
DOI: 10.1007/s004540010076

Discrete Comput Geom 25:141–159 (2001) Discrete & Computational

Geometry
© 2001 Springer-Verlag New York Inc.

Curvature and Geometry of Tessellating Plane Graphs

O. Baues1 and N. Peyerimhoff2

1 Departement Mathematik, ETH-Zentrum,
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Abstract. We show that the growth of plane tessellations and their edge graphs may be
controlled from below by upper bounds for the combinatorial curvature. Under the assump-
tion that every geodesic path may be extended to infinity we provide explicit estimates
of the growth rate and isoperimetric constant of distance balls in negatively curved tes-
sellations. We show that the assumption about geodesics holds for all tessellations with
at leastp faces meeting in each vertex and at leastq edges bounding each face, where
(p,q) ∈ {(3,6), (4,4), (6,3)}.

Introduction

The edge graphG of a tessellation or tiling of the plane may be viewed as an embedding
of a graph which satisfies certain additional hypotheses. The most well known examples
are given by tessellations of the Euclidean plane by regular triangles, quadrilaterals and
hexagons. Other examples arise from hyperbolic geometry (see [Ro] for many beautiful
examples). Obviously, these graphs inherit many geometric properties of the underlying
plane geometry, and these properties are also reflected in the combinatorial structure of
the tiling.

We introduce some notation and the definition of combinatorial curvature. For the
vertexv ∈ G, let |v| denote the number of edges emanating fromv, and, for a facef of
the tiling, letE∂ f denote the number of edges ofG bounding f . Some information about
the local combinatorial structure of the tiling is encoded in the characteristic functionκ

which is defined on the set of vertices ofG, as follows:

κ(v) = 1− |v|
2
+

∑
f :v∈∂ f

1

E∂ f
.
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The functionκ may be viewed as a discrete analogue of curvature. (Compare, in partic-
ular, the discussion in Section 1 of this article.)

The main concern of this article is the influence of thecombinatorial curvature
functionκ on the geometry ofG. We investigate how upper curvature bounds determine
properties of geodesics and volume growth inG. It turns out that, as in Riemannian
geometry, an important requirement for estimates of volume growth of distance balls is
theemptiness of the cut locus. (This means that all distance minimizing geodesics inG
may be extended to infinity.) We obtain the following result:

Theorem. Let G be a tessellating plane graph without cut locus. Let−c < 0 be an
upper bound forκ onG, and let Br ⊂ V be a distance ball of radius r. Then

|Br | ≥ (1+ 2c)r .

The theorem follows as a corollary to an estimate of theisoperimetric constantfor dis-
tance balls in a negatively curved tessellating plane graph without cut locus. It was proved
previously that a tessellating plane graph withκ negative satisfies astrong isoperimetric
inequalityby Woess [Wo] anḋZuk [Żu]. Earlier results for some particular classes of
negatively curved graphs were obtained by Dodziuk [Do] and Soardi [So].

The main class of tessellating graphs we consider are tessellating graphsof type
(p,q), wherep,q are natural numbers which satisfy 1/p+1/q = 1

2. These graphs have
the property that at leastp edges are emanating from each vertex, and at leastq edges
are bounding each face of the tiling. Therefore tessellating graphs of type(p,q) may
be viewed asnon-positively curved deformationsof the regular tilings of the Euclidean
plane, and we show that such graphs have empty cut locus:

Theorem. LetG be a tessellating plane graph of type(p,q). Then the cut locus ofG
is empty, i.e., every geodesic ray inG may be extended to infinity.

We start our paper in Section 1 with some preliminary remarks on tilings of surfaces,
the definition of the combinatorial curvatureκ, and the discrete analogue of the Gauß–
Bonnet theorem. Also we introduce the characteristic functionχ , called theEuler-
characteristic, which is dual toκ, and which is defined on the set of faces of the tiling.
For technical reasons, we chose to formulate most of our results in the paper in terms of
the dual functionχ which is just the curvature for the dual graph ofG.

In Section 2 we provide some preparatory material aboutpolygonsin tessellating
graphs. In what follows, we crucially need properties of distance balls and spheres in a
tessellating plane graph without cut locus. These properties are developed in Section 3.

