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Severe acute respiratory syndrome (SARS) has been transmitted extensively within hospitals, and
healthcare workers (HCWs) have comprised a large proportion of SARS cases worldwide. We present a
stochastic model of a SARS outbreak in a community and its hospital. For a range of basic reproductive
numbers (R0) corresponding to conditions in different cities (but with emphasis on R0 ~ 3 as reported for
Hong Kong and Singapore), we evaluate contact precautions and case management (quarantine and
isolation) as containment measures. Hospital-based contact precautions emerge as the most potent meas-
ures, with hospital-wide measures being particularly important if screening of HCWs is inadequate. For
R0 = 3, case isolation alone can control a SARS outbreak only if isolation reduces transmission by at least
a factor of four and the mean symptom-onset-to-isolation time is less than 3 days. Delays of a few days
in contact tracing and case identification severely degrade the utility of quarantine and isolation, parti-
cularly in high-transmission settings. Still more detrimental are delays between the onset of an outbreak
and the implementation of control measures; for given control scenarios, our model identifies windows
of opportunity beyond which the efficacy of containment efforts is reduced greatly. By considering path-
ways of transmission in our system, we show that if hospital-based transmission is not halted, measures
that reduce community–HCW contact are vital to preventing a widespread epidemic. The implications
of our results for future emerging pathogens are discussed.
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1. INTRODUCTION

When a previously unknown infectious disease emerges,
the initial options for control are limited. In the absence
of an effective treatment or vaccine, policies are restricted
to case management (such as the isolation of known cases
and quarantine of their contacts) and contact precautions
for identifiable high-risk groups. Owing to limitations in
public health resources and concern about personal free-
doms and economic impacts, policy-makers face decisions
regarding the relative importance of such efforts. This
paper identifies priorities and trade-offs for the control of
the newly identified coronavirus that has caused an epi-
demic of severe acute respiratory syndrome (SARS)
worldwide, particularly in parts of Asia. Our analysis
focuses on the role of hospitals and healthcare workers
(HCWs) in disease transmission by dividing the threat-
ened population (city or region) into two groups: a hospi-
tal community and the community-at-large.

Hospitals have been widely recognized as the highest-
risk settings for SARS transmission (Drazen 2003; Lee et
al. 2003). As of early June 2003, HCWs have comprised
ca. 63% of SARS cases in Hanoi, 51% in Toronto, 42%
in Singapore, 22% in Hong Kong and 18% in mainland
China (Booth et al. 2003; Hong Kong Department of
Health 2003; Leo et al. 2003; Twu et al. 2003; World
Health Organization 2003). Healthcare settings and
HCWs are thus an obvious focus for SARS control efforts,
with particular concern for preventing leakage of the dis-
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ease from hospitals back into the surrounding communi-
ties.

We present a model of a nascent SARS outbreak in a
community and its hospital, addressing the relative bene-
fits of case management and contact precautions for con-
taining the disease. At the time of writing, this situation
holds great relevance because travel from regions with on-
going epidemics has the potential to seed new outbreaks
worldwide (Twu et al. 2003). Of greatest concern are
countries with poor health infrastructure, and the possi-
bility of a seasonal re-emergence of SARS in the Northern
Hemisphere’s next winter. Furthermore, although our
model is parameterized for SARS, the lessons learned will
be useful in future outbreaks of novel infectious diseases
or pandemic influenza strains.

Our analysis is based on a stochastic model, because
chance events can greatly influence the early progression
of an outbreak. We pay particular attention to capturing
realistic distributions for the incubation and symptomatic
periods associated with SARS, because the natural history
of disease progression is less likely to vary between epi-
demics than are the mixing and transmission patterns.
Disease control measures are described by explicit para-
meters, so their respective contributions to containment
can be teased apart (see table 1). The hospitalization rates
of infected community members and HCWs are denoted
by hc and hh, respectively, and q is the rate of quarantining
exposed individuals in the community following contact
tracing. The transmission rate for case-isolated individuals
is modified by a factor k, reflecting measures such as res-
piratory isolation and negative pressure rooms, and trans-
mission by quarantined individuals is modified by g.
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Table 1. Summary of transmission and case-management parameters, including the range of values used throughout the study
and the three control strategies depicted in figure 3.

range figure 3 figure 3 figure 3
parameter symbol examined (1) (2) (3)

baseline transmission rate (day21) b 0.08–0.26 0.15 0.15 0.15
(R0 = 1.5–5) (R0 = 3) (R0 = 3) (R0 = 3)

factors modifying transmission rate, owing to:
pre-symptomatic transmission « 0–0.1 0.1 0.1 0.1
hospital-wide contact precautions h 0–1 0.5 0.9 0.5
reduced HCW–community mixing r 0–1 0.5 1 0.5
case isolation k 0–1 1 0.5 0.5
quarantine g 0–1 0.5 0.5 0.5

daily probability of:
quarantining of incubating individuals in the community q 0–1 0 0.5 0.5

(Ec)
isolation of symptomatic individuals in the community hc 0–1 0.3 0.9 0.9

(Ic)
isolation of symptomatic HCWs (Ih) hh 0.9 0.9 0.9 0.9

Hospital-wide contact precautions, such as the use at all
times of sterile gowns, filtration masks and gloves, modify
within-hospital transmission by a factor h. A final para-
meter r describes efforts to reduce contact between off-
duty HCWs and the community. Control parameters are
thus divided into those describing case-management mea-
sures (hc, hh, q, g, k) and those describing contact pre-
cautions (h and r).

The most difficult process to characterize in any epi-
demic is disease transmission. This can be divided into a
contact process and the probability of transmission given
contact. The former varies dramatically between com-
munities (owing to, for example, usage patterns of public
transport or housing density) and between diseases (owing
to different modes of transmission); the latter also
depends on both the disease (the proximity required for
transmission) and the community (cultural mores relating
to intimacy of contact and hygiene). Thus, transmission
rates are both disease- and community-dependent and will
vary from country to country, as well as between cities
within a region (Galvani et al. 2003). This geographical
variation translates directly into variations in the basic
reproductive number R0 of the epidemic, which is the
average number of secondary cases generated by a ‘typical’
infectious individual in a completely susceptible popu-
lation, in the absence of control measures (Diekmann &
Heesterbeek 2000). For instance, SARS is likely to have
different R0 values in Beijing and Toronto, owing to differ-
ences in cultural practices, environmental conditions and
population density. Such differences are confirmed by
Galvani et al. (2003), who report widely varying doubling
times for SARS outbreaks in six affected regions.

Recent analyses of SARS incidence data from Hong
Kong (Riley et al. 2003) and Singapore and other settings
(Lipsitch et al. 2003) report R0 to be 2.7 (95% confidence
interval (CI): 2.2–3.7) and ca. 3 (90% CI: 1.5–7.7),
respectively. As acknowledged by these authors, the esti-
mation of R0 is complicated by healthcare practices in
place before outbreaks are recognized—measuring a dis-
ease’s rate of spread in the true absence of control is rarely
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possible. In the case of SARS, non-specific control meas-
ures may have helped or hindered early epidemic growth:
hospitalization of symptomatic cases reduced transmission
to the general community, but put HCWs at risk owing
to unprotected medical procedures, possibly contributing
to so-called super-spreading events. (Note that the R0

reported by Riley et al. (2003) excludes such events.) Esti-
mates of R0 from data including non-specific control mea-
sures therefore could be biased in either direction. Taking
note of the confidence intervals cited above, R0 values
associated with SARS in different parts of the world could
easily vary from 1.5 to 5—roughly the same range as has
been estimated for influenza (Hethcote 2000; Ferguson et
al. 2003). SARS is thought to be primarily transmitted via
large-droplet contact, compared with airborne trans-
mission via droplet nuclei for influenza, but faecal–oral
and fomite transmission are suspected in some circum-
stances (Riley et al. 2003; Seto et al. 2003; Wenzel &
Edmond 2003).

