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Abstract. We show that the growth of plane tessellations and their edge graphs may be
controlled from below by upper bounds for the combinatorial curvature. Under the assump-
tion that every geodesic path may be extended to infinity we provide explicit estimates
of the growth rate and isoperimetric constant of distance balls in negatively curved tes-
sellations. We show that the assumption about geodesics holds for all tessellations with
at leastp faces meeting in each vertex and at leqgidges bounding each face, where

(P, ) €{(3.6), (4,4),(6,3)}.

Introduction

The edge grapg of a tessellation or tiling of the plane may be viewed as an embedding
of a graph which satisfies certain additional hypotheses. The most well known examples
are given by tessellations of the Euclidean plane by regular triangles, quadrilaterals and
hexagons. Other examples arise from hyperbolic geometry (see [Ro] for many beautiful
examples). Obviously, these graphs inherit many geometric properties of the underlying
plane geometry, and these properties are also reflected in the combinatorial structure of
the tiling.

We introduce some notation and the definition of combinatorial curvature. For the
vertexv € G, let|v| denote the number of edges emanating figrand, for a facef of
the tiling, letEy¢ denote the number of edges®boundingf. Some information about
the local combinatorial structure of the tiling is encoded in the characteristic function
which is defined on the set of vertices@fas follows:

[v] 1
k()=1— — + —
(v) > -

2 fivedf
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The functionk may be viewed as a discrete analogue of curvature. (Compare, in partic-
ular, the discussion in Section 1 of this article.)

The main concern of this article is the influence of t@mbinatorial curvature
functionk on the geometry of.. We investigate how upper curvature bounds determine
properties of geodesics and volume growthGinlt turns out that, as in Riemannian
geometry, an important requirement for estimates of volume growth of distance balls is
theemptiness of the cut locudhis means that all distance minimizing geodesic§ in
may be extended to infinity.) We obtain the following result:

Theorem. LetG be a tessellating plane graph without cut locust —c < 0 be an
upper bound fok on G, and let B c V be a distance ball of radius.iThen

|Br| > (1+2¢).

The theorem follows as a corollary to an estimate ofsbperimetric constarfor dis-
tance balls in a negatively curved tessellating plane graph without cut locus. It was proved
previously that a tessellating plane graph withegative satisfiesstrong isoperimetric
inequalityby Woess [Wo] andZuk [Zu]. Earlier results for some particular classes of
negatively curved graphs were obtained by Dodziuk [Do] and Soardi [So].

The main class of tessellating graphs we consider are tessellating grhpipe
(p, 9), wherep, g are natural numbers which satisfyd+1/q = % These graphs have
the property that at least edges are emanating from each vertex, and at tpagges
are bounding each face of the tiling. Therefore tessellating graphs of ygp may
be viewed asion-positively curved deformation$ the regular tilings of the Euclidean
plane, and we show that such graphs have empty cut locus:

Theorem. LetG be a tessellating plane graph of typp, ). Then the cut locus @
is emptyi.e., every geodesic ray i may be extended to infinity

We start our paper in Section 1 with some preliminary remarks on tilings of surfaces,
the definition of the combinatorial curvature and the discrete analogue of the Gaul3—
Bonnet theorem. Also we introduce the characteristic funcjiorcalled theEuler-
characteristic which is dual tac, and which is defined on the set of faces of the tiling.
For technical reasons, we chose to formulate most of our results in the paper in terms of
the dual functiony which is just the curvature for the dual graphbf

In Section 2 we provide some preparatory material alpmlgygonsin tessellating
graphs. In what follows, we crucially need properties of distance balls and spheres in a
tessellating plane graph without cut locus. These properties are developed in Section 3.

In Section 4 we study the geometry of tessellating graphs of(tgpg) more closely,
and in particular we prove that the cut locus is empty in such graphs. The proof requires
careful analysis of the boundary of distance balls.

In Section 5 we proof the isoperimetric inequality for distance balls in a tessellating
plane graph without cut locus, whetds negative and bounded away from zero.

To round up the discussion, we consider in Sectiordlar tessellating graphs,

i.e., tessellations where all vertices are of the same dagré&worollary 6.4 exhibits
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a particular simple relation between Euler-characteristic and growth coefficients for
n € {3,4,6}. This translates into a corresponding result about curvature and growth
coefficientsirface-regulatilings. These are tilings where all faces have the same number
of edges.