In Section 4 we study the geometry of tessellating graphs of type(p,q)more closely,
and in particular we prove that the cut locus is empty in such graphs. The proof requires
careful analysis of the boundary of distance balls.

In Section 5 we proof the isoperimetric inequality for distance balls in a tessellating
plane graph without cut locus, whereκ is negative and bounded away from zero.

To round up the discussion, we consider in Section 6regular tessellating graphs,
i.e., tessellations where all vertices are of the same degreen. Corollary 6.4 exhibits
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a particular simple relation between Euler-characteristic and growth coefficients for
n ∈ {3,4,6}. This translates into a corresponding result about curvature and growth
coefficients inface-regulartilings. These are tilings where all faces have the same number
of edges.

Our interest in the subject arose from several sources. For example, in the theory
of tilings one studies tilingsnormal relative to a geometry, meaning that the faces are
uniformly bounded in a chosen geometry on the plane, see [GS] for the Euclidean
case. One can then ask which topological tilings may be realized as normal tilings,
for example, of the Euclidean or hyperbolic plane. This and the question of enumer-
ation of tilings were studied in an equivariant setting by Dress and Huson, see [DH].
It follows from Section 3.5 of [GS] that the curvature functionκ vanishes onG for a
normalregular tiling of the Euclidean plane. Also, for tilings there exist various ques-
tions of type. See [Bo] for this in the context of random walks on graphs and circle
packings.

The following question is in a similar spirit. Is a tessellating plane graph with (asymp-
totically) negative upper curvature bound also a Gromov-hyperbolic space, i.e., is it neg-
atively curved in the sense of Gromov? Some affirmative answers were given byŻuk
[Żu, Section 5], in particular for tessellations with at least seven faces meeting in each
vertex and with a uniform bound on the number of edges of each face.

There is also a connection to (geometric) group theory which is already apparent
from the techniques used to obtain the results of this paper. It is known (see [GHV])
that the Cayley graph of afinitely generatedgroupG is Gromov-hyperbolic if and only
if G satisfies a linear isoperimetric inequality. This condition is expressed in terms of
a linear isoperimetric relation forplane diagramswhich represent words which are
trivial in G. These diagrams, on the other hand, may be viewed as parts of plane
tilings.

1. Tessellating Graphs

Let Sbe an orientable topological surface. We consider a connected simplicial graph

G = (V, E),

with the setsV, E of vertices and edges, and an embedding ofG in S. An embedding of
G in S is a continuous one-to-one map from a topological representation ofG into S. For
our purpose, we then identifyG with its image inS. ThatG is simplicial means that the
vertex setV is countable and thatG has no loops nor multiple edges joining two vertices.
LetF denote the family of connected components of the complement of the image ofG
in S. The elements ofF are called the faces ofG. A face f ∈ F is called a polygon iff̄
is homeomorphic to a closed disk and if its boundary is a closed path of edges without
repeated vertices. The edges ofG which are contained in the boundary cycle∂ f of a
polygon f ∈ F are then called the sides off . If the polygon f hask sides it is called
a k-gon. The number of edges emanating from a vertexv ∈ V is called thedegree ofv,
denoted by|v|. (For the basic notions of graph theory and surface embeddings of graphs
refer to [Wh] and [Yo].)
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Definition 1.1. An embedded graphG in S is calledtessellating, if the following con-
ditions are satisfied:

(i) Any edge is a side of precisely two different faces.
(ii) Any two faces are disjoint or have precisely either a vertex or a side in common.

(iii) Any face f ∈ F is a polygon with finitely many sides.
(iv) Every vertex has finite degree.

In the special caseS= R2 we callG atessellating plane graph. We only consider locally
finite graphs in this article. A graph is calledlocally finiteif, for every p ∈ S, there is an
open set containingp which meets only finitely many faces ofG.

Remark. Condition (ii) is a customaryconvexity assumptionfor a tiling (see Section 3.2
of [GS], or [DH]) which seems to be rather strong. It can be relaxed to:

(ii) ∗ Any two faces have at most one side in common.

However, in most of the cases we are interested in, condition (ii)∗ already implies condi-
tion (ii). For example, the reader should convince himself that this is true for tessellating
graphs of type(p,q). (See Section 4 and in particular Lemma 4.2.)