To obtain some general results we evaluate control stra-
tegies for scenarios reflecting R0 values from 1.5 to 5, with
particular emphasis on R0 ~ 3, which is the current most
likely estimate for Hong Kong and Singapore. Because the
feasibility of implementing different control measures var-
ies from country to country (owing to public health infra-
structure, for instance, or concerns about civil liberties),
we evaluate the extent to which one control measure can
compensate for another. We distinguish the impact of two
types of delay in the control response: the delay in isolat-
ing (or quarantining) particular individuals, and the delay
in implementing a systemic control policy after the first
case arises. Finally, we consider the pathways of trans-
mission in our model, to obtain direct insight into the role
played by HCWs in containing the epidemic.

2. MODEL DESCRIPTION

Our model divides the population into an HCW core
group and the general community (denoted by subscripts
‘h’ and ‘c’, respectively); infected individuals may enter
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case management (subscript ‘m’), representing quarantine
or case isolation. We categorized disease classes as suscep-
tible (Sc, Sh), incubating (Ec, Eh, Em ), symptomatic (Ic, Ih ,
Im ) and removed owing to recovery or death (Rc, Rh). The
model updates in 1-day timesteps, representing the small-
est interval for which people’s activities can be thought to
be equivalent. Substructures associated with daily move-
ments are summarized in figure 1, with details given in
the caption. Stochastic transitions of individuals between
classes, based on the probabilities shown in figure 1, were
implemented by Monte Carlo simulation.

The baseline transmission rate of symptomatic individ-
uals in the community, b, was chosen to produce the
range of R0 values used in our different scenarios (see next
paragraph). Given the possibility of pre-symptomatic
transmission of SARS (Cyranoski & Abbott 2003; Don-
nelly et al. 2003), our model allows transmission at a
reduced rate «b by incubating individuals. Disease trans-
mission occurs via the following pathways, with contri-
butions weighted as shown in figure 1d. The hazard rate
of infection for susceptibles in the community, rep-
resented by lc, contains contributions from unmanaged
incubating and symptomatic community members (Ec and
Ic), as well as off-duty HCWs (Eh and Ih). Quarantined
individuals (Em ) transmit to Sc at a reduced rate, reflecting
household contacts and breaches of quarantine. The
infection hazard rate for HCWs, lh, contains contri-
butions from workplace transmission risks, from isolated
patients (Im ) and unmanaged incubating and symptomatic
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Figure 1. Flow diagram of the transmission dynamics of a
SARS epidemic within a hospital coupled to that in a
community. (a) We modelled SARS transmission as an
SEIR process (S, susceptible; E, incubating; I, symptomatic;
R, removed) structured into an HCW core group (subscript
h), a community-at-large (subscript c), and a case-managed
group (subscript m) of quarantined (Em) and isolated (Im)
individuals. (b) Incubating individuals in all three groups
(Ex, where x = c,h,m) were further structured into 10
disease-age classes, with daily probabilities pi of progressing
to the symptomatic phase. Values of pi were interpolated
linearly between p1 = 0 and p10 = 1, yielding a distribution of
incubation periods consistent with data (see electronic
Appendix A, available on The Royal Society’s Publications
Web site). (c) Symptomatic individuals in all three groups
(Ix, where x = c,h,m) were structured into two initial
disease-age and three subsequent disease-stage classes (in
which individuals have a probability r of moving to the next
stage each day). Individuals leaving the final symptomatic
class (Ix5) go to Rc or Rh, depending on whether they
originated in Sc or Sh. Details of the incubating and
symptomatic substructures are discussed in electronic
Appendix A. Independent of the disease progression
described in (b) and (c), individuals can enter case
management with daily probabilities q for quarantine, or hc

and hh for isolation (in the community and HCW groups,
respectively). Individuals must already be in class Ic or Ih to
be isolated, so the soonest that an un-quarantined individual
can be isolated is after the first day of symptoms; individuals
in quarantine are assumed to move directly into isolation
when symptoms develop. (d ) The transmission hazard rates
for susceptible individuals Sj are denoted by lj ( j = c,h) and
depend on weighted contributions from community and
HCW sources as described in § 2 (and table 1). The
discrete-time stochastic formulation of our model allows for
the possibility of multiple infectious contacts within a
timestep, so for a susceptible individual subject to total
hazard rate lj the probability of infection on a given day is
1 2 exp(2l j ). (Note that the units of b are day21.) We
assume density-independent contact rates and random mixing
within each pool, so hazard rates of infection are dependent
on the transmission rate for each infectious class multiplied by
the proportion of the population in that class. Specifically,
defining the effective number of individuals in the hospital
mixing pool as N h = Sh 1 Eh 1 I h 1 Rh 1 I m and in the
community mixing pool as N c = Sc 1 Ec 1 I c 1 Rc 1 r(Sh 1

Eh 1 I h 1 Rh), the total hazard rates are lc = [b(I c 1 «Ec) 1

rb(I h 1 «Eh) 1 gb«Em]/N c and lh = rlc 1 hb(I h 1 «Eh 1

kI m)/N h. In simulations, the number of infection events in
each timestep is determined by random draws from
binomial (S j , 1 – exp(2l j)) distributions ( j = c,h). Equations
describing the model are given in electronic Appendix A.

co-workers (Eh and Ih), as well as from off-duty time in the
community. To describe case management and control of
the epidemic, we further modified transmission (figure 1d)
in terms of the parameters g, k, h and r introduced earlier
(see table 1). Specifically, in the healthcare environment,
transmission occurs at a rate of hb owing to hospital-wide
precautions, and transmission by isolated patients (Im ) is
further modified by the factor k. Transmission rates
between HCWs and community members are modified by
the factor r. Quarantine reduces contact rates by a factor
g, such that the net transmission rate of quarantined incu-
bating individuals (Em ) is g«b.
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When all other parameters are fixed at values rep-
resenting no control measures, each R0 from our assumed
range of 1.5 to 5 uniquely determines a value of b to be
used in our simulations. Throughout this paper, unless
otherwise stated, we assume that incubating individuals
transmit at one-tenth of the rate of symptomatic individ-
uals (i.e. « = 0.1). The effects of control are explored by
calculating the values of the case-management rates (hc,
hh, q) and transmission-reduction parameters ( r, k, g, h)
required to reduce the effective reproductive number R to
below 1, where R is the expected number of secondary
cases generated from an average infection when a given
control policy is in place. Calculation of reproductive
numbers R0 and R for our model is described in electronic
Appendix A available on The Royal Society’s Publications
Web site. For a two-pool model such as this, the system-
wide reproductive number is the dominant eigenvalue of
a 2 ´ 2 next-generation matrix (Diekmann & Heesterbeek
2000); individual elements of this matrix (Rij, where i, j =
c or h) give insight into the potential for disease spread
within and between the c and h pools.

Each simulation is initiated with a single infection in the
community. Unless otherwise stated, we model the spread
and control of SARS in a population of 100 000 individ-
uals and a hospital of 3000 individuals (cf. Dwosh et al.
2003). In electronic Appendix A we assess sensitivity of
our results to absolute population size, and also to the
relative size of the two pools.