Our interest in the subject arose from several sources. For example, in the theory
of tilings one studies tilingsormal relative to a geometryneaning that the faces are
uniformly bounded in a chosen geometry on the plane, see [GS] for the Euclidean
case. One can then ask which topological tilings may be realized as normal tilings,
for example, of the Euclidean or hyperbolic plane. This and the question of enumer-
ation of tilings were studied in an equivariant setting by Dress and Huson, see [DH].
It follows from Section 3.5 of [GS] that the curvature functiervanishes org for a
normalregular tiling of the Euclidean plane. Also, for tilings there exist various ques-
tions of type. See [Bo] for this in the context of random walks on graphs and circle
packings.

The following question is in a similar spirit. Is a tessellating plane graph with (asymp-
totically) negative upper curvature bound also a Gromov-hyperbolic space, i.e., is it neg-
atively curved in the sense of Gromov? Some affirmative answers were givéakby
[Zu, Section 5], in particular for tessellations with at least seven faces meeting in each
vertex and with a uniform bound on the number of edges of each face.

There is also a connection to (geometric) group theory which is already apparent
from the techniques used to obtain the results of this paper. It is known (see [GHV])
that the Cayley graph offinitely generatedjroupG is Gromov-hyperbolic if and only
if G satisfies a linear isoperimetric inequality. This condition is expressed in terms of
a linear isoperimetric relation fgplane diagramswhich represent words which are
trivial in G. These diagrams, on the other hand, may be viewed as parts of plane
tilings.

1. Tessellating Graphs

Let Sbe an orientable topological surface. We consider a connected simplicial graph
g=Ww9),

with the sets/, £ of vertices and edges, and an embedding of S. An embedding of

g in Sis a continuous one-to-one map from a topological representati@ind S. For

our purpose, we then identify with its image inS. Thatg is simplicial means that the
vertex sel is countable and that has no loops nor multiple edges joining two vertices.
Let F denote the family of connected components of the complement of the im&ge of

in S. The elements af are called the faces 6. A face f € F is called a polygon iff

is homeomorphic to a closed disk and if its boundary is a closed path of edges without
repeated vertices. The edgesdfivhich are contained in the boundary cydle of a
polygon f € F are then called the sides &f If the polygonf hask sides it is called
ak-gon. The number of edges emanating from a vertex) is called thedegree ofv,
denoted byw|. (For the basic notions of graph theory and surface embeddings of graphs
refer to [Wh] and [Y0].)
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Definition 1.1. An embedded grap@ in Sis calledtessellatingif the following con-
ditions are satisfied:

(i) Any edge is a side of precisely two different faces.

(i) Any two faces are disjoint or have precisely either a vertex or a side in common.
(i) Any face f € Fis a polygon with finitely many sides.
(iv) Every vertex has finite degree.

In the special casd = R? we callgG atessellating plane grapiWe only consider locally
finite graphs in this article. A graph is callégtally finiteif, for every p € S, there is an
open set containing which meets only finitely many faces 6t

Remark. Condition (ii) is a customargonvexity assumptidor atiling (see Section 3.2
of [GS], or [DH]) which seems to be rather strong. It can be relaxed to:

(ii)* Any two faces have at most one side in common.

However, in most of the cases we are interested in, conditidrefi¢ady implies condi-
tion (ii). For example, the reader should convince himself that this is true for tessellating
graphs of typep, q). (See Section 4 and in particular Lemma 4.2.)

Since each face of a tessellating graph is required to be an open disk, the embedding
of the edge grapf is a 2cell embeddingThe importance of the fact that each face of a
tessellation is a 2-cell stems fraBuler’s formulawhich is used frequently in this paper.
We state it here as follows: 1€t be a finite 2-cell embedded graph in a closed surface
S of genusy, and letp, g, r be the number of vertices, edges and faces af §;, then

p—q+r=2-2g. D

For a 2-cell embedded gragh let G* denote its (geometric) dual which is also a
connected embedded graph. We remark that i€ simplicial it is also 2-cell embedded.
If G is tessellating, then (i) and (ii) of the definition above imply tGatis simplicial.
Also, sinceg is simplicial,G* satisfies (i). Condition (ii) fog implies that condition (ii)
also holds folG*. The fact that the boundaries of the faceg afre simple cycles implies
that the same is true f@*. Conditions (iii) and (iv) are then dual to each other, so that
G* is also a tessellating graph.

Definition 1.2. Let f € F be ak-gon of the tessellating graghin the surfaces. The
Euler-characteristiof f is defined as the rational number

k 1
x(H) = 1= 543

vedf
The Euler-characteristic of finitely many facAsc F is then defined as

X(A) =) x(f).

feA
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Remark. In[Zu]aface ofatiling is calledayperbolic polygoifits Euler-characteristic
is < 0.

LetG be a 2-cellembedded tessellating graph in the closed sugja® lety (S;) =
2—2gbe the Euler-characteristic &. Using Euler's formula (1), as well as properties (i)
and (iii) of a tessellating graph, it is easy to see that the following identity holds:

X(F) = x(&). 2

That is, the sum over the Euler-characteristics of the polygons of a tessellating
graph in§, equals the Euler-characteristic of the cell decomposition induced by the
tessellation.