Since each face of a tessellating graph is required to be an open disk, the embedding
of the edge graphG is a 2-cell embedding. The importance of the fact that each face of a
tessellation is a 2-cell stems fromEuler’s formulawhich is used frequently in this paper.
We state it here as follows: letG be a finite 2-cell embedded graph in a closed surface
Sg of genusg, and letp,q, r be the number of vertices, edges and faces ofG ⊂ Sg, then

p− q + r = 2− 2g. (1)

For a 2-cell embedded graphG, let G∗ denote its (geometric) dual which is also a
connected embedded graph. We remark that ifG∗ is simplicial it is also 2-cell embedded.
If G is tessellating, then (i) and (ii) of the definition above imply thatG∗ is simplicial.
Also, sinceG is simplicial,G∗ satisfies (i). Condition (ii) forG implies that condition (ii)
also holds forG∗. The fact that the boundaries of the faces ofG are simple cycles implies
that the same is true forG∗. Conditions (iii) and (iv) are then dual to each other, so that
G∗ is also a tessellating graph.

Definition 1.2. Let f ∈ F be ak-gon of the tessellating graphG in the surfaceS. The
Euler-characteristicof f is defined as the rational number

χ( f ) := 1− k

2
+
∑
v∈∂ f

1

|v| .

The Euler-characteristic of finitely many facesA ⊂ F is then defined as

χ(A) :=
∑
f ∈A

χ( f ).
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Remark. In [Żu] a face of a tiling is called ahyperbolic polygonif its Euler-characteristic
is< 0.

LetG be a 2-cell embedded tessellating graph in the closed surfaceSg and letχ(Sg) =
2−2g be the Euler-characteristic ofSg. Using Euler’s formula (1), as well as properties (i)
and (iii) of a tessellating graph, it is easy to see that the following identity holds:

χ(F) = χ(Sg). (2)

That is, the sum over the Euler-characteristics of the polygons of a tessellating
graph inSg equals the Euler-characteristic of the cell decomposition induced by the
tessellation.

Now letv ∈ V be a vertex of the tessellating graphG, letG∗ be the dual graph and let
f (v) be the face inG∗ corresponding tov. The combinatorial analogue of curvature in
v may be defined as follows:

Definition 1.3. Thecurvatureκ̄(v) of G in v is defined by the expression

κ̄(v) := 2π χ( f (v)).

Thetotal curvatureκ̄(V) of finitely many verticesV ⊂ V is

κ̄(V) :=
∑
v∈V

κ̄(v).

Remark. Note thatκ̄(v) = 2πκ(v), whereκ is the combinatorial curvature function
which is used in the Introduction.

The following combinatorial version of the Gauß–Bonnet theorem follows from the
summation formula (2):

Theorem 1.4(Combinatorial Gauß–Bonnet Formula).Let S be a closed oriented topo-
logical surface and letG = (V, E) be a locally finite tessellating graph in S. Then

κ̄(V) = 2π χ(S). (3)

The theorem seems to be part of mathematical folklore and it is difficult to locate
a reference. Thurston states the Gauß–Bonnet formula for Euclidean cone metrics on
surfaces in [Thu]. Other combinatorial versions of Gauß-Bonnet can be found in [P´o],
[GP, p. 200] or [BB].

Remark. The definition of curvature in a tessellating graphG may be interpreted
geometrically as follows: The graphG determines a Euclidean cone metric on the surface
S. In this metric, eachk-gon ofG is isometric to a regulark-gon in Euclidean space with
side length 1. It is locally Euclidean except, possibly, at the vertices ofG. The curvature
in the vertexv ∈ G is then naturally defined as the 2π -angle-defect of the flat polygons
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meeting inv. If r polygons with side-numbersk1, . . . , kr meet in the vertexv, one obtains

κ̄(v) = 2π −
r∑

i=1

ki − 2

ki
π = 2π − θ.

Hence a neighbourhood ofv is isometric to a cone of angleθ with apexv.

Remark. Cohn–Vossen proved the following result for complete non-compact Rie-
mannian 2-manifoldsS: Assume the existence of limj→∞

∫
Kj
κ(q)dvol(q) for all com-

pact exhaustionsKj of S, and denote it by
∫

Sκ(q)dvol(q). Then∫
S
κ(q)dvol(q) ≤ 2πχ(S).