3. RESULTS AND DISCUSSION

(a) Stochastic epidemics and the reproductive
number

Epidemics with reproductive number R , 1 tend to
fade out, because on average each infection does not
replace itself. When R . 1, the epidemic is expected to
grow, although if the number of cases is small then ran-
dom events can lead to fadeout of the disease, particularly
if R is close to 1. (Note that these statements apply equally
to the basic reproductive number, R0, and the effective
reproductive number under a control strategy, R). Sample
simulations of our model exhibit this basic trend (figure
2a), as we see fadeout for four out of five simulations cor-
responding to R = 1.2, two out of five for R = 1.6 and
one out of five for R = 2. In addition, note the variability
in epidemic timing and rate of growth between realizations
of our stochastic model.

As fadeout is an imprecise concept, we frame our results
in terms of ‘epidemic containment’, which we define as
the eradication of the disease within 200 days of the first
case, subject to the additional criterion that less than 1%
of the population ever become infected. (This criterion is
needed because a highly virulent disease can pass through
a population within 200 days and still infect a large pro-
portion of individuals before extinguishing itself.) The
probability of containment in our model decreases with
increasing R (figure 2b), but is still significantly larger than
zero for R ~ 5. (This relationship can be defined precisely
for stochastic models simpler than ours—see Diekmann &
Heesterbeek (2000).) We note from figure 2b that even
control measures that do not reduce R to below 1 can
have a substantial probability of succeeding, provided that
they are imposed when the number of cases is small.
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(b) Effect of case isolation
To identify control strategies sufficient to contain a

SARS outbreak, we consider parameter combinations that
reduce the effective reproductive number to 1. We plot
R = 1 contours for a range of R0 values in two-dimensional
parameter spaces (figures 2c–e); parameter regions to the
left of the lines give R , 1. First we explore whether case
isolation alone can control a SARS outbreak in a com-
munity and its hospital, as a function of the daily prob-
ability that a symptomatic individual in the community
will be identified and isolated (hc), and the factor by which
isolation modifies the transmission rate (k). We compare
scenarios where hospital-wide transmission occurs at the
same rate (h = 1, figure 2c) versus half the rate (h = 0.5,
figure 2d), as in the general community. Unsurprisingly,
the extent of measures required to control an outbreak is
strongly dependent on R0. If R0 ~ 3 (as reported for SARS
in Hong Kong and Singapore) and no general contact pre-
cautions are taken in the hospital (figure 2c, black curves),
we see that an outbreak can be controlled only if case iso-
lation reduces transmission by at least a factor of four
(k , 0.25), and the mean onset-to-hospitalization time is
less than 3 days (hc . 0.3). More stringent infection con-
trol (lower values of k) allows slightly slower hospitaliz-
ation to be effective. When general contact precautions
cut hospital transmission by half (figure 2d), case isolation
has a considerably greater chance of success, although
rapid hospitalization is still imperative.

These results agree qualitatively with Riley et al. (2003),
who conclude that the observed reduction of mean onset-
to-hospitalization time from 4.84 days to 3.67 days was
not sufficient to control the Hong Kong outbreak (with
their assumed value of k = 0.2). Different model structures
complicate quantitative comparisons (we model HCWs
explicitly, whereas Riley et al. (2003) consider spatial
coupling), but to test changes in R that were owing to case
isolation we approximate their model by setting hh = hc

and r = h = 1. Increasing hc from 1/4.84 to 1/3.67 then
reduces R by 11%, in precise agreement with the result
obtained in the Hong Kong study.

Delays in initiating isolation of symptomatic individuals
are shown by three contours of each colour (figure 2c,d;
delays increase from right to left). Such delays are rela-
tively unimportant when R0 is low but become critical as
R0 increases, since in higher transmission settings sympto-
matic individuals are more likely to reproduce their infec-
tion in just a few days of unrestricted mixing, requiring
disproportionate efforts on other control measures if iso-
lation is delayed. For example, when R0 = 5 and h = 0.5
(figure 2d, purple lines), if case isolation is initiated after
the first day of symptoms then a sixfold reduction in trans-
mission (k ~ 0.17) and 40% daily isolation probability
(hc = 0.4) is sufficient to contain the outbreak (point
marked ¤ ), whereas delaying isolation for 2 more days
requires near-perfect isolation practices (k , 0.1, hc .
0.7) to assure containment. Note that preliminary evi-
dence suggests a variation in viral load throughout the
symptomatic period of SARS (Peiris et al. 2003), which if
correlated with infectiousness could affect our conclusions
regarding the importance of immediate case isolation.

In all cases (figure 2c,d), we identify a marked threshold
in the interaction between k and hc. For example, in an
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outbreak with R0 = 2.5 and h = 0.5 (figure 2d, red lines),
making improvements in isolation practices (decreasing k
value) has little effect on R if current control measures
place the system at point A, but shows dramatic benefits
if the system is at point B. Conversely, increasing hc sig-
nificantly boosts control from point A but has negligible
effects from point B. This threshold arises because even
if all cases are isolated immediately (hc = 1) the epidemic
will not be contained unless k is sufficiently low.
Conversely, even if isolation stops transmission entirely
(k = 0), the outbreak will not be contained unless a suf-
ficient proportion of cases are isolated soon enough. The
sharpness of this threshold arises in part because the
proportion of individuals not isolated by the nth day is
(1 2 hc)n, where values of n ~ 10 2 20 are pertinent
because individuals with SARS often remain symptomatic
for an extended period. The threshold softens as R0

increases, since when transmission rates are higher the
critical values of n are smaller (i.e. individuals must be
isolated sooner, on average, to keep R , 1). These find-
ings highlight that pushing blindly to upgrade any given
control measure may not advance the fight against SARS;
with limited resources, the best approach is to identify
where the current policy is failing (e.g. inadequate case
identification versus ineffective isolation practices) and
make targeted improvements.

(c) Contact tracing and quarantine
For situations where modern case isolation facilities are

not available, we explore the extent to which quarantine
can compensate as a control measure (figure 2e). For fixed
case isolation probabilities, we investigate the trade-off
between q, the daily probability that an incubating individ-
ual will be traced and quarantined, and k, the degree to
which case isolation reduces transmission. We assume that
transmission in quarantine is reduced by half, on average,
because experiences in Singapore and elsewhere have indi-
cated that many people are not compliant (Mandavilli
2003). For each value of R0 in figure 2e, we plot R = 1
contours for two speeds of contact tracing (i.e. delays
before quarantining begins).

The potential for quarantining to aid SARS contain-
ment increases markedly with R0. In low-transmission set-
tings (figure 2e, dark blue lines) there is little difference
between immediate quarantine and none at all—a small
change in k or h would be more effective than instituting
a quarantine policy. By contrast, for higher R0 quarantin-
ing can aid control substantially. In a setting with R0 = 5
(figure 2e, purple lines), in the absence of quarantining a
value of k , 0.06 is required to contain an outbreak. If
daily quarantining probabilities are at least 0.3, however,
then k ~ 0.25 is sufficient to achieve containment. Thus,
even a partly effective quarantine policy creates a signifi-
cant opportunity to assure containment (i.e. to bring R
below 1) where little existed before. In developing world
settings, implementing moderate quarantine programmes
may be far more tractable than attaining near-perfect
case isolation.

Quarantining aids disease containment in two ways in
our model. First, individuals in quarantine (Em ) are
assumed to proceed immediately to case isolation (Im )
when they develop symptoms. Second, lower contact rates
of quarantined individuals reduce transmission during the
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incubation period (only relevant when « Þ 0). The dotted
lines in figure 2e show cases where no transmission occurs
during incubation (i.e. « = 0); the lines are shifted right-
wards because this decreases R0 by a small amount. Sensi-
tivity to quarantining rate (shown by the curvature of the
lines) is only slightly diminished, though, indicating that
the effect of quarantine is due primarily to rapid isolation
once symptoms develop.