Now letv € V be a vertex of the tessellating gra@hlet G* be the dual graph and let
f (v) be the face irG* corresponding t@. The combinatorial analogue of curvature in
v may be defined as follows:

Definition 1.3. Thecurvaturek (v) of G in v is defined by the expression
k() =27 x(f(v)).
Thetotal curvaturex (V) of finitely many vertices/ c Vis

“(\V) = le(u).

veV

Remark. Note thatc(v) = 27« (v), wherex is the combinatorial curvature function
which is used in the Introduction.

The following combinatorial version of the GauR—Bonnet theorem follows from the
summation formula (2):

Theorem 1.4(Combinatorial Gau3—Bonnet Formula)Let S be a closed oriented topo-
logical surface and le§ = (V, £) be a locally finite tessellating graph in $hen

K(V) =21 x(9). ©)

The theorem seems to be part of mathematical folklore and it is difficult to locate
a reference. Thurston states the Gauf3—Bonnet formula for Euclidean cone metrics on
surfaces in [Thu]. Other combinatorial versions of Gauf3-Bonnet can be found]in [P’
[GP, p. 200] or [BB].

Remark. The definition of curvature in a tessellating gra@hmay be interpreted
geometrically as follows: The graghdetermines a Euclidean cone metric on the surface
S. In this metric, eack-gon ofG is isometric to a regulde-gon in Euclidean space with
side length 1. It is locally Euclidean except, possibly, at the verticés dhe curvature

in the vertexv € G is then naturally defined as the 2angle-defect of the flat polygons
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meeting inv. If r polygons with side-numbeks, . . ., k- meetin the vertex, one obtains

k() =21 — Zhl;zn=2n—e.
i=1

Hence a neighbourhood ofis isometric to a cone of angtewith apexv.

Remark. Cohn-Vossen proved the following result for complete non-compact Rie-
mannian 2-manifoldS: Assume the existence of [im fK,- x(q) dvol(q) for all com-

pact exhaustionk; of S, and denote it b}fsx (q) dvol(q). Then

/K(q) dvol(q) < 27 x (9.
S

Further investigations (e.g., [Li]) lead to relations between finite total curvature, finite
topological type and quadratic volume growth of geodesic balls. It seems natural to
expect corresponding combinatorial results.

2. Polygons in Tessellating Plane Graphs

For the sake of simplicity of the exposition, we consider, from now on, only tessellating
plane graphs, although all notions are valid (mutatis mutandis) in the more general
context of surfaces.

We give a few additional definitions and notations. ket F be a finite subset. We
saye € £ belongs toAif eis a side of somd € A, and similarly we say € V belongs
to Aif v is the endpoint of some edge which belong#\taA is called gpolygon if

PA) =] fcR?

feA

is homeomorphic to a closed disk. Then the (topological) boung@®&iA) is a closed
path of edges without repeated vertices, ancoitiendary cyclef A is defined as

IA={ec&|ec aP(A).

We write Ey 5 for |3 Al, and, for any subsdéB of F, Fg = |B| denotes the number of
faces,Eg the number of edges, af the number of vertices @ which belong toB.
We say that a vertex is aninterior vertexof A if it belongs to a face ofA but not to an
edge ofd A, and we write

o
v EA

to denote that is an interior vertex ofA. Also, by abuse of notation, we writec 9 A,
if v belongs to an edge which is containediA.
If A C Fisapolygon and belongs ta A, then theinner degregv|', of v (relative
to A) is the number of faces € A meeting inv, and theexterior degreev|$, is
V|G = [v| — |v|iA. If it is clear from the context which polygon is referred to, we will
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just write|v|' for |v|iA, and|v|®for |v|%. The Euler-characteristig(A) can be computed
by knowing only the inner and exterior degrees of the boundary verticAs of

Proposition 2.1. Let AcC F be a polygon of a tessellating plane graghThen

_ _@ i
x(A) =1 +v§ ol 4)

Proof We have
Eys 1
XM= x(H=> (1-5+3 = FA—EA+— ZZ
feA feA vedf | | feAveof |v|
SinceA is a polygon, we have from Euler’s formula that
Fa—Ea+Va=1, (5)
and also
[v]®
> Z —. (6)
feA veaf |U| s vl

The latter formula holds since, by condition (iii), in a tessellating graph the degree of a
vertexv coincides with the number of different faces meeting.itusingVya = Eja it
follows from (5) and (6) that

x(A)—1+——VA ZZ 1- By ol O

feA veaf |v| 2 oo 1Vl

The following formula is due to Lyndon (see Corollary 2.2 of [Ly]) and is used in the
next section. For the convenience of the reader, we give a proof in our terminology.

