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Abstract
Stationary compact astrophysical objects such as black holes and neutron stars
behave as classical systems from the gravitational point of view. Their (observ-
able) curvature is everywhere ‘small’. Here we investigate whether mergers
of such objects, or other strongly dynamical spacetimes such as collapsing
configurations, may probe the strong-curvature regime of general relativity.
Our results indicate that dynamical black hole spacetimes always result in a
modest increase ∼3 in the Kretschmann scalar, relative to the stationary state.
In contrast, we find that the Kretschmann scalar can dynamically increase by
orders of magnitude, during the gravitational collapse of scalar fields, and that
the (normalized) peak curvature does not correspond to that of the critical
solution. Nevertheless, without fine tuning of initial data, this increase lies far
below that needed to render quantum-gravity corrections important.
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1. Introduction

The advent of gravitational-wave (GW) astronomy [1, 2] and of very long baseline interfer-
ometry [3, 4] opened exciting new windows to the invisible Universe. Compact objects, in
particular neutron stars and black holes (BHs), play a unique role in the endeavor to test our
understanding of general relativity (GR) and in the search for new physics [5–11].

According to the singularity theorems [12, 13], classical GR must fail in BH interiors.
Quantum mechanics in BH spacetimes also leads to puzzling consequences, such as the
information paradox [14–16]. It is tempting to conjecture that a theory of quantum gravity
will resolve these issues, but the scale and nature of quantum gravity corrections to BH space-
times is unknown.

In this paper we ask a simple but outlandish question: can dynamical, astrophysical pro-
cesses probe the quantum gravity regime?

The inclusion of backreaction of quantum fluctuations is a delicate problem in General
Relativity [17]. Working at semi-classical level, the renormalized 1-loop effective action
admits a low-curvature expansion of the form [17–19]

Seff =
ˆ
d4x

√
−g

(
−Λeff +

R
16πGeff

+L(1)
eff + . . .

)
, (1)

L(1)
eff =MP

2
(
a1R

2 + a2RαβR
αβ + a3RαβγδR

αβγδ
)
, (2)

where Λeff ,Geff are the effective cosmological and Newton’s constant, respectively, andMP is
the Planck mass (we work with geometric units c= 1= Geff throughout). The precise values
of the constants ai are not necessary for us here, but they can be calculated exactly in a semi-
classical framework. The important aspect is that higher-curvature terms are expected to be
present generically; variants of this argument come from effective field theory approaches.
The most general theory without new degrees of freedom, compatible with observations, and
obeying some basic principles, can be shown to be Einstein’s theory corrected by higher-order
derivative terms [17–20].

The above provides a general framework to look for quantum gravitational effects. Setups
for which the Kretschmann or other higher-derivative invariants are too large are not described
by small corrections to the classical theory: one is then in the quantum regime. A similar
motivation is behind recent studies of quantum gravitational anomalies and their impact on
photons from coalescences of compact objects [21, 22], or studies of gravity with higher-order
corrections [23].

Unfortunately, the (lowest-order) corrections relative to the classical equations of motion
are expected to scale as (MP/M)

2 ∼ 10−76 or smaller, with M the mass of the macroscopic
object under study (say, a neutron star or stellar mass BH). For equilibrium compact config-
urations, these quantum corrections are indeed small: consider a neutron star of mass M and
radius r∼ 6M; the Kretschmann scalar—equation (3)—is K1 ≲ 0.1M−4, whereas the Ricci
scalar at the surface is R∼M/r3 = 0.04M−2. Thus, in such an equilibrium scenario, higher
order curvature corrections are expected to be around 76 orders of magnitude smaller than the
classical terms.

In the absence of the ultimate theory of quantum gravity, we ask the following question: can
higher curvature terms ever become important during a dynamical evolution? Take a neutron
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star collapsing to a non-spinning BH: we know that the BH interior harbours strong-curvature
regions; is it possible that outward propagating photons or gravitons had access to ‘unnatur-
ally large’ curvature regions? This question is related, but not identical, to claims on cosmic
censorship violations [24]. In other words, we are not so much concerned with curvatures
reaching arbitrarily large values but rather with how much larger than their stationary values
they can become during a generic dynamical evolution (and in particular whether they can
become Planckian).