The maximum benefit of quarantining is realized when
contact tracing begins on the first day following exposure
(rightmost solid line of each colour in figure 2e). Rapid
gains are made as q increases from zero, but this effect
saturates at relatively low daily probabilities. This satu-
ration occurs because the effect of quarantine is due prim-
arily to faster case isolation, so the important quantity is
the proportion of cases that are traced before they progress
to symptoms. The proportion traced by the nth day is
1 2 (1 2 q)n, which, for n ~ 5 (the median incubation per-
iod for SARS), approaches 1 quickly as q increases. If con-
tact tracing is delayed such that no individuals are
quarantined until 5 days following exposure (leftmost lines
in figure 2e), the contribution of quarantine is consider-
ably reduced even if q is high. This follows because 5 days
is the median incubation period, so that half of the cases
will already have developed symptoms before quarantining
begins. Thus, it is essential for contact tracing to begin
quickly, even if coverage is initially low: tracing just a few
exposed contacts quickly can have a large effect. As for
case isolation, the impact of delays is greater for higher
transmission settings because unmanaged cases (in this
case, the untraced individuals who become symptomatic)
can do greater damage.

Note that in settings where individuals remain quaran-
tined for some portion of the symptomatic period instead
of entering isolation immediately, quarantining aids con-
trol efforts by reducing mixing rates during the early phase
of the highly infectious period. This contribution to con-
tainment is not included in our model, and would increase
the impact of quarantine measures on epidemic growth.

(d) Contact precautions
Comparison of figure 2c and 2d shows the dramatic

impact of hospital-wide contact precautions ( h), suggest-
ing that measures to reduce transmission among the high-
risk HCW population may be a powerful complement to
case management. In figure 2f, we directly compare the
individual influence of all four transmission-reduction
parameters (k, g, r and h) on R, under fixed probabilities
of quarantine and isolation. Hospital-oriented measures
(h and k) are the most potent by far. Hospital-wide pre-
cautions (h) will always be stronger than specific case iso-
lation measures (k), since both factors contribute equally
to reducing transmission by isolated patients whereas only
h affects transmission by not-yet-identified HCW cases
(see figure 1d). Reduction in HCW contact with the com-
munity (r) has a weaker effect on R, and the effectiveness
of quarantine (g) plays a minimal part (though this will
increase if transmission during incubation is higher, or in
settings where individuals remain in quarantine through
some of the highly infectious period).

Contact precautions in the hospital setting (h and k) are
thus critical to controlling a SARS outbreak successfully,
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Figure 2. (Caption opposite.)

owing to the deliberate importation of highly infectious
symptomatic cases into hospitals. In electronic Appendix
A, we test the robustness of this conclusion to changes in
case-management scenarios and R0. As expected, the role
of h and k in reducing R is diminished as hospitalization
rates become very low. However, in every scenario con-
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sidered the contribution to R owing to poor contact pre-
cautions in the hospital (h ! 1) is higher than that for any
other failure of transmission control, particularly if screen-
ing of HCWs for symptoms is poor. Some degree of
hospital-wide contact precautions is thus essential to com-
bating a SARS outbreak.
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Figure 2. (a) Sample output from the model, showing
cumulative numbers of cases. Five realizations of the
stochastic model are shown for three values of R, to
highlight variability in outcomes and the increased
probability of fadeout for lower R. Several epidemics died
out immediately and cannot be resolved from one another
(one for R = 2, and two each for R = 1.6 and R = 1.2).
(b) The probability of epidemic containment (as defined in
the text) as a function of R, for a population of 100 000
with a single initial case. We set « = 0.1, and b was varied to
give the desired R values, with no control measures imposed.
Probabilities were calculated from 100 runs per R-value.
(c2e) Threshold control policies for containment of the
epidemic. Lines show R = 1 contours for scenarios where
R0 = 1.5 (green), 2 (blue), 2.5 (red), 3 (black), 4 (light blue)
and 5 (purple); parameter regions to the left of the lines
give R , 1. Not all cases appear because some are off the
scale. (c,d) The effect of varying hc (the daily probability
that symptomatic SARS cases in the community will be
isolated) and k (the modification to transmission owing to
case isolation procedures) for h = 1 and h = 0.5, respectively,
on the threshold where R = 1. From right to left, three lines
of each colour show the effects of increasing delays in case
isolation (i.e. each symptomatic individual has no possibility
of being isolated for 1, 2 or 3 days, respectively, but a
constant daily probability (hc) thereafter). Points in (d )
marked A, B and ¤ are described in § 3b. We assume no
quarantining (q = 0) and a fixed strategy of case isolation of
symptomatic hospital workers (hh = 0.9) starting after their
first day of symptoms. Other parameter values: r = 1, « = 0.1.
(e) The extent to which contact tracing and quarantine can
substitute for imperfect case isolation. Here, h = 0.5, r = 1,
g = 0.5, hc = 0.3 and hh = 0.9, so the case isolation strategy is
fixed (and assumed to commence after the first day of
symptoms), but the degree to which transmission is reduced
by isolation (k) varies. From right to left, two solid lines of
each colour represent 1-day and 5-day delays in contact
tracing before quarantining begins. Solid lines show the case
« = 0.1, when transmission can occur during the incubation
period. The dotted lines show the case « = 0 (please note
that in this case R0 = 2.44, 2.92 and 3.90, rather than 2.5, 3
and 4). ( f ) Sensitivity of effective reproductive number R to
the four transmission-control parameters. In all
cases R0 = 3, « = 0.1, q = 0.5, hc = 0.3 and hh = 0.9; all
parameters k, g, r, h were set to 0.5, then varied one at a
time.

(e) Control strategies and delays in
implementation

Having assessed the importance of various control mea-
sures alone or in pairs, we now consider the effects of inte-
grated control strategies on SARS outbreaks. We treat a
scenario with R0 = 3, similar to outbreaks in Hong Kong
and Singapore. The median and 50% confidence intervals
(i.e. the 25th and 75th percentile values) of cumulative
incidence indicate that such an epidemic is likely to spread
rapidly through the population if uncontrolled (figure 3a,
black lines). Control strategies emphasizing contact pre-
cautions (figure 3a, green lines) or quarantine and iso-
lation (figure 3a, red lines) both reduce the effective
reproductive number to R = 1.5, thereby substantially
slowing the epidemic’s rate of growth and increasing the
probability of containment. A combined strategy of con-
tact precautions and case-management measures reduces
R to below 1 (R = 0.84 in this case—blue lines in figure
3a), thereby leading to rapid containment of the outbreak
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Figure 3. (Caption overleaf.)