Further investigations (e.g., [Li]) lead to relations between finite total curvature, finite
topological type and quadratic volume growth of geodesic balls. It seems natural to
expect corresponding combinatorial results.

2. Polygons in Tessellating Plane Graphs

For the sake of simplicity of the exposition, we consider, from now on, only tessellating
plane graphs, although all notions are valid (mutatis mutandis) in the more general
context of surfaces.

We give a few additional definitions and notations. LetA ⊂ F be a finite subset. We
saye∈ E belongs toA if e is a side of somef ∈ A, and similarly we sayv ∈ V belongs
to A if v is the endpoint of some edge which belongs toA. A is called apolygon, if

P(A) =
⋃
f ∈A

f̄ ⊂ R2

is homeomorphic to a closed disk. Then the (topological) boundary∂P(A) is a closed
path of edges without repeated vertices, and theboundary cycleof A is defined as

∂A = {e∈ E | e⊂ ∂P(A)}.

We write E∂A for |∂A|, and, for any subsetB of F , FB = |B| denotes the number of
faces,EB the number of edges, andVB the number of vertices ofG which belong toB.
We say that a vertexv is aninterior vertexof A if it belongs to a face ofA but not to an
edge of∂A, and we write

v ∈ ◦A
to denote thatv is an interior vertex ofA. Also, by abuse of notation, we writev ∈ ∂A,
if v belongs to an edge which is contained in∂A.

If A ⊂ F is a polygon andv belongs to∂A, then theinner degree|v|iA of v (relative
to A) is the number of facesf ∈ A meeting inv, and theexterior degree|v|eA is
|v|eA := |v| − |v|iA. If it is clear from the context which polygon is referred to, we will
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just write|v|i for |v|iA, and|v|e for |v|eA. The Euler-characteristicχ(A) can be computed
by knowing only the inner and exterior degrees of the boundary vertices ofA:

Proposition 2.1. Let A⊂ F be a polygon of a tessellating plane graphG. Then

χ(A) = 1− E∂A

2
+
∑
v∈∂A

|v|i
|v| . (4)

Proof. We have

χ(A)=
∑
f ∈A

χ( f )=
∑
f ∈A

(
1− E∂ f

2
+
∑
v∈∂ f

1

|v|

)
=FA − EA + E∂A

2
+
∑
f ∈A

∑
v∈∂ f

1

|v| .

SinceA is a polygon, we have from Euler’s formula that

FA − EA + VA = 1, (5)

and also ∑
f ∈A

∑
v∈∂ f

1

|v| = VA −
∑
v∈∂A

|v|e
|v| . (6)

The latter formula holds since, by condition (iii), in a tessellating graph the degree of a
vertexv coincides with the number of different faces meeting inv. UsingV∂A = E∂A it
follows from (5) and (6) that

χ(A) = 1+ E∂A

2
− VA +

∑
f ∈A

∑
v∈∂ f

1

|v| = 1− E∂A

2
+
∑
v∈∂A

|v|i
|v| .

The following formula is due to Lyndon (see Corollary 2.2 of [Ly]) and is used in the
next section. For the convenience of the reader, we give a proof in our terminology.

Theorem 2.2(Lyndon). LetG be a tessellating plane graph, A a polygon, and1/p+
1/q = 1

2. Assume that|v| ≥ p for all interior vertices of A, and that E∂ f ≥ q for all
f ∈ A. Then we have ∑

v∈∂A

( p

2
− |v|i

)
≥ p.

Proof. Let p 6= 0 be an arbitrary real number, and letA be a polygon ofG. We conclude

χ(A) =
∑
f ∈A

(
1− E∂ f

2
+
∑
v∈∂ f

1

|v|

)

=
∑
f ∈A

(
1+

∑
v∈∂ f

(
1

|v| −
1

p

)
+
(

1

p
− 1

2

)
E∂ f

)

=
∑
f ∈A

(
1+

(
1

p
− 1

2

)
E∂ f

)
+
∑
v∈
◦
A

(
1− |v|

p

)
+
∑
v∈∂A

( |v|i
|v| −

|v|i
p

)
.
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On the other hand, we obtain with (4)

χ(A) = 1− E∂A

2
+
∑
v∈∂A

|v|i
|v| = 1+

∑
v∈∂A

( |v|i
|v| −

1

2

)
.