2. Quantities of interest

There are five quadratic invariants constructed from the Riemann and the Weyl tensors [25]
(there are also cubic invariants, but wewill not consider them here): the Kretschmann invariant,
the Chern–Pontryagin invariant, the Euler invariant, and the first and second Weyl invariants.
Three of these can be computed from the others once the energy momentum tensor is known.
Therefore, we focus solely on two invariants, the Kretschmann scalar

K1 ≡ RαβγδR
αβγδ , (3)

and the Chern–Pontryagin invariant

K2 ≡ ⋆RR=
1
2
Rαβγδϵ

αβµνRγδ
µν . (4)

Note that K2 is necessarily zero for spherically symmetric spacetimes, as the antipodal map is
an orientation-reversing isometry.

3. Oppenheimer–Snyder collapse

Arguably, the simplest model of a gravitational collapse is that of Oppenheimer–Snyder, where
a ball of dust with uniform density collapses to a Schwarzschild BH. The metric inside the dust
ball can therefore be written as

ds2 =−dτ 2 + a2(τ)(dρ2 + ρ2dΩ2) , (5)

where dΩ2 is the line element of the unit 2-sphere and we assumed, for simplicity, the metric
to be spatially flat. The metric outside the dust ball is, of course, the Schwarzschild metric

ds2 =−
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 , (6)

where M is the mass of the final BH. At the boundary of the dust ball we have [26]

µ=
3M
4πr3

, (7)

where µ is the ball’s density. As the Weyl tensor vanishes inside the dust ball, K1 =
5
3 (8πµ)

2,
corresponding to

K1 =
60M2

r6
(8)

at the ball’s boundary. Since the Kretschmann invariant K1 is constant along constant τ hyper-
surfaces, and increasing with τ , the events in the dust ball with largest K1 visible from the

3
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Figure 1. Penrose diagrams for the Oppenheimer–Snyder and the critical null dust col-
lapses. The shaded regions correspond to the dust, the dashed lines to the event hori-
zons, and the thick lines to the singularities. The red dots mark the points where the
Kretschmann invariant K1 is maximal along the horizon (infinite in the case of the crit-
ical Vaidya solution).

exterior correspond to the intersection of the dust ball’s boundary with the event horizon (see
figure 1), where

K1 =
15

16M4
. (9)

This is slightly larger (by a factor of 5/4) than the maximum value observable in the Schwar-
zschild exterior, where

K1 =
48M2

r6
<

3
4M4

. (10)

It is interesting to note that the nature of the curvature inside and outside the dust ball is com-
pletely different: whereas inside the Weyl tensor vanishes and there is only Ricci curvature,
outside it is the Ricci tensor that vanishes, leaving only the Weyl curvature.

It is possible to obtain much larger values of the Kretschmann scalar by considering
inhomogeneous dust collapses. In fact, it is well known that such collapses can even produce
naked singularities, corresponding to shell crossings or shell focusing [27, 28]. If one is careful
to cover these singularities with the event horizon [29], arbitrarily large (but finite) values of
K1 can be observed from the exterior; however, this requires fine-tuning, and such collapses
are quite dissimilar to realistic astrophysical collapses. A straightforward example of this can
be seen in the limiting case of null dust collapses, which we now briefly discuss.

4. Null radiation collapse

Another simple model of collapse can be obtained form the Vaidya metric [30], given by

ds2 =−
(
1− 2M(v)

r

)
dv2 + 2dvdr+ r2dΩ2, (11)

where M(v) is an arbitrary function of the advanced time v. This metric corresponds to the
energy-momentum tensor

T=
1

4πr2
dM
dv

dv⊗ dv , (12)
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describing a null dust propagating along the incoming radial null geodesics. ChoosingM(v) to
vary from 0 to some final valueM1 on some interval v ∈ [0,v1], and constant outside this inter-
val, provides a simplemodel of BH formation, as themetric coincideswith theMinkowskimet-
ric for v< 0 and with the Schwarzschild metric of massM1 for v> v1. The Kretschmann scalar
is still given by equation (10), and so we see that we can obtain arbitrarily large curvatures out-
side the event horizon ifM(v)> 0 near r= 0. It turns out that by fine-tuning the free function
M(v) it is possible to arrange for the Penrose diagram of the Vaydia solution to be as depicted
in figure 1 [31–34] (as an example, ifM(v) is taken to be of the formM(v) = µv for v ∈ [0,v1]
then the fine-tuning amounts to choosing 8M1/v1 = 1+

√
1−µ2). This diagram represents a

critical solution, separating naked singularities from BHs; for these solutions, the event hori-
zon emanates from the first singularity, and so K1 attains arbitrarily large values on the event
horizon (in the example above, K1 = C/v4 along the event horizon, where C= C(µ) is a pos-
itive constant). Small perturbations of these solutions lead to BHs whose event horizons no
longer emanate from the first singularity, and so we can have arbitrarily large (but finite) val-
ues of K1 visible from the exterior. However, these perturbations are very particular solutions,
quite distant from any conceivable astrophysical scenario. They would correspond to initial
data either already displaying large curvatures, or carefully fine-tuned to produce them via
focusing.