in 85% of simulations. Considering the elements of the
next-generation matrix (see figure 3 caption), we see that
control is finally achieved because simultaneous lowering
of k and h brought Rch and Rhh below 1. In all cases
Rcc , 1, thus transmission involving the high-risk HCW
pool is required to sustain the uncontrolled outbreaks.
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Figure 3. (a) Increase in cumulative cases over 200 days, for
an uncontrolled outbreak compared with three control
strategies. For each day we plot the median value (solid line)
and 25th and 75th percentiles (dashed lines) of 500
simulations. Probabilities of containment (and 95%
confidence intervals) for each scenario are shown in the
legend. Control strategies are implemented 28 days after the
first symptomatic case. In all instances « = 0.1 and R0 = 3.
Strategy 1 (contact precautions): hc = 0.3, hh = 0.9, h = 0.5,
r = 0.5, k = 1, g = 1, q = 0, yielding R = 1.5 once
implemented ({Rcc,Rch,Rhc,Rhh} = (0.56, 1.04, 0.12, 1.36)).
Strategy 2 (quarantine and isolation): hc = 0.9, hh = 0.9,
h = 0.9, r = 1, k = 0.5, g = 0.5, q = 0.5, yielding R = 1.5
({Rcc,Rch,Rhc,Rhh} = (0.06, 1.12, 0.23, 1.34)). Strategy 3
(combined measures): hc = 0.9, hh = 0.9, h = 0.5, r = 0.5,
k = 0.5, g = 0.5, q = 0.5, yielding R = 0.84 ({Rcc,Rch,Rhc,Rhh}
= (0.06, 0.63, 0.12, 0.74)). (b) Probability of containing the
outbreak as a function of increasing delay in implementing
the control strategies, for the three strategies from figure 3a.
(c) Probability of containment versus delay in
implementation for strategy 3 from figure 3a, for R0 values
of 2, 3 and 4, which yield effective R values of 0.56, 0.84
and 1.12 after control is implemented. Horizontal lines
correspond to the probability of fadeout in the absence of
control (determined through simulation). In (b) and (c),
each probability (pest) is estimated from 500 simulations;
error bars represent 95% confidence intervals on pest, given
by 1.96 ´ [ pest(1 2 pest)/500]1/2.

We consider the repercussions of delaying implemen-
tation of these three control strategies (figure 3b). In all
cases, a prompt public health response is critical to con-
taining a SARS outbreak. This is the case particularly for
strategies that do not reduce R to below 1, as the possi-
bility of stochastic fadeout (see figure 2b) falls drastically
if the disease has time to spread beyond the initial few
cases. We also considered the impact of implementation
delays on the most effective, combined strategy from fig-
ure 3a, in scenarios where R0 equals 2, 3 and 4 (figure
3c). Again, timing is critical, especially for the most-
transmissible case when the effective R after control is
greater than 1. In all cases in figure 3b,c, a window of
opportunity exists at the beginning of a SARS epidemic
when a given control strategy has the greatest chance of
success. This critical period is lengthened by more effec-
tive control strategies, lower-transmission settings, and,
potentially, by a smaller hospital pool (see electronic
Appendix A). As implementation is delayed, the prob-
ability of containing the epidemic is reduced to levels
obtained in the absence of control; for instance if R0 = 3,
the weaker strategies lose their possible impact on contain-
ment within a few weeks, and even the highly effective
combined strategy must be implemented within two
months to show any gains over doing nothing. Note that
this result pertains strictly to epidemic containment (as
we define it), and is oriented toward minimizing overall
morbidity and mortality. We emphasize that implemen-
tation of stringent control measures is all the more essen-
tial if containment has already been lost and a full-scale
epidemic is in progress.

(f ) Preventing generalized community
transmission

The preceding discussion has focused on reducing R
and containing the outbreak without regard to the distri-
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bution of cases between the hospital and community. Pre-
venting SARS from entering general circulation in the
community is an important goal for at least two reasons.
First, restricting the outbreak to close contacts of known
cases and hospitals facilitates contact tracing and surveil-
lance, and greatly reduces the probability of an uncon-
trolled epidemic. Second, as evidenced by the recent
furore in Toronto, reports of generalized community
transmission can have dire economic impacts.

We now consider measures directed at restricting trans-
mission of SARS from the hospital back to the com-
munity, in particular the effect of precautions taken by
HCWs to reduce their community contacts during off-
duty time, as measured by the parameter r. In figure 4a
we plot the daily incidence of new cases, broken down
by the pathway of transmission, for one realization of a
stochastic epidemic in which HCWs behave normally
when off-duty (r = 1). The pie-chart inset shows the aver-
age proportions of infections along each pathway for 500
such epidemics. Note that h-to-c transmission—describ-
ing infections in the community caused by off-duty
HCWs—accounts for 15% of all infections in this scen-
ario, and that a significant number of cases arise in the
community each day. In figure 4b we plot results for an
identical scenario, except that the contact of HCWs with
community members is reduced tenfold (i.e. r = 0.1). This
control measure notably decreases the growth rate of the
epidemic (R = 1.4 instead of 1.6, as in figure 4a), and
even more dramatically alters the patterns of spread:
h-to-c transmission drops from 15% to just 2% of all
infections. Furthermore, there is minimal ongoing trans-
mission between community members—as Rcc is virtually
unchanged from figure 4a (see figure caption), we attri-
bute this to the reduction in re-seeding from the HCW
pool (note that Rhc drops from 0.23 to 0.02 owing to the
decrease in r).

Despite the relatively small contribution of r to the
effective reproductive number (figure 2f ), our results indi-
cate that reducing HCW–community mixing can play a
critical part in preventing the escape of SARS into the gen-
eral population via the next-generation matrix element
Rhc. These results are obtained despite high case isolation
probabilities for HCWs (hc = 0.9), which act indepen-
dently of r to limit h-to-c transmission (as case-isolated
HCWs no longer contact the community). Within-hospital
contact precautions, however, were not assumed to be
highly effective (h = 0.5, k = 1). Clearly, the importance of
r diminishes when hospital conditions minimize infection
of HCWs.

4. GENERAL DISCUSSION

Hospitals have been focal points of SARS transmission
in all affected areas for which data are available. Our
model examines a SARS outbreak in a community and its
hospital, to identify trade-offs and interactions between
the limited suite of control measures available for a novel
viral disease transmitted by casual contact. We consider a
range of R0 values, reflecting variation between cultural
settings, but focus on scenarios with R0 ~ 3 in keeping with
best estimates for the Hong Kong (Riley et al. 2003) and
Singapore (Lipsitch et al. 2003) outbreaks. Certain results
hold true regardless of the precise value of R0, and hence
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are relevant to SARS containment efforts everywhere.
These robust conclusions also provide guidance for future
outbreaks of emerging pathogens, particularly those exhib-
iting a tendency for nosocomial spread.

Our analysis identifies HCWs as critical targets for con-
trol efforts. Their status is analogous to high-activity ‘core
groups’ in sexually transmitted disease epidemics, but the
deliberate importation of SARS cases from the back-
ground community adds a twist to this established para-
digm. HCWs are thus exposed to a local prevalence of
much higher than that in the community-at-large, and as
a result measures that reduce transmission within the hos-
pital have the greatest impact on the reproductive number
(R) of the epidemic. Hospital-wide precautions (h) have
the strongest effect on R, followed by specific precautions
for isolating SARS patients (k).

This finding is bolstered by the detailed account of
Dwosh et al. (2003) of a comprehensive and effective
response by a community hospital near Toronto. A dedi-
cated SARS ward was established (under negative air
pressure to prevent aerosol spread to other parts of the
hospital) and private rooms were provided for each SARS
patient (also under negative pressure); these measures cor-
respond to reduced k in our model. Intensive barrier and
contact precautions were practised by all hospital staff at
all times (corresponding to h ¿ 1). Hospital staff were
screened at least twice daily for SARS symptoms, increas-
ing hh. Further measures included voluntary quarantine of
all staff presumed exposed, restriction of visitor and
patient numbers, and prevention of patient or staff trans-
fers to other institutions. The hospital outbreak was con-
tained, without a single further infection after contact
precautions were imposed.