Theorem 2.2(Lyndon). LetG be a tessellating plane grapl a polygonandl1/p +
1/q = % Assume thatv| > p for all interior vertices of Aand that E; > q for all

f € A. Then we have
> (5-n)=zp

vedA

Proof. Letp # 0be an arbitrary real number, and kebe a polygon o§. We conclude

XA = Z(1—3+Z M)

feA veaf

A COMGEH R o
0 Ge) -5 (-5
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On the other hand, we obtain with (4)
Esa vf! it 1
xX(A=1-——+ — =1+ — -]
2 Jaalvl Xa% vl 2
Combining both equations yields

5 B0 G D) 6 o

vedA feA
vEA

Note that, in the case/p+1/q = 3, we have(l/p— 3)Ey < —1and 1-|v|/p < 0.
Consequently, the last two terms on the right-hand side of (7xaBe which implies
Lyndon’s inequality. O

3. Tessellating Graphs without Cut Locus

The distancel(f, ') of two facesf, f’ of a tessellating grapf = (V, &, F) is the
combinatorial distance of their corresponding vertices in the @tialTwo faces are
called neighboursif they have an edge in common. A sequerfge f,, ... of faces
forms aconnected patif any two subsequent facedg, fj 1 are neighbours. Such a path
corresponds to a connected path of edges in the@uah (minimal) geodesic irg is
then a path of face$,, fo, ... satisfyingd(f;, f;) = |i — j| foralli, j.

Definition 3.1. Let fy € F be a fixed face and lely(f) := d(fo, f), forall f € F,
be the distance function d§. Thecut locus G fy) of fg is the set

C(fo):={f" e F|dy(f) < dg(f’) for all neighboursf of f'}.

That is,C(fg) C F is the set where the functialy attains its local maxima.

We associate to the fadg € F the distance spheres and distance balls:

A = {feFldo(f)=r},
B = {f e Fldo(f) =r}.

Our aim is to show

Theorem 3.2. If Gisatessellating plane graph without cut logtreen all distance balls
B; are polygonsMoreoverthe boundary cyclé B, imposes dcyclic) enumeration of
A1 = {f1,..., fx} suchthatprecisely subsequentfaces intersexteach intersection
contains a vertex € JB;.

First we analyze the consequences of the global condRioia) = @ on the neigh-
bourhoods of vertices in distance spheres.iFar)’ let

S(v) = {f € F|vis avertex off}
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be the star of and A, (v) = A, N S(v). LetU c R? be a small neighbourhood of We
call the intersections dff with the closures of facef € S(v) the segments df .

Proposition 3.3. If C(fp) = @, then U — Ufemw f has at most two connected com-
ponents The faces of the segments in one of these components all belong either to
Ul>r A (v) orto U|<r A (v).

Proof.  Since|dy(f)—do(f’)| < 1for neighbouring face$, f’, we can conclude from

do(f) > r for one of the faces in a component0f— | J;., ,, f that the same is

true for all faces in this component. We assume now that [ ;. f has at least
three components, and that two of them contain fdgesnd f,, respectively, satisfying
do(fj) < r.We still use paths of faces @ but we consider them here as paths in the dual
graphG*. In this sense, we choose geodesjgeining f; and fo. There are two ways to
join the f; along the boundary cycle of Any of these two paths can be combined with
(parts of) thec; to form a simple closed paih We choose the path such that 9B,
whereB is the polygon containing all faces of the bounded paR%%- ¢ as well as the
faces which belong to. Note thatd B belongs only to faces af; or c,. On the other
hand,B contains a facdé with do(f) = r on the boundary cycle af. Hence, sinc8
is finite, there is a facd’ € B with maximal distancely(f’) > r. This face is inC( fp)
since all it neighbours are containedBn

In the case that there are two components 6f (4 () f with facesf satisfying
do(f) > r, we take two faced; and f, in A, (v) which separate these components, and
repeat the previous argument. O

Proposition 3.4. If C(fg) = @, then|A; (v)| < 2.

Proof. Let f;, f,andf;bethree facesih, (v). We choose geodesicsg ¢, from fq, f;,
to fo. As in the previous proof, we connect (part of) thealong the boundary cycle of
v to form a simple closed path Moreover, we can assume that we chdgef, and f3
in such a way thaff; is on the boundary cycle part of As in the previous proof, this
gives us a polygoB with v € dB. Again, there is a facé’ € B with maximal distance
to fo such that all its neighbours i are contained iB. Consequentlyf’ € C(fp). O

Proof of the First Part of Theorer®.2. LetB = B, be a distance ball ofy. Any edge

e € dB is a side of two faced, f’ which belong toA; and A, 1, respectively. We

show first that, at every vertex € 9B, there meet precisely two edges @B. This
implies thatd B is a union of simple cycles. From Proposition 3.4, we know that

Usea o f contains exactly one connected component whose segments belong to faces

inU,., A (v). Then the edges @B meeting ab coincide with the two boundary edges
of this component. Thus, we proved that the connected componef® afe simple
cycles.