5. Massless minimally coupled scalar field collapse

Another classical setup of collapse in spherical symmetry is the numerical study of BH form-
ation due to a self-gravitating scalar field minimally coupled to gravity. We will use this as
a proxy for gravitational collapse of stars to BHs in astrophysical setups. We use horizon-
penetrating coordinates, namely Kerr–Schild coordinates, which allow probing the formation
of the apparent horizon and also to study the behaviour of the curvature invariants through-
out the whole evolution, before and after the horizon forms. The metric is constructed using
ingoing and outgoing null vectors and their associated covectors:

ξ = ∂t+C+∂r , ξ = ∂t+C−∂r ,

η =−C+dt+ dr , η = C−dt− dr .

Here, C+ and C− control the local behaviour of the lightcones in these coordinates. Due to
spherical symmetry, all the evolved variables in this section are functions of (t, r) only. The
spherically symmetric ansatz for the metric using these null covectors is the following:

ds2 =− eδ

C+ −C−

(
η⊗ η+ η⊗ η

)
+ r2dΩ2 , (13)

where δ is associated to the determinant of the metric in the (t, r) plane. We will be using the
Kerr–Schild gauge [35] with r areal radius and C− =−1, and work with the renormalized
variable

C̃+ =
2C+

C+ + 1
. (14)

In other words, the ingoing characteristic speed has been set to C− =−1 everywhere in space-
time, while the radial coordinate has been taken to be the areal radius.

The field equations with a stress energy tensor of a massless minimally coupled scalar field
ψ in the matter sector reduce to two evolution equations

∇ξδ =−4πrTξξ , (15)

5
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∇ξ

(
re−δC̃+

)
= 4πr2e−δTξξ − 1 , (16)

and one constraint equation

∂r
(
re−δC̃+

)
− 1

C̃+ − 2
= 2πr2e−δ

(
C̃+Tξξ − (C̃+ − 2)Tξξ

)
. (17)

We solve these field equations for the variables C̃+, δ together with the wave equation for the
scalar field,□gψ = 0, written as a first order system on the variablesΠ= ∂tψ andΦ= ∂rψ. We
use a Runge–Kutta with method of lines, second order finite differencing, and Kreiss–Oliger
dissipation.

The ADM mass in these coordinates is computed as

MADM = lim
R→∞

r
1− e−

δ
2√

2− C̃+

 , (18)

and is independent of t throughout the evolution, since the spacelike slices capture both the
strong field region and the scalar radiation. The horizon mass is given by

MAH =

√
AAH

16π
, (19)

where AAH is the area of the apparent horizon. Throughout we will discuss results obtained via
apparent horizon properties. We have calculated also the event horizon location dynamically
in a subset of cases, and find that our conclusions are not affected qualitatively.

We choose the scalar field in the initial (t= 0) slice to be a localised Gaussian of amp-
litude P and standard deviation σ centered at r= r0,

ψ(0,r) =
P√
2πσ

(
e
−
(
r−r0
σ

)2

+ e
−
(
r+r0
σ

)2
)
, (20)

while all the other free functions are set to zero, and solve for C̃+(0,r) using the constraint
equation (17). There is no BH in our initial slice because using the above initial profiles for
the grid functions and assuming regularity at the origin, C̃+(0,0) = 1, the equation admits a
solution of the form

C̃+(0,r) =
1
r
e−4π

´ r
0 r̃Φ(0,̃r)2d̃r

[
1+ e4π

´ ζ
0 r̃Φ(0,̃r)2d̃r

]
> 0 ,

where ζ is an integration constant. For sufficiently large initial amplitude, however, an appar-
ent horizon forms during the evolution, which in these coordinates simply corresponds to the
condition C̃+ = 0. In fact, the expansion of the congruence of radial outgoing null geodesics
is computed as

Θ=
2C+

r
(21)
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Figure 2. Contour of the Kretschmann invariant K1 in the (t, r) plane, in units of the
relevant invariant KS in equation (22), of a static Schwarzschild with mass equal to the
mass of the apparent horizon of a newly formed BH, MAH = 3.17. The invariant K1

grows during the evolution, with the maximum happening close to the initial location of
the apparent horizon.

in these coordinates. After an apparent horizon forms, we perform BH excision a few time
steps later, and keep on evolving the domain of outer communications.