Such a thorough response is unattainable in many
regions, particularly when facilities for respiratory isolation
are not available. Fortunately, measures that reduce h are
simple and inexpensive—masks, gowns and hand-washing
significantly reduced transmission of SARS to HCWs in
Hong Kong (Seto et al. 2003). For a broad range of scen-
arios our model indicates that high values of h (i.e. poor
precautions) contribute more to epidemic growth than any
other parameter, thus some degree of hospital-wide con-
tact precautions is essential to combating a SARS out-
break. Whenever within-hospital measures are insufficient
to stop infection of HCWs, however, it becomes critical to
reduce leakage of the infection back into the community.
Reducing contacts of off-duty HCWs with community
members can accomplish this goal, but can produce the
perverse effect that good HCW precautions lead to a
higher proportion of SARS cases being HCWs. This
results not from a higher incidence among HCWs, but
from preventing infection from escaping back into the
general community. HCWs in Hanoi effectively sealed
themselves off from the outside world, resulting in the
fastest containment of any significant SARS outbreak but
also one in which 63% of cases were HCWs (Reilley et al.
2003; Twu et al. 2003).

Our model identifies the minimum case-management
measures required to contain SARS outbreaks in different
settings. For R0 values reported for Hong Kong and Sin-
gapore we show that control is assured only if case iso-
lation reduces transmission by at least a factor of four and
the mean onset-to-hospitalization time is less than 3 days.
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There is a threshold in the interaction between hospitaliz-
ation rates and isolation efficacy, beyond which further
improvements contributed virtually nothing to contain-
ment. This highlights the need to understand the reasons
why particular control strategies are failing before rushing
to improve control in any way possible. Contact tracing
and quarantine can compensate to some extent for inad-
equate isolation facilities, making an increasingly signifi-
cant contribution as R0 rises. The impact of quarantine is
due primarily to rapid isolation of cases once symptoms
develop, and we show that it is essential for contact tracing
to begin immediately, even if coverage is initially low,
since tracing just a few exposed contacts quickly can have
a large effect.

In general, our results indicate that delays in initiating
quarantine or isolation undermine the effectiveness of
other control measures, with increasing impact for greater
R0. More harmful still is delaying the implementation of
control after emergence of the first case; this is an
acknowledged hazard from earlier disease outbreaks
(Keeling et al. 2001). For particular control strategies, our
model identifies critical windows of opportunity beyond
which measures lose almost all ability to contribute to con-
tainment. The original SARS outbreak in Guangdong
province, not officially acknowledged for over five months,
serves as a tragic example of the hazards of delaying dis-
ease control efforts.

Epidemic modellers must always approximate the social
structures of interest, and as with all models the approach
presented here has potential shortcomings. First, within
the hospital and community pools mixing is assumed to
be random. This assumption ignores pockets of the popu-
lation that do not share common contacts, but is reason-
able if attention is restricted to low prevalence levels such
as below 1%, as in our analysis. Models with network
structure tend to predict lower initial rates of spread,
owing to correlations in infection status that develop
between neighbours, but they are better suited to diseases
transmitted by intimate contact (such as needle-sharing
or sex) or static hosts. When contacts are dynamic and
transmission more casual, these correlations decay and
system behaviour approaches the random-mixing case
(Keeling 1999). Household or network-structured models
allow a direct treatment of contact tracing, rather than the
ad hoc approach used here, but at the cost of additional
parameters that are difficult to estimate.

Second, the observed number of secondary cases per
index case of SARS has been very heterogeneous, and
alternative modes of transmission have been postulated
(including airborne, fomite and faecal–oral spread
(Wenzel & Edmond 2003; Riley et al. 2003)). So-called
superspreading events (SSEs), in which single individuals
generated an extraordinary number of secondary cases,
played an important part in the early evolution of several
SARS outbreaks (Riley et al. 2003; Leo et al. 2003;
Lipsitch et al. 2003). Whether SSEs are rare epidemiolog-
ical exceptions or represent the tail of a highly overdis-
persed distribution is subject to debate (Dye & Gay 2003).
In our model, heterogeneity in secondary cases arises
owing to stochastic effects, but SARS transmission is
assumed to be a homogeneous process (in that the base-
line transmission rate is represented by a single parameter,
b). Lipsitch et al. (2003) found that increasing variance
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Figure 4. Importance of HCW mixing restrictions in
preventing SARS spread to the community. (a) and (b) show
two stochastic epidemics with identical disease parameters
and control measures, differing only in HCW-community
mixing precautions (r = 1 in (a) and r = 0.1 in (b)). Daily
incidence is shown, broken down by route of transmission
within or between the hospital and community pools. Inset,
pie-charts show average contributions of the different routes
of infection for 500 stochastic simulations of each epidemic
(standard errors for these proportions were estimated by
jack-knifing the simulation results, but in all cases were less
than one percentage point). Note that c-to-h transmission
includes hospitalized community members infecting the
HCWs caring for them. R0 = 3 in both cases, and other
parameters are from Scenario 1 of figure 3: « = 0.1, k = 1,
h = 0.5. q = 0, hc = 0.3, hh = 0.9, yielding R = 1.60 in (a)
({Rcc,Rch,Rhc,Rhh} = (0.55, 1.05, 0.23, 1.37)) and R = 1.39 in
(b) ({Rcc,Rch,Rhc,Rhh} = (0.57, 1.04, 0.02, 1.36)). The
control policy is implemented 14 days into the outbreak.

in the distribution of secondary cases leads to a reduced
probability of disease invasion. As we have not explicitly
incorporated such heterogeneity in our model, our assess-
ments of containment probabilities will be conservative to
the extent that SSEs are a normal part of SARS epidemi-
ology.
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Third, the hospital pool is considered to include HCWs
and SARS cases, but other patients are not modelled
explicitly. Infection of other patients has played a signifi-
cant part in some outbreaks, though it will be less
important in hospitals that eliminate non-essential pro-
cedures while SARS remains a significant risk (Dwosh et
al. 2003; Maunder et al. 2003), and for regions that have
opened dedicated SARS hospitals or wards. Future work
on hospital-community SARS outbreaks could incorpor-
ate patient dynamics, and could also evaluate the effect of
staff reductions (Maunder et al. 2003) or of mass quaran-
tine of hospital staff following diagnosis of the first case
(as reported by Dwosh et al. 2003).

Some caution is required in identifying R0 in our model
with that obtained from incidence data for particular out-
breaks. As discussed already, reproductive numbers
derived from data inevitably incorporate some degree of
control owing to routine healthcare practices. We calcu-
late R0 from its formal definition, however, as the expected
number of secondary cases in the absence of control
measures (i.e. without hospitalization or any contact
precautions). While it is uncertain whether routine health
practices help or hinder the spread of SARS, we suspect
that estimates of R0 under our strict definition would be
somewhat higher than those reported for Hong Kong and
Singapore (which incorporate some measures, such as
hospitalization, from the outset). Of course this will
depend on the details of non-specific healthcare practices
in each setting, on assumptions regarding their effect on
SARS spread, and on how R0 is calculated (particularly
the treatment of SSEs).

The most successful examples of quickly controlling
SARS outbreaks (e.g. Hanoi and Singapore) show com-
mon features of stringent within-hospital contact pre-
cautions, and success in preventing leakage of infection
from hospitals back to the general community. The dif-
ficulty that Toronto health officials faced in containing
their SARS outbreak, meanwhile, testifies to the disease’s
potential for spread despite the implementation of inten-
sive control strategies. Unprecedented human mobility
means that emerging infectious diseases can rapidly
impact public health around the world. To contain out-
breaks of SARS, or other pathogens for which vaccines or
treatment are not available, requires aggressive case man-
agement measures complemented by contact precautions
to reduce transmission in healthcare settings.
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Sensitivity to population size 

We tested the sensitivity of key model results to both absolute and relative changes in pool sizes.  
Figure S1 shows results obtained when both pools are reduced ten-fold in size (i.e. for a HCW 
pool of 300 individuals, and community pool of 10,000).  Comparing these figures to those in the 
main text, we see that changes in system scale do not qualitatively alter our findings.  This is not 
surprising, since we treat contact rates as density-independent and restrict our attention to the 
invasion phase when overall prevalence is less than 1%. 
 