Combining both equations yields

1=
∑
v∈∂A

(
1

2
− |v|

i

p

)
+
∑
f ∈A

(
1+

(
1

p
− 1

2

)
E∂ f

)
+
∑
v∈
◦
A

(
1− |v|

p

)
. (7)

Note that, in the case 1/p+ 1/q = 1
2, we have(1/p− 1

2)E∂ f ≤ −1 and 1− |v|/p ≤ 0.
Consequently, the last two terms on the right-hand side of (7) are≤ 0, which implies
Lyndon’s inequality.

3. Tessellating Graphs without Cut Locus

The distanced( f, f ′) of two faces f, f ′ of a tessellating graphG = (V, E,F) is the
combinatorial distance of their corresponding vertices in the dualG∗. Two faces are
called neighboursif they have an edge in common. A sequencef1, f2, . . . of faces
forms aconnected pathif any two subsequent facesf j , f j+1 are neighbours. Such a path
corresponds to a connected path of edges in the dualG∗. A (minimal) geodesic inG is
then a path of facesf1, f2, . . . satisfyingd( fi , f j ) = |i − j | for all i, j .

Definition 3.1. Let f0 ∈ F be a fixed face and letd0( f ) := d( f0, f ), for all f ∈ F ,
be the distance function off0. Thecut locus C( f0) of f0 is the set

C( f0) := { f ′ ∈ F | d0( f ) ≤ d0( f ′) for all neighboursf of f ′}.
That is,C( f0) ⊂ F is the set where the functiond0 attains its local maxima.

We associate to the facef0 ∈ F the distance spheres and distance balls:

Ar = { f ∈ F | d0( f ) = r },
Br = { f ∈ F | d0( f ) ≤ r }.

Our aim is to show

Theorem 3.2. If G is a tessellating plane graph without cut locus, then all distance balls
Br are polygons. Moreover, the boundary cycle∂Br imposes a(cyclic) enumeration of
Ar+1 = { f1, . . . , fk}such that precisely subsequent faces intersect,and each intersection
contains a vertexv ∈ ∂Br .

First we analyze the consequences of the global conditionC( f0) = ∅ on the neigh-
bourhoods of vertices in distance spheres. Forv ∈ V let

S(v) = { f ∈ F | v is a vertex off }



Curvature and Geometry of Tessellating Plane Graphs 149

be the star ofv andAr (v) = Ar ∩ S(v). LetU ⊂ R2 be a small neighbourhood ofv. We
call the intersections ofU with the closures of facesf ∈ S(v) the segments ofU .

Proposition 3.3. If C( f0) = ∅, then U−⋃ f ∈Ar (v)
f̄ has at most two connected com-

ponents. The faces of the segments in one of these components all belong either to⋃
l>r Al (v) or to

⋃
l<r Al (v).

Proof. Since|d0( f )−d0( f ′)| ≤ 1 for neighbouring facesf, f ′, we can conclude from
d0( f ) > r for one of the faces in a component ofU − ⋃ f ∈Ar (v)

f̄ that the same is

true for all faces in this component. We assume now thatU −⋃ f ∈Ar (v)
f̄ has at least

three components, and that two of them contain facesf1 and f2, respectively, satisfying
d0( fi ) < r . We still use paths of faces inG, but we consider them here as paths in the dual
graphG∗. In this sense, we choose geodesicsci joining fi and f0. There are two ways to
join the fi along the boundary cycle ofv. Any of these two paths can be combined with
(parts of) theci to form a simple closed pathc. We choose the path such thatv ∈ ∂B,
whereB is the polygon containing all faces of the bounded part ofR2− c as well as the
faces which belong toc. Note that∂B belongs only to faces ofc1 or c2. On the other
hand,B contains a facef with d0( f ) = r on the boundary cycle ofv. Hence, sinceB
is finite, there is a facef ′ ∈ B with maximal distanced0( f ′) ≥ r . This face is inC( f0)

since all it neighbours are contained inB.
In the case that there are two components ofU −⋃ f ∈Ar (v)

f̄ with faces f satisfying
d0( f ) > r , we take two facesf1 and f2 in Ar (v) which separate these components, and
repeat the previous argument.