To understand how the dynamics drives the curvature invariants, we normalize our results by
the Kretschmann scalar of the newly formed BH, i.e. expression (10) evaluated at the apparent
horizon,

KS =
3

4M4
AH

. (22)

In this way, we avoid getting large curvature invariants as an artifact of ‘small’ initial conditions
that led to a small BH: we are interested in astrophysical setups, and therefore would like to
learn if large gradients are possible even when the final object is a stellar-mass BH.

Our results are summarized in figures 2–4.5 After the apparent horizon forms, the peak of
K1 occurs close to the AH/EH for ‘small’ amplitude of initial data, while for ‘stronger’ data
the maximum can also be located away from the horizon, since there is an outgoing pulse of
scalar radiation.

For the range of initial data that we have studied here, we observe that Kmax/KS is always≲
103 (see figure 3). This is a much greater increase than in the analytic example of homogeneous
dust collapse discussed above.We find that for some configurations themaximum curvatureK1

may arise from early time evolution of data which itself has a large curvature. Althoughwe sus-
pect that this problem can be circumvented by prescribing initial data ‘further in the past,’ we
decided to be conservative and normalize our results to K1/A, with A=max

(
Kmax|t=0 ,KS

)
.

The results are shown in figure 4.
For a fixed radius r0 and width σ, we find that the curvature K1 peaks at a finite value of

the amplitude P, as depicted in figure 4. Our results are well described by

maxK1

A
= α

( r0
σ

)γ

, (23)

for small σ, where α= 33± 3 and γ = 0.6± 0.1.

5 We note that [36] also studied the spherically symmetric collapse of a (massive) scalar field, but focused on the
behaviour of K along a timelike curve approaching the singularity.
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Figure 3. Left Panel: evolution of the maximum of the Kretschmann invariant K1 nor-
malized by KS (see equation (22)). All the plots have been shifted in time so that the
apparent horizon formation occurs at tAH = 5.2MAH. The initial pulse is centered at
R0 = 20, with σ= 2. Right Panel: location of the maximum of K1 during the same evol-
ution. Note that the location of the maximum jumps in the beginning because some
other local maximum takes over as the global maximum. However, close to the time of
the apparent horizon formation, the global maximum is at some radius smaller than the
radius of the apparent horizon that forms later.

Figure 4. Global maximum of K1 for the scalar field collapse, in units of A=
max

(
Kmax|t=0 ,KS

)
, shown for four series of evolutions of pulses centered at r0 = 20,

with width σ = 0.5, 1, 2, 3, respectively, and varying P. The discontinuity observed for
σ= 3 is due to the outgoing scalar pulse being trapped in the photon sphere of the BH
that forms in early stages of the evolution, and contributes to the global maximum.
The global peaks of these series of evolutions follow an empirical law calculated as
maxK1/A= α(r0/σ)

γ , for small σ, where α= 33± 3 and γ = 0.6± 0.1.

For a very crude estimate of what this means, arrange all neutrons in a neutron star in a
shell of thickness σ close to the star radius, so as to maximize (23). Now let the configuration
collapse, and find

maxK1

A
≲ 1013

( r0
104m

)0.6
(
10−15m

σ

)0.6

. (24)
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Even in such a highly idealized (and impossible, since the neutron star material could not
possibly be arranged in such a shell) configuration, one is far below the 76 orders of magnitude
necessary to reach Planckian curvatures.

Finally, we note that in those cases where we ran our event horizon finder, we found that it
forms slightly earlier than the apparent horizon, and that it covers a portion of approximately
50% of the observed Kretschmann peaks in figure 3.

6. BH binary merger

As an independent scenario, we have also investigated the time evolution of the curvature
scalars in the inspiral and merger of a BH binary. We expect the curvature dynamics to be
most pronounced around merger and therefore select for our study the relatively short (about 2
orbits) non-spinning, equal-mass binary labeled R1 in table I of [37]: each BH has a bare mass
m= 0.483 and they start at x=±3.257 with tangential momentum Py =±0.133 resulting in
a total BH mass of M= 1.01 (all in code units).