SinceB = (Uscp f is a compact connected set, there is a cgglef 9B enclosing
B. Therefore, all other possible boundary cycles are contained in the bounded compo-
nent enclosed bg,. However, the existence of such cycles contradicts the assumption
C(fo) = 4. O
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Proposition 3.5. If C(fp) = @, then for every fe Ar 1, the intersectiordf N3 B; is
a connected path of edges

Proof. Clearly, one component of the (topological) boundadi€s d B, is a connected
path containing at least one edge. Assume that there is another component Bince
is a cycle, the two components may be connected along aygath 3 B, such thatw;
encloses, together with a part@f, a compact area which contains cut locus. O

Proof of the Second Part of Theoréh®. By the previous proposition, the sequence
of connected paths8f N dB;, for f € A1, along the boundary cycleB; gives an
enumeration of ;. Clearly, two faces with subsequent indices intersect in at least one
vertexv € 9B;. Supposef, f are not subsequent aloa@, , then the same argument as

in the previous proof shows that they cannot intersect. O

4. Distance Balls in Tessellating Graphs of Typép, q)

Awellknown factin Riemannian geometry is that complete, simply connected manifolds
with non-positive curvature have empty cut locus. This naturally leads to the assumption
that the same could be true for tessellating plane graphs where all faces have non-positive
Euler-characteristic. The answer to this question is not known to us in full generality.
Here, we can prove the emptiness of the cut locus for some natural classes-of
positively curvedyraphs.

A tessellating graply is calledof type(p, q) if, forall v € V, f € F,

[v|>p and Ey >q,

for natural number9, g with (p,q) € {(3, 6), (4,4), (6, 3)}, or equivalently which
satisfy Yp+1/q = % Itis clear thaty < O for a tessellating graph of tyge, q). We
are going to prove the following result:

Theorem 4.1. LetG be aplanetessellating graph oftype q). Then we have Cfp) =
¢ for every face § € F.

Before we present the proof we introduce some useful notionsB et a polygon.
We label the boundary vertices Bfas follows:v € 3B obtains the labed if |v|y = 1,
in the case € {6, 4}, and if|v|; < 3, in the casg = 3. Otherwiseyp obtains the label
b. We callB admissibléf the label sequence along the closed pahhas the property
that every labeb is enclosed by vertices of labalwhich both satisfy(vPB =1.

Now let B andP be polygons of the grapf, ando B, d P C £ their boundary cycles.
Assume thaB, P satisfy the following properties:

(i) 9P NaB # ¢,
(i) aP NaB is aconnected path (of edges),
(i) PNB=4.
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Fig. 1. Examples of bridges of length 4 and 1. The second bridge is attactieditthe left side.

Note that in particulab P anddB have at least one edge in commonBIf P satisfy
(i)—(iii), the set

I ={f e F— P | an edge off belongst®P — 9B}

is called abridge over Bof lengthL(I") = |T'|. Let v1, v, denote the two endpoints of
the pathd P N 9 B. (Note that, sincé® is assumed to be a polygon, always# v,.) We
say thafl" is attached at one side to iBthere existsf € I" such thatf N 3B contains
an edge emanating from or v,. In particular, if there exists such an e T for both
endpoints, we say thatis attached at both sideExamples of bridges are given in Fig. 1.

Lemma 4.2(Bridge Lemma). LetG be agraphoftypép, q),andlet B P be polygons
of G. Assume further that B is admissipbbnd that B P satisfy the properties above
Then

LT)>q-2
If, additionally, I" is attached at one side to,Bhen in the case ¢ {3, 4},
L)>qg-1
If T is attached at both sides to, Bhen in the case g= 3,
L(I) > 3.

Proof. Letw; denote the connected path of edgeg i disjoint tod B (except for the
endpoints;, v, € dB). Letw, be the complementary path alofg N a B, but without
the edges containing, v,.