Proposition 3.4. If C( f0) = ∅, then|Ar (v)| ≤ 2.

Proof. Let f1, f2 and f3 be three faces inAr (v). We choose geodesicsc1, c2 from f1, f2

to f0. As in the previous proof, we connect (part of) theci along the boundary cycle of
v to form a simple closed pathc. Moreover, we can assume that we chosef1, f2 and f3

in such a way thatf3 is on the boundary cycle part ofc. As in the previous proof, this
gives us a polygonB with v ∈ ∂B. Again, there is a facef ′ ∈ B with maximal distance
to f0 such that all its neighbours inG are contained inB. Consequently,f ′ ∈ C( f0).

Proof of the First Part of Theorem3.2. LetB = Br be a distance ball off0. Any edge
e ∈ ∂B is a side of two facesf, f ′ which belong toAr and Ar+1, respectively. We
show first that, at every vertexv ∈ ∂B, there meet precisely two edges of∂B. This
implies that∂B is a union of simple cycles. From Proposition 3.4, we know thatU −⋃

f ∈Ar (v)
f̄ contains exactly one connected component whose segments belong to faces

in
⋃

l>r Al (v). Then the edges of∂B meeting atv coincide with the two boundary edges
of this component. Thus, we proved that the connected components of∂B are simple
cycles.

SinceB = ⋃ f ∈B f̄ is a compact connected set, there is a cyclec0 of ∂B enclosing
B. Therefore, all other possible boundary cycles are contained in the bounded compo-
nent enclosed byc0. However, the existence of such cycles contradicts the assumption
C( f0) = ∅.
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Proposition 3.5. If C( f0) = ∅, then, for every f ∈ Ar+1, the intersection∂ f ∩ ∂Br is
a connected path of edges.

Proof. Clearly, one component of the (topological) boundaries∂ f̄ ∩∂ B̄r is a connected
path containing at least one edge. Assume that there is another component. Since∂Br

is a cycle, the two components may be connected along a pathw1 ⊂ ∂Br such thatw1

encloses, together with a part of∂ f , a compact area which contains cut locus.

Proof of the Second Part of Theorem3.2. By the previous proposition, the sequence
of connected paths∂ f ∩ ∂Br , for f ∈ Ar+1, along the boundary cycle∂Br gives an
enumeration ofAr+1. Clearly, two faces with subsequent indices intersect in at least one
vertexv ∈ ∂Br . Supposef, f̃ are not subsequent along∂Br , then the same argument as
in the previous proof shows that they cannot intersect.

4. Distance Balls in Tessellating Graphs of Type(p,q)

A well known fact in Riemannian geometry is that complete, simply connected manifolds
with non-positive curvature have empty cut locus. This naturally leads to the assumption
that the same could be true for tessellating plane graphs where all faces have non-positive
Euler-characteristic. The answer to this question is not known to us in full generality.
Here, we can prove the emptiness of the cut locus for some natural classes ofnon-
positively curvedgraphs.

A tessellating graphG is calledof type(p,q) if, for all v ∈ V, f ∈ F ,

|v| ≥ p and E∂ f ≥ q,

for natural numbersp,q with (p,q) ∈ {(3,6), (4,4), (6,3)}, or equivalently which
satisfy 1/p+ 1/q = 1

2. It is clear thatχ ≤ 0 for a tessellating graph of type(p,q). We
are going to prove the following result:

Theorem 4.1. LetG be a plane tessellating graph of type(p,q).Then we have C( f0) =
∅ for every face f0 ∈ F .

Before we present the proof we introduce some useful notions. LetB be a polygon.
We label the boundary vertices ofB as follows:v ∈ ∂B obtains the labela if |v|iB = 1,
in the caseq ∈ {6,4}, and if |v|iB ≤ 3, in the caseq = 3. Otherwise,v obtains the label
b. We callB admissibleif the label sequence along the closed path∂B has the property
that every labelb is enclosed by vertices of labela which both satisfy|v|iB = 1.

Now let B andP be polygons of the graphG, and∂B, ∂P ⊂ E their boundary cycles.
Assume thatB, P satisfy the following properties:

(i) ∂P ∩ ∂B 6= ∅,
(ii) ∂P ∩ ∂B is a connected path (of edges),

(iii) P ∩ B = ∅.
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Fig. 1. Examples of bridges of length 4 and 1. The second bridge is attached toB at the left side.