We simulate this binary with the Lean code [38] which is based on the Cactus compu-
tational toolkit [39] and employs Carpet [40] for mesh refinement. The Einstein equations
are evolved using the Baumgarte–Shapiro–Shibata–Nakamura–Oohara–Kojima formalism
[41–43] with the moving-puncture gauge [44, 45] and apparent horizons are computed with
AHFinderDirect [46, 47].

In vacuum, the Riemann andWeyl tensor are identical and we compute the curvature scalars
K1 and K2 from the electric and magnetic parts of the Weyl tensor

Eαβ = Cαµβνn
µnν , Bαβ =

1
2
ϵαµ

ρσCρσβνn
µnν , (25)

where nµ denotes the timelike unit normal field; see [38, 48] for more details. In vacuum,
equations (3) and (4) expressed in terms of the electric and magnetic parts become

K1 = 8(EmnEmn−BmnBmn) , (26)

K2 = 16EmnBmn , (27)

where we have switched from (Greek) spacetime indices to (Latin) spatial indices since the
electric and magnetic parts of the Weyl tensor are by construction purely spatial tensors,
Eµνnν = 0= Bµνnν .

Here, we are interested in the maximal values of the curvature scalars that are realized
outside the BH horizons. This exclusion of the horizon’s interior encounters three practical
difficulties: (a) Failure to find an apparent horizon does not necessarily imply absence of a
horizon. (b) Points outside the apparent horizon may be inside the event horizon. (c) For non-
spherical horizons, it is technically challenging to determine if a given grid point is inside the
horizon.

The first difficulty is mitigated by the high reliability of AHFinderDirect; in every simu-
lation, the AH finder fails to determine a horizon at exactly one time step around merger; we
ignore this time step in our analysis. The second difficulty can only be overcome by computing
event horizons which, however, is a highly complicated task (see e.g. [49]) and which we leave
for future studies. Finally, we address the third challenge by evaluating two estimates of the
maximum curvature, one by excising from the calculation a sphere with the maximal horizon
radius and a second by excising instead a sphere with the minimal horizon radius. Both these
radii are readily provided by AHFinderDirect together with the centroid of the horizon. The
former gives us a conservative lower estimate for the maximal curvature (since we may have

9
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Figure 5. The curvature scalar K1, maximized over space, is plotted as a function of
time for a ∼2 orbit inspiral and merger of two non-spinning, equal-mass BHs. The
upper panel shows the resulting max(K1) for the three grid resolutions together with a
fourth-order Richardson extrapolation. The bottom panel shows the differences between
low and medium, as well as between medium and high resolution. The latter is scaled
with a factor Q4 = 2.333 expected for fourth-order convergence. The vertical dotted
line around t/M≈ 166.5 marks the first occurrence of a common apparent horizon.
All curvature estimates are normalized to the Schwarzschild value on the horizon,
equation (22).

discarded legitimate points outside the exact horizon) while the latter gives us a strict upper
limit (every point ignored in this calculation is definitely inside the apparent horizon and, thus,
also inside the event horizon). In the following, we refer to these two methods as the rmin and
rmax methods.

We calibrate the numerical accuracy of our calculations with a convergence analysis
obtained from three simulations using a grid setup

{(208,128,72,24,12,6)× (1.5,0.75), h} .

That is, we have two inner refinement levels, each consisting of two boxes of ‘radius’ 0.75 and
1.5 centered around either BH, and 6 outer levels of ‘radius’ 6, 12, 24, 72, 128 and 208 (all
in units of total BH mass M) centered on the origin. The grid spacing is h on the innermost
level and increases by a factor 2 on each level further out. In figure 5, we plot the resulting
maximal curvature obtained for the rmax method in units of the Kretschmann scalar KS on the
horizon of a Schwarzschild BH of mass M, equation (22). In order to reduce high-frequency
noise in the convergence analysis, we compare in the lower panel of the figure the differences
between our finite-resolution results using a 10 point running average of the function max(K1).
This high-frequency noise arises from the lego sphere nature of the region we discard from
the evaluation of K1; as the BHs move across the domain, ‘optimal’ grid points can cross the
horizon, resulting in a sudden drop or jump in max(K1). The averaging procedure does not
significantly affect the resulting convergence estimate, but greatly enhances the readability
of the figure; note that only differences in max(K1) have been averaged in figure 5, but not
max(K1) itself.

The bottom panel demonstrates convergence close to fourth order which we employ in the
Richardson extrapolation displayed in the upper panel. Based on this extrapolation, we obtain
a discretization error of 4% around merger and below 1% throughout inspiral and ringdown.

