SLP algorithm is faster than SQP algorithm. The 
algorithms have been tested on a VAX-8810 computer. Computa- 
tional effort required for the SLP, SQP, AG1 and AG2 algorithms 
is approximately 21, 41, 15 and 16 seconds(CPU time) respec- 
tively. The value of the control parameter t/ used in the above 
simulatioiis is 0.005. The effect of control parameter value on the 
control action suggested for AG1 and the convergence character- 
istics are tabulated in table-11. 
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 TABLE-^: Effect of control parameter e/ on amount of 
control  act ion 

fast and easy to  implement. A single parameter decides trade offs 
between movement of controls, number of controls and gains in 
security as well as loss reduction. 

€1 = 0.002s 
LOSS 11 Atr 112 LOSS I\ AIL 112 LOSS 11 112 

c/ = 0.001 iter €1 = 0.005 

- 0  144.67 0.9629 144.67 1.7884 144.67 2.9369 
1 135.05 0.5572 129.14 0.8324 129.22 1.3213 
2 129.82 0.4023 125.10 0.8211 124.19 1.0707 
3 129.21 0.4019 

LIST OF SYMBOLS 

n - size of the power system network. 
S r z  - maximum permissible MVA for the L t h  line. 
Pfk,,,,, - active power flow in the L t h  line in either of two directions 

From table-11, it can be observed that as the value of con- 
trol parameter is decreased, the corresponding amount of maxi- 
mum possible control action increases while the losses decrease. 
Note that this behaviour is consistent with the lemma proved in 
appendix-D. Thus, c/ parameter controls the amount of control. 
The table also shows that the convergence is steady and takes place 
in very few iterations. Irrespective of the value of €1 used, no oscil- 
lations are observed during convergence. The steady reduction in 
1 1  Au 112 indicates the steady decrease in the amount of maximum 
control needed, and thus demonstrates the utility of the algorithm. 

1 STATE 1 

319 bus  system 
This system comprises of 400, 220, 132 and 66 KV lines. There 
are 22 generators, 42 Q-injection variables and 24 tap changing 
transformers in the system. Voltage feasibility range for all the 
buses is from 95% to 105% of the nominal voltage. Results for the 
system are presented in table-111. No oscillations were observed 
during convergence to  the final state. As can be observed, most of 
the earlier observations hold for this system also. As much as 50% 
controls have been curtailed by algorithm AG2 with only 1.8MW 
increase in power losses above the SQP results. Similarly, perfor- 
mance of AG1 is also satisfactory. Computational effort required 
for the SLP, SQP, AG1 and AG2 algorithms is approximately 70, 
156, 50 and 75 seconds(CPU time) respectively. 

- - -  

TABLE-111: Resul ts  for 319 b u s  system 

1 INITIAL I SLP Alg. I SQP Ald. I AG1 I AG2 I 

1 -  

A 9% -10.35 -8.2 -6.2 -7.93 
Compen 5 245.44 271.54 167.85 199.86 
Nu 136 33 14 40 25 
S.. 7.605 0.719 0.212 0.934 0.525 
P v  I 0.950 
u v  I 0.058 

.994 1,000 0.985 0.993 
0.032 0.029 0.033 0.031 

CONCLUSIONS 

Algorithms were proposed to minimize the number of control 
actions as well as controller movements, in order to  realize real- 
time objectives in voltage/reactive power control. These algo- 
rithms represent systematic procedures to improve the state of the 
power system considering at the same time practical constraints 
such as feasible and most effective controller movements. The 
cost of reduction/curtailment of controller movements is the sub- 
optimality of the solution. With growing system sizes, it is im- 
possible for the operator to identify the most effective subset of 
controls which result in maximum gains while meeting real world 
constraints. We feel these algorithms represent a significant ad- 
vancement towards reducing operator dependency in OPF, which 
is essential for real-time applications. The algorithms are based 
on sound mathematical and numerical techniques; they are robust, 

Qjlowr - reactive power flow in the L t h  line in either of two direc- 
tions at k-th iteration. 
v; - voltage at bus i. 
h - violating MVAR line flows and generator Q-constraint equa- 
tions vector. 
u t  - vector of load bus voltages at k-th iteration. 