Sinceg satisfies the conditions of Lyndon’s formula (Theorem 2.2), we can conclude

5 (21

vedP
S (B -n)+ 3 (5 - 1ok). ®)

Sincelv| > p, for anyv € aP, it follows that the first sum is< (L(I") + 1)(p/2 — 1),
and also, sinc# is admissible, that the second sumdsp/2 — 1. So far, we proved
g — 2 < L(T"), for any bridger".

p



152 0. Baues and N. Peyerimhoff

Assume now thar is attached a1, and thaqy € {3, 4}. In the case that

> (5-nl) =0, ©)

vEW?

we have necessarily that andv, carry labela, and satisvaﬂ‘B = |v2|‘B = 1. Since

I is attached aby, it follows that|vi |, > p — 2 > p/2. Therefore the first sum in (8)
is< L()(p/2—-1), and hencel — 1 < L(I"). If T is attached at both sides we get
g < L(I"), accordingly. So far, we proved the lemma under the assumption (9).

We assume now that
> (5 -1l <o (10

vewr

In this case it is always true thgt— 1 < L(I"). Therefore, we are left to prove that

3 < L(I"), for a bridgel" which is attached at both sides, in a tessellating graph of type
(6, 3), under the assumption (10). We assume first E}';}sz(S - |v|‘P) = 0. This is

only possible if one oby, v, satisfiegv|; = 1, orvy andv, are both of labe&. In the

first case, we get X L(I"), with the same reasoning as before. In the latter case, we
deduce fromu |, |valy < 3 that|vs b, [v2]b > 2 and we deduce from (8) that

6<2+(LT)—-D2
and from this 3< L(I"). Finally, we conclude fronzuewz(p/z — |v|‘P) < O that
6 < (L(I) + 12,

and hence the claim of the lemma always follows. O

Now we are ready for the key step in the proof of Theorem 4.1

Proposition 4.3. Let G be of type(p, q), let B be an admissible polygon and let
T = {f € F | d(f, B) < 1} be the distancd tube around BThen T is again an
admissible polygon andor all faces fe T — B, af N dT is a connected path of edges
of length> 1.

Proof. We remark first that forf € T — B, af N dT is a connected path. If the
intersection of the (topological) boundarieg N d B were not connected, there would be
a bridge oveB of length 1 which is attached at one side. The Bridge Lemma (Lemma4.2)
implies that such a bridge is of lengthq — 1 > 2. Consequentlyf N B is a connected
path of edges. The labeling of the vertice9iB ensures that the length of this path is
<2.

Following the edges of the boundary cyéIB, we obtain an enumeration of the faces
of T—B,i.e.,T—B={fq, fa,..., fi}. Any two facesf;, f; € T—Bwith fin f; # ¢
have subsequent indices (mkj For otherwise,f;, fj would define a bridgé™ over
B of length 2 which is attached at both sides. This is impossible because of the Bridge
Lemma.

We show now that each fadee T — B contributes an edge T . From what was
said before, itis already clear that, in the cqse 6, df contributes at least two edges to
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aT.We assume noy € {3, 4}. Letv,, v, denote the two endpoints of the pathn o B.
First we consider the case whebd N9 B| = 1. SinceB is admissible at least one of,
v, Sayvy, carries the labead. Therefore|v,1|§ > 3, and it follows thatf does not share
an edge with its corresponding neighbdure T — B in v;. Consequentlyf contributes
at least one edge @T, in the case) = 3, and at least two edges, in the case- 4.
Next, we have to consider the remaining césen dB| = 2. In this case, necessarily
luily = |valy = 1, and hence does not share an edge with any one of its neighbours
alongadT. Again, f contributes at least one edged®, in the case] = 3, and at least
two edges, in the casp= 4.

The previous considerations imply, in particular, that is a closed path without
repeated vertices. Consequentlyis a polygon. We have to show thetis again admis-
sible. Inthe cases = 6,q = 4 eachf € T — B contributes at least two edgesiX®, and
the claim is immediate. Assume nay= 3. If v € 3T is of labelb it satisfiesvﬁT > 3.
Then alsa € 3B, and|v|; > 1. SinceB is admissible, both neighbours ofilongd B
have labelk, and consequently the two facés f, € T — B which meet inv, do not
share an edge with any neighbour al@fg and also satisfipf1NdB| = |af,NaB| = 1.
Thereforefy, f, contribute at least two edgesdd , and hencd is admissible. O

Proof of Theorend.1. We show, inductively, that, for afl € N, the distance balls
B (fo) are admissible polygons, and that every féice A, (o) contributes a connected
path of length> 1 to 3 B; (fp). This obviously holds for = 0. The induction step is a
particular case of Proposition 4.3. This finishes the prod ofy) = 9. O

5. Growth of Negatively Curved Tessellating Graphs

LetG be a plane tessellating graph without cut locus. In the presence of negative curvature
bounded from above, we have a linear isoperimetric inequality between the volume of
distance spheres and the volume of balls. We show that the isoperimetric constant for
distance balls depends linearly on the curvature bound.