10
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Figure 6. The curvature scalars K1 and K2, maximized in absolute value over space,
are plotted as functions of time for a ∼2 orbit inspiral and merger of two non-spinning,
equal-mass BHs. In each panel, the black curve shows the result obtained for the rmax

method and the red curve shows the results for the rmin method. The vertical dotted line
at t/M≈ 166.5 shows the time of first identification of a common apparent horizon.

The results for K1 and K2 extracted from our BH simulations are displayed in figure 6. For
each scalar, we plot in this figure the maximum value obtained outside our rmax (black curves)
and rmin (red curves) approximation of the apparent horizon. During the inspiral phase up to
about t= 150M, we see thatK1 remains close to the valueK1 = 16KS expected on the horizon
of a Schwarzschild BH of mass M/2 while K2 vanishes as expected for a non-spinning BH.
Around merger, marked by the vertical dotted line in the figure, both curvature scalars rapidly
increase to K1 ≈ 75 KS and K2 ≈ 30 KS, respectively. In the upper panel we furthermore see a
single spike where K1 ≈ 150 KS. This spike, however, consists of a single data point, one time
step before the first common horizon is found; we regard it as likely that this spike is spurious
and may already be encompassed inside a common horizon which the code simply failed to
compute. We have decided to still include this spike as a highly conservative upper limit for
the maximal K1 realized in our BH simulations.

After merger, the configuration rapidly settles down into a quiescent Kerr BH with mass
Mfin = 0.965M and dimensionless spin jfin = 0.688. The curvature scalars correspondingly
approach the late-time curvature extremals K1 = 2.95 KS and K2 = 2.23 KS for the rmax

method. We can compare these values with the analytic expressions for the scalars of the Kerr
BH spacetime which are given by equations (31) and (32) of [25],

K1 =
48M2

(r2 + a2 cos2 θ)6
(r6 − 15r4a2 cos2 θ+ 15r2a4 cos4 θ− a6 cos6 θ) ,

K2 =
96aM2rcosθ

(r2 + a2 cos2 θ)6
(3r4 − 10r2a2 cos2 θ+ 3a4 cos4 θ) , (28)

where a is the Kerr parameter, i.e. a= jfinMfin in our case. Maximized over the event horizon
for a Kerr BHwith the above mass and spin parameters, this gives us maximal curvature values
K1 = 2.90 KS and K2 = 2.43 KS in good agreement with our numerical values.

In summary, the maximal visible curvature of the BH binary is close to that of the individual
constituents during the inspiral and close to that of the Kerr remnant after merger. During the
brief merger, maximal curvature values about one order of magnitude larger are realized, but
clearly within a regime nowhere near where we would consider quantum aspects.
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7. Conclusions

In this paper we considered a sequence of BH spacetimes of varying degrees of realism, com-
puting the Kretschmann and Chern–Pontryagin scalars within each. Our focus was on the
extent to which either could become larger than a stationary configuration characterized by a
similar mass but, crucially, without permitting ourselves the freedom of fine-tuning towards
large curvature. Starting with the collapse of dust, we found a moderate (25%) increase in the
Kretschmann scalar when compared to the analogous Schwarzschild spacetime. In the collapse
of null radiation we saw that whilst it is possible to build BH spacetimes with large curvature
scalars in the domain of outer communication, such configurations require fine-tuning. Mov-
ing to the classic numerical example of the spherical collapse of a minimally coupled massless
scalar field, we treated a number of sets of initial data. We found that the maximum value of
the Kretschmann scalar in the BH exterior can, rather easily, be increased by factors of a few
hundred relative to that at the horizon of a Schwarzschild BH with the same mass as the initial
apparent horizon in the collapse. But increasing this value further appears to require fine-tuned
initial data. To mitigate against the effect of fine-tuning in our plots, post-collapse, we renor-
malized by the maximum of the initial curvature scalar and the associated static BHmentioned
above. Finally, we considered a binary BH spacetime. Once more, only a moderate increase
of curvature scalars is seen in comparison to a reference Schwarzschild spacetime.

Overall, our results are very clear. They show that in four-dimensional spacetimes describ-
ing realistic collapse configurations or dynamical BH spacetimes, curvature never grows too
large during the dynamics. In other words, without carefully tuning the initial data, it seems
very difficult to dynamically enter in a regime that would not be described by the classical
equations of motion. Classical remains classical.

Data availability statement

The data being used for the figures have been created using the methods analysed in the paper.
Reproducing them should be straightforward. The data that support the findings of this study
are available upon reasonable request from the authors.
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