hdes‘ - desired vector for vector h at Iz-th iteration. 
&, - net reactive power injection at bus i. 
PL - active power loss of the system. 
Ps, - slack bus active power injection. 
Comp - total Q-compensation. 
g - load flow equations vector. 
gk - power loss derivative at k-th iteration. 
N,, - number of violated PQ-node.voltages. 
,u,, - mean voltage of the system nodes. 
U, - standard deviation of voltages for the system. 
S,, - sum of absolute voltage infeasibilities. 
St - voltage sensitivity matrix at Ic-th iteration. 
S,k - sensitivity matrix foy constraints IL at Ic-th iteration. 
S, - senstivity matrix for state vector 2. 
U - reactive power control vector. 
1 1  . 112 - Euclidean norm of a vector. 
11 . I I F  - Frobenius norm of a vector. 
A+ - pseudo-inverse of matrix A. 
U, - i- th singular value of a matrix. 
ustep - restriction vector for the controller movements (U). 
nc - dimension of vector U .  

w.r.t - with respect to. 
r.h.s - right hand side. 
Superscript o denotes the initial point & k the iteration count. 

- desired voltage vector for vector VL at Ic-th iteration. vdesk 
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APPENDIX- A 

REDUCED MODEL FORMULATION 
As the active power injection variables except the slack bus power 
injection are fixed in RPO, APL = APsl. On linearization of the 
power flow equations around the power flow solution, we obtain 

[%]AX + [%]All = 0 
Ax = - [ g ] - ' [ g ] A u  

AP,l = [ 2 l T A x  + 
AP,i = [ [%lT[Sz] + [%IT ]Au 

Ax = [S,]Au ( A l l  

Similarly, Ah = %Ax + E A U  

Reduced gradients can be computed from the above expressions. 
Ah = [ g S x  + $]Au (A21 

APPENDIX-B 

LOSS ESTIMATION FOR AG1 
Using second order a.pproximation for PL(u), we have at  the k-th 

APL = [2IT SL+hf + $f[Skt]T[z][Skt]br 
The above equatlon gives an estimateof the change in losses along 
Auk given bt.  However, evaluation of the estimate as above is in- 
accurate as well as expensive. Therefore, line search is used in the 
proposed algorithm. 
LOSS ESTIMATION FOR AG2 
A t  the k t h  iteration, the search direction is given by Ask = 
DkSktb; ,  where D k  is a diagonal matrix (d : )  with df = 1 if gf 
and sf have opposite signs and d: = 0 if y,k and 3: have same sign. 
With quadratic a.pproximation of the loss function and the search 
direction computed as above, we have the estimate 

APL k - - I%.]T au DkSk'b: + : b r " [ S k t ] T D k ' [ ~ ] D k [ S k t ] 6 t  
The expression is similar to the one given for AG1, and the qual- 
itative remarks for AG1 hold for AG2 also. 

APPENDIX-C 

SLP ALGORITHM 
At the Ic-th iteration of the SLP algoiithm the following linear 
programming problem is solved. 

mzn AP,k, = [ 2 l T A u  subject to 
niar(-ustep,u"'" - u k )  5 Auk 5 mzn(ustep, umar - u k )  
p i n  - p k  5 A X k  5 CTnar - z k  

h"'" - h k  5 Ahk 5 h""" - hk 
Expressions for Ax and Au have been computed in ( A l )  and (A2). 

SQP ALGORITHM 
At the k - t h  iteration of the SQP algorithm the following quadratic 
programming problem is solved. 

min [%lTAu + ;[Au]'[Hk][A~] 
unin - uk 5 Auk 5 umaz - uk 
zmin - x k  _< Axk 5 xmax - x k  
hmin - hk 5 Ahk 5 hmaX - hk 

The matrix H k  is a positive definite quasi newton Hessian approx- 
imation to the IIessian of the augmented lagrangian function at 
the k-th iteration. The impleinentation utilizes E04VCF routine 
from the NAG library, which differs from the standard SQP algo- 
rit,hm of [9] in t,he following way. Firstly, a t  each iteration, strict 
feasibility is maintained for power flow constraints. Secondly, only 
inequality constra.ints exist. in  the reduced formulation solved by 
SQP method. Finally. the convergence of the algorithm is super- 
linear. For further discussions refer to [9,10]. 

APPENDIX-D 

Lemma: The second norm of the control action (11 A u  / I 2 )  ob- 
tained from bed, approximate solution of ( 2 )  decrea.ses with the 
increase in control parameter c l .  

Proof: Let Sk = Q (; : ) p T  
Then, the corresponding best approximate solution for the control 
action (Auo) is given by Auo = Sktb3'. By property-3 of Theorem 
2 and the invariance property of second norm of a vector under 
linear transformation by an orthogonal matrix, we have 

(3) 

where Q = [q l .  q2 ,  ..., qm]. 
Similarly, the second norm of the control action (AuJ)  obtained 
by using rank deficient approximation of the sensitivity matrix 
( E /  > 0 such that r < n )  is given by 

(4) 
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