With the notational conventions from Section 3 we defipe- | A«|, bx = |Bk|. Then
we have

Theorem 5.1(Isoperimetric Inequality for Distance Balls)Let G be a tessellating
plane graph without cut locugA\ssume there exist constants-cO and d € N U {oo}
such thaty (f) < —c, forall f € G, and|v| < d, for all v € V. Then we havdor all
k>0,

d
—2
A1 = a-1 chy,
where we define ld — 1) = 1in the case d= ~c.

Remark. A related result was proved independently by Woess [Wo] Zuki [Zu].

They showed that a strictly negative (asymptotic) curvature bound implies a strong
isoperimetric inequality arg¢dA) > ¢ - vol(A), where A is any polygon. However, in

both references, the interest is focused on the existence of the constard. The
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dependence of on upper curvature bounds is not discussed. Isoperimetric inequalities
for some special families of negatively curved graphs were also given in [Do] and [So].
The notions of areg@ A) and vol A) used by these authors differ somewhat from ours.
This makes no (qualitative) difference in the case of bounded geometry.

Obviously, the isoperimetric inequality implies exponential growth of distance balls.

Corollary 5.2. Letg, c, d satisfy the assumptions of Theorgrh. Then

d k
bkz(1+d_120> .

Remark. The corollary yields a lower estimate for the growth rate of distance balls for
tessellating plane graphs with upper curvature bound. A corresponding upper estimate
for the growth rate in graphs with lower curvature bound would have implications for
the bottom of the essential spectrum of the graph-theoretic Laplacian (see, e.qg., [Fu]).

Before proving Theorem 5.1 we introduce two lemmata. Let
VZ={vedB|v®=2} and vZ=|V2.
Lemma 5.3.

Z Est = Eope., + Eop, + 207

feA1

Proof. Lete e of be an edge ofafack € A, 1. Then eithee € 9By, 0re € aB or
eis a common edge of and another facé € Ay.1. In the latter case, it follows from
Theorem 3.2 that at least one vertex de belongs ta By. It is clear thafjv|® = 2. If
both vertices o€ belong tod By, then, by Proposition 3.5, we would haw/e — e C 9By,
and thusf € C(fo). So precisely one vertexe de belongs tov/?. O

Lemma5.4.

1 v ', A
— =< —+ ) — v ——,
2 v 2 v 2 b~ d

feAxyq vedf v€IByi1 ved By

with ay1/d = 0if d = oo.

Proof. In what follows we stick to the convention that, if a sum is taken over the
boundary of a ball, the inner and exterior degrees of vertices are always with respect to
this ball. We further definey1(v) = |{f € A 1 | v € af}].

From Proposition 3.4 it follows that every € 9By 1 belongs to at most two faces
of Ay, 1. Thus we always hava ., 1(v) < 2. If v € 3By, 1 belongs to two faces o1
(this is precisely the casedf1(v) = 2), then eithetv[ =2 0rv € 9By N 9By
Correspondingly, ifv € 9B satisfiesax,1(v) = 2, we have eithefv|3 = 2 orv €
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9 Byx1N 3 By. In particular, we conclude thate 9B, N By, 1 iff v € 9By and|v|‘9Bk > 2.
We remark further that, for every € A1, all verticesv € daf are contained in
9By U 9By, 1. Using these facts we deduce

Z i . a1(v)
feAxyq vedf |U| veaBkUBBk+1 |U|
DT DEC I D B M RN
vedBy g |U| LEOBk+l vedBy g vedBy |U| ved By |U|
Jli=1 Joli= jvli=2 |v[€=1 |v[€=2
ol 1 3
N D)
UEBBk+1 |U| vedBy |U| vedBy g vedBy |U| vedBy |U|
|v|€=1 [li=2 |v|€=2 |v|€=2

The inequality of the lemma follows from

3 A+1
H RPN D MR SR

vedByy g vedBy vedBy
joli>2 Jv|€=2 [v|®=2

We remark that, in this last inequality, the estimate for the first term is obtained
by using the following observation: Theorem 3.2 implies that any two subsequent
faces f1, f, € Acy1 meet either in a vertex € 9By, 1 with |v|‘Elk+l > 2 or along a
common edge. In the latter case the common edge has a unique ¥vedexBy with

V'3, = 2. O

Proof of Theorenb.1. We have

1 1
= > x(D+3 D Bw— 3 D

fEAk+1 fEAk+1 fEAk+1 veaf

It follows from Lemma 5.3 and formula (4) that

1
aga = 3 x(D)+ 3B, + 3Bt - D Y
feAc feAg vedf vl
v’ v
= 3 x(H) = xBud —x(Bo+2+ Y 4 3
feA1 vEdBy i1 | v By [v]|

1
+v|f— Z ﬁ

feAgyq vedf v
Using Lemma 5.4 we get

d-—1
——au1 = Y x(f) = x(Bry) — x(Bo) +2
d feA

= —2x(By) + 2> 2ch + 2. O
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Remark. There is also an asymptotic version of Corollary 5.2. It can be best stated in
terms of themean Euler-characteristiohich, for an arbitrary polygof®, is defined as

X (P) = x(P)/|P|. Now, letc > 0 be a constant satisfying lim sup.. x(Bx) < —c.