It is less clear whether our results will be sensitive to changes in the relative size of the two 
pools, since this will alter the weighting of different transmission pathways. In Figure S2 we 
present the same analyses when the HCW pool contains 1000 individuals (compared to 3000 
throughout the main text), and community pool is still 100,000 individuals.  Results pertaining to 
the reproductive number (Figs S2A-B) are not significantly changed, again due to our 
assumption of density-independent contact rates.  When the evolving epidemic is simulated, 
though, slight differences emerge.  A smaller HCW pool seems to slightly extend the window of 
time within which the combined control strategy contributes to outbreak containment (Fig. S2C), 
perhaps due to slower initial spread. This effect is subtle but persists in all our simulations.  The 
possibility that smaller hospital size reduces the risk of outbreaks is intriguing and has 
implications for health policy, and merits further investigation.  In Figure S2D we see some 
changes in proportional routes of transmission, but the essential result remains that reducing 
HCW-community contacts can prevent leakage of the infection from the hospital. 
 

Robustness of transmission-reduction results 

A major finding of this study is that hospital-oriented contact precautions, such as wearing masks 
and gowns at all times and respiratory isolation of identified patients, are the most potent 
measures for combating an incipient SARS outbreak.  Figures S1B and S2B show that this 
conclusion is robust to absolute and relative changes in pool sizes.  We now explore the 
sensitivity of this result to different case management scenarios and R0 values, by plotting 
analogues of Figure 2F to show the effect of each transmission-reduction parameter on R. 
 
We first consider a scenario with no quarantining (Fig. S3A), which leads to a greater proportion 
of symptomatic individuals spending their initial days of symptoms mixing freely with the 
community.  This reduces the contribution of hospital-based transmission to R, and accordingly 
we see a smaller relative contribution of η and κ to determining the effective reproductive 

 



 

number.  Reinforcing this point, a scenario with less efficient case isolation and no quarantining 
(Fig. S3B) exhibits still weaker dependence of R on the values of η and κ, and thus greater 
relative sensitivity to ρ.  The three measures are almost equivalent as the parameters approach 
zero—we see that stopping HCW-community transmission (ρ→0) has a roughly equal effect to 
perfect case isolation (κ→0) and almost as great an effect as eliminating within-hospital 
transmission entirely (η→0).  Strikingly, though, note that the cost of poor hospital-wide contact 
precautions (η→1) is much greater now that the rate of isolating symptomatic HCWs is low.  
Indeed, the adverse effect of η→1 is always higher than any other failure of transmission-control 
measures.  Some degree of hospital-wide contact precautions is thus essential to combating a 
SARS outbreak.  
  
Finally, considerating the original case management strategy but raising R0 to 5 (Fig. S3C) shows 
that the overall transmissibility acts only to scale the lines from Figure 2F, but does not alter their 
relation to one another.  
 

Model equations 

For ease of presentation, the following equations show a deterministic analogue of our model.  
All terms shown here as products of a probability and a state variable are generated in our 
simulations by drawing binomial random variables.  The community pool is described as 
follows, where all variables and parameters are as described in Figure 1 of the main text: 
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Daily probabilities of quarantine (qi) or hospitalization (hc,i) are subscripted by i because they can 
vary between subcompartments (in the analysis presented here they vary only between 0 and a 
fixed value, to describe delays in contact tracing or case identification).  The final term in the 
Rc(t+1) equation is marked with an asterisk because only those individuals in Im,5 who were 
originally from the community pool (i.e. community members who have been hospitalized) 
move to the Rc pool upon their recovery.  Individuals in Im,5 who began in the HCW pool 
progress to Rh upon recovery (indicated below with another asterisk).  The equations for the 
HCW pool are: 
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As described in the caption of Figure 1 (main text), the total hazard rates are 
λc=[β(Ic+εEc)+ ρβ(Ih+εEh)+γβεEm]/Nc and λh=ρλc+ηβ(Ih+εEh+κIm)/Nh, where Ej and Ij represent 
sums over all sub-compartments in the incubating and symptomatic classes for pool j.  The 
effective number of individuals in the hospital mixing pool is Nh=Sh+Eh+Ih+Rh+Im, and in the 
community mixing pool is Nc=Sc+Ec+Ic+Rc+ ρ(Sh+Eh+Ih+Rh).  In simulations, the number of 
infection events in each timestep is determined by random draws from binomial(Sj, 1−exp(−λj)) 
distributions (j=c,h).  
 
Finally, the equations describing the case-managed pool (quarantined and case-isolated 
individuals) are as follows: 
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Calculation of the reproductive number 

The progression of each infected individual through incubating and symptomatic stages of the 
disease, and possibly through case management stages, can be described by a stochastic 
transition matrix.  When the removed state is included, the infectious lifetime of each individual 
can be represented as an absorbing Markov chain (where “absorption” corresponds to the end of 
the infectious period).  For a given set of transition probabilities (i.e. disease progression 
parameters and probabilities of entering case management from each disease stage), the expected 
residence time in each pre-absorption stage can be calculated from the fundamental matrix of the 
Markov chain (Caswell 2000). 
 

 



 

Since case management probabilities may vary between the community and hospital pools, we 
define dj (for j=c or h) as a vector of expected residence times in the states (Ej,Ij,Em,Im), i.e. the 
length of time a “typical” individual infected in pool j will spend in each of those disease classes.  
We the define bjk as vectors of transmission rates from pool j to pool k for each disease state.  In 
particular, from the above description we have  
 
bcc=(εβ/Nc,β/Nc,γεβ/Nc,0),  
bch=(ρεβ/Nc,ρβ/Nc,ργεβ/Nc,κηβ/Nh),  
bhc=(ρεβ/Nc,ρβ/Nc,γεβ/Nc,0), and  
bhh=(ρ2εβ/Nc+ηεβ/Nh,ρ2β/Nc+ηβ/Nh,ργεβ/Nc,κηβ/Nh).   
 
The two terms in the first two elements of bhh represent community and workplace exposure 
risks for healthcare workers, respectively.  The factors of ρ2 reflect that community transmission 
between HCWs depends on the community-contact precautions of both HCWs. 
 
For a susceptible individual in pool k, the total hazard of infection due to the index case is thus 
λjk=dj⋅bjk, so the probability of exposure is 1−exp(−λjk).  If there are Sk susceptibles in pool k, 
then the expected number of secondary infections in pool k due to an index case who is infected 
in pool j is Rjk=[1−exp(−λjk)]Sk.  We then define the next-generation matrix: 
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where the individual elements Rij give insight into the potential for disease spread within and 
between the two pools.  If R is primitive, then its dominant eigenvalue is the reproductive 
number for the entire system (Diekmann & Heesterbeek 2000).  When the population is entirely 
susceptible and no control measures are in place this is the basic reproductive number, R0; 
otherwise it is the effective reproductive number R.  Figure 2A of the main text shows the 
probability of epidemic containment as a function of the reproductive number, which displays 
the qualitative behaviour expected for a stochastic epidemic: the probability is nearly one for 
R<1, then diminishes as R increases (but remains significantly greater than zero up to R~5). 
 