Then the asymptotic version asserts that there are constagts- 0 with

d k
bkza( d—l) forall k> ko.
This follows immediately from the key estimate

d
W1 = —Zm(X(Bk) -1 11

in the above proof.

6. Regular Tessellating Graphs

In this section we restrict our considerationsitoegular graphsi.e., plane tessellating
graphsg satisfying|v| = n, for all verticesv € V. For these graphs it is possible to
derive growth formulas which are more precise than the general isoperimetric inequality
of the previous section. Note also that non-positively curveegular graphs are always
of type (p, 9).

Let fop € F be a fixed face in an-regular graphg. The numbersy, bk are defined
as before. Moreover, we introduce the following numbers for any distanc®&@l):

ch = l{v € 9Bl [vl® = j}I.
Lemma6.1. LetG an n-regular graph with €fp) = @. Then

21

X(Bk)—l+2

Proof. This is an immediate consequencelyg, = ZJ 1 ck and (4). O

Lemma6.2. LetG be an n-regular graph with Cfs) = ¢. Then the coefficientsic
satisfy the following recurrence relations

(i) Ck+1 = Ck'
(i) ck+1_ck, for3<l<n-1.

Moreoveyfor k > 0,
2 — A1 = CE;% — C&+1~

Proof. We use the enumeration of the facesfi ; introduced in Theorem 3.2. Note
that any vertex € 9By, with [v|® = n— 2 belongs to precisely one common edgs
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two subsequent faces #..1, and vice versa. The other verteof this edgee belongs
to 9By, and satisfie$v|® = 2. Conversely, any verteX € 9By with |v'|®* = 2 belongs
to a common edge of two subsequent faces ¥ 1. This proves (i).

Note, for the proof of (ii), that any vertex € 9B with [v|®*=1,3 <1l <n—-1,is
also a vertex ob By ; with |v|® =1 — 2, and vice versa.

A moment’s thought shows that 1 coincides with the number of verticese a By
with |v|® > 1. Using this and the recurrence relations, we obtain

[y
=

n— n—

j 2 j
ak+l = Ck = Ck + Ck
=2 =
n-3 n-1
_ An-2 ] _ Al ] n—-1
=Cy1t 2 G1=CGut Z Cir1 — 1
=t =
1 n—1
= Cpr + 82 = Geyg- -

Proposition 6.3. Let G be an n-regular graph without cut locu$hen we havefor
k>1,

Bo=1-""2 W St
X(Bk) = n A1 — £ on ke
Proof. This follows immediately from the Lemmas 6.1 and 6.2. |

Corollary 6.4. LetG be an n-regular graph without cut locusnd ne {3, 4, 6}. Then
fork > 1,

-2
2B =1— " L@ — a.
2n

Proof. In the cases = 3 andn = 4, there is nothing to do. Observe, for the case
n = 6, thatc, = 0 for even values of. O

Remark. Interestingly, Corollary 6.4 has a counterpart in Riemannian geometry. The
differenceax, 1 — ax corresponds to a derivative in the continuous context, and an easy
computation shows that

1

k(q)ydvol(q) =1—
2

A L/(r)s
21 Jg.(p)

whereB; (p) denotes a geodesic ball of radiugn a Riemannian 2-manifol, «(q)

denotes the Gaussian curvaturés assumed to be smaller than the injectivity radius of
p € M, andL (r) denotes the length of the geodesic sptgie).

Remark. Therecurrence relations show, feregular graphs without cut locus, thatthe

coefficients{c,_,}; of the distance balBy, are already determined by the coefficients

{c,i}j of the distance balBy, with the only exception oy, 1. This implies, together
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with the other results in this section, that all three seque{“uéeﬁ, {x (Byx) }x and{ax}«
determine each other mutually, and, consequently, carry the same information about the
regular graplg.

We, finally, compare the estimate (11) of the previous section with the statement of
Corollary 6.4 in the particular case of arregular graphn € {3, 4, 6}. Estimate (11)
yields in this case

n—-1
x (B >1— on A+1,
whereas Corollary 6.4 shows that

2 n n
Ak+1 n .

n_
By =1-—
x (By) n
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