Incubation and symptomatic periods 

The incubation period is modeled with ten subcompartments as shown in Figure 1B of the main 
text.  Each sub-compartment represents one day, and an individual in their ith day since infection 
has a probability pi of progressing to the symptomatic phase of the disease.  The number of sub-
compartments and values of pi were chosen to be consistent with clinical data from 42 patients in 
Toronto with a single known contact with a SARS case.  For these cases, the mean incubation 
period was 5 days, with a median of 4 days and a range from 2 to 10 days (Health Canada 2003); 
similar numbers are reported for 21 point-exposure cases in Singapore (Leo et al. 2003).  We 
selected the most parsimonious model which was consistent with these data: 10 
subcompartments with pi interpolated linearly from p1=0 to p10=1.  Figure S4A shows the 
distribution of incubation periods obtained from this model, which has a mean period of 4.5 
days, a median period of 4 days, and a range from 2 to 10 days.  Other researchers have 

 



 

presented a distribution of incubation periods which includes longer durations (Donnelly et al. 
2003), but experts assembled by the World Health Organization continue to assert a maximum 
incubation period of 10 days (World Health Organization 2003b).  
 

The symptomatic period is modeled with two disease-age subcompartments and three disease-
stage subcompartments.  After each day individuals automatically progress through the age sub-
compartments, and progress through the stage subcompartments with probability r.  We include 
the initial disease-age subcompartments to allow assessment of the importance of beginning case 
isolation following day 1, 2 or 3 of symptoms.  We assume that individuals are symptomatic for 
at least 5 days.  From clinical reports of 23 patient histories we estimated that the distribution of 
symptomatic period has a mean of 16.2 days (with standard deviation of  7.9 days) and a median 
16 days (Poutanen et al. 2003, Tsang et al. 2003).  Figure S4B shows the distribution of 
symptomatic periods obtained from our model (with r=0.21), which has a mean period of 16.3 
days, a median period of 15 days, and a standard deviation of 7.3 days.   
 
While our modelled distribution is roughly consistent with data, we note that estimation of the 
symptomatic period poses a difficult challenge.  We are seeking to capture the period of high 
infectiousness (which we call the symptomatic period to distinguish it from the incubation 
period, during which we assume individuals may be slightly infectious), but this is difficult to 
gauge because infectiousness is not readily observable.  Our estimated symptomatic period—or 
highly infectious period—falls between those used in the two first modelling analyses of SARS 
outbreaks.  Riley et al (2003) use hospitalization periods as a surrogate, and present a range of 
mean symptomatic periods from 27 to 41 days.  (These include a symptomatic, not-yet-
hospitalized period with mean duration of 3.67-4.84 days, and a symptomatic, hospitalized 
period with mean duration of 23.5 or 35.9 days depending on clinical outcome.  Transmission by 
hospitalized individuals is reduced by a factor of 0.2, analogous to our κ.)  Lipsitch et al (2003) 
do not model the symptomatic period directly but instead assume an “average duration of 
infectiousness” of 5 days (range: 1-5 days).  This is markedly shorter than the symptomatic 
periods used in our model (and that of Riley et al), but the difference results from their 
assumption that case isolation is absolutely effective, so an individual’s “infectious period” lasts 
only until he or she is hospitalized.  In contrast, our approach is to keep the biological 
phenomenon of infectiousness separate from the control-mediated phenomenon of transmission, 
leading to a longer total symptomatic period with transmission weighted by control parameters 
depending on case management practices.   
 
Our model can still be consistent with the serial interval data presented by Lipsitch et al.  (The 
serial interval is the time from onset of symptoms in an index case to onset of symptoms in a 
subsequent case infected by the index case.  If the transmission rate is constant and the 
population is well-mixed, this equals the sum of the mean incubation period and the mean 
infectious period.  The serial interval for SARS in Singapore before full-scale control policies 
were implemented was 10 days—subtracting the mean incubation period of 5 days yields the 
estimated 5-day infectious period.)  Most simply, an exponentially-distributed period of uniform 
infectiousness with a mean duration of 5 days (as modelled by Lipsitch et al) could be 
approximated in our model by setting hc=0.2 and κ=0, though in our model the tail of the 
distribution would be truncated by disease recovery.  A more likely depiction of events in 

 



 

Singapore would be a higher hospitalization rate and non-zero κ, such that the weighted mean of 
all infectious periods (before and after case isolation) was 5 days.  By separating the biological 
and control-mediated aspects of transmission, our model naturally portrays this or any other 
control scenario. 
 
We therefore wish to characterize the natural history of the disease accurately.  The duration of 
hospitalization is a plausible surrogate for the symptomatic period, but for a disease as 
pathogenic as SARS it is likely to be an overestimate, since patients must recover from severe 
lung damage and are not discharged from hospital until several days after all symptoms are 
resolved (Lee et al 2003).  The most direct measurement of SARS infectious periods are the viral 
load measurements of Peiris et al (2003), which show that mean viremia (for 75 patients) peaks 
roughly 10 days after onset of symptoms, and after 15 days has dropped below its level after 5 
days of symptoms. This is attributed to onset of IgG seroconversion, which begins as early as 10 
days after onset of symptoms (with mean of 20 days).   
 
These results indicate that symptomatic periods in our model, as shown in Figure S4B, probably 
characterize the period of high infectiousness quite adequately.  Should there be any 
inaccuracies, our strategy of considering scenarios with different values of R0 would largely 
buffer the impact on our results, since reproductive numbers estimated for particular outbreaks 
can be compared to model epidemics with the same net growth rate.  This would entail a slight 
skew in parameter values: for instance, if we had underestimated the duration of infectiousness, 
for each R0 scenario we would overestimate the baseline transmission rate, β.  Simulations would 
show slightly faster epidemic growth than is justified, and hence slightly greater reductions in 
efficacy due to delaying control measures.  A change in β has no effect on the relative 
importance of different routes of transmission, however, or on the impacts of control measures 
focused on contact precautions versus case management.  The major findings of this study 
therefore should be robust to misestimation of the distribution of symptomatic periods. 
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Figure captions – Supplementary Information 

Figure 5 

Testing sensitivity to the absolute size of the system.  Selected results are presented for both 
HCW and community pools ten-fold smaller than in the main text (HCW pool has 300 
individuals and community pool has 10,000 individuals).  For each figure, all parameter values 
other than population sizes are as described in the main text.  (A) Analogue of Fig. 2D.  (B) 
Analogue of Fig. 2F.  (C) Analogue of Fig. 3B.  (D) Analogues of pie-charts from Figs. 4A-B. 
 
Figure 6 

Testing sensitivity to the relative size of the HCW pool.  Results are presented for a HCW pool 
of 1000 individuals (compared to 3000 throughout the main text), and community pool of 
100,000 individuals.  Again, all other parameters are as given in the main text. (A) Analogue of 
Fig. 2D.  (B) Analogue of Fig. 2F.  (C) Analogue of Fig. 3B.  (D) Analogues of pie-charts from 
Figs. 4A-B. 
 
Figure 7 

Robustness of conclusions regarding sensitivity of R to transmission-reduction parameters.  All 
details are as given in Fig. 2F except as noted. (A) No quarantine: q=0. (B) No quarantine, and 
limited case isolation: hc=0.1, hh=0.1, q=0.  (C) Case management as in Fig. 2F, but R0=5.  Also 
note Figs. S1B and S2B, which show the insensitivity of these results to absolute and relative 
size of the two pools. 
 
Figure 8 

Distribution of (A) incubation periods and (B) symptomatic periods used in the model, each 
generated from 10,000 Monte Carlo simulations using the stage progression rules outlined in the 
text. 
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Figure 6 
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Figure 7 
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Figure 8 
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