Note that in particular∂P and∂B have at least one edge in common. IfB, P satisfy
(i)–(iii), the set

0 = { f ∈ F − P | an edge off belongs to∂P − ∂B}
is called abridge over Bof lengthL(0) = |0|. Let v1, v2 denote the two endpoints of
the path∂P ∩ ∂B. (Note that, sinceP is assumed to be a polygon, alwaysv1 6= v2.) We
say that0 is attached at one side to Bif there existsf ∈ 0 such that∂ f ∩ ∂B contains
an edge emanating fromv1 or v2. In particular, if there exists such anf ∈ 0 for both
endpoints, we say that0 is attached at both sides. Examples of bridges are given in Fig. 1.

Lemma 4.2(Bridge Lemma). LetG be a graph of type(p,q),and let B, P be polygons
of G. Assume further that B is admissible, and that B, P satisfy the properties above.
Then

L(0) ≥ q − 2.

If, additionally, 0 is attached at one side to B, then, in the case q∈ {3,4},
L(0) ≥ q − 1.

If 0 is attached at both sides to B, then, in the case q= 3,

L(0) ≥ 3.

Proof. Letw1 denote the connected path of edges in∂P, disjoint to∂B (except for the
endpointsv1, v2 ∈ ∂B). Letw2 be the complementary path along∂P ∩ ∂B, but without
the edges containingv1, v2.

SinceG satisfies the conditions of Lyndon’s formula (Theorem 2.2), we can conclude

p ≤
∑
v∈∂P

( p

2
− |v|iP

)
=
∑
v∈w1

( p

2
− |v|iP

)
+
∑
v∈w2

( p

2
− |v|iP

)
. (8)

Since|v| ≥ p, for anyv ∈ ∂P, it follows that the first sum is≤ (L(0)+ 1)(p/2− 1),
and also, sinceB is admissible, that the second sum is≤ p/2− 1. So far, we proved
q − 2≤ L(0), for any bridge0.
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Assume now that0 is attached atv1, and thatq ∈ {3,4}. In the case that∑
v∈w2

( p

2
− |v|iP

)
> 0, (9)

we have necessarily thatv1 andv2 carry labela, and satisfy|v1|iB = |v2|iB = 1. Since
0 is attached atv1, it follows that|v1|iP ≥ p− 2 ≥ p/2. Therefore the first sum in (8)
is ≤ L(0)(p/2− 1), and henceq − 1 ≤ L(0). If 0 is attached at both sides we get
q ≤ L(0), accordingly. So far, we proved the lemma under the assumption (9).

We assume now that ∑
v∈w2

( p

2
− |v|iP

)
≤ 0. (10)

In this case it is always true thatq − 1 ≤ L(0). Therefore, we are left to prove that
3≤ L(0), for a bridge0 which is attached at both sides, in a tessellating graph of type
(6,3), under the assumption (10). We assume first that

∑
v∈w2

(3− |v|iP) = 0. This is
only possible if one ofv1, v2 satisfies|v|iB = 1, orv1 andv2 are both of labela. In the
first case, we get 3≤ L(0), with the same reasoning as before. In the latter case, we
deduce from|v1|iB, |v2|iB ≤ 3 that|v1|iP, |v2|iP ≥ 2 and we deduce from (8) that

6≤ 2+ (L(0)− 1)2,

and from this 3≤ L(0). Finally, we conclude from
∑

v∈w2
(p/2− |v|iP) < 0 that

6< (L(0)+ 1)2,

and hence the claim of the lemma always follows.

Now we are ready for the key step in the proof of Theorem 4.1:

Proposition 4.3. Let G be of type(p,q), let B be an admissible polygon and let
T = { f ∈ F | d( f, B) ≤ 1} be the distance1 tube around B. Then T is again an
admissible polygon and, for all faces f ∈ T − B, ∂ f ∩ ∂T is a connected path of edges
of length≥ 1.

Proof. We remark first that forf ∈ T − B, ∂ f ∩ ∂T is a connected path. If the
intersection of the (topological) boundaries∂ f̄ ∩∂ B̄ were not connected, there would be
a bridge overB of length 1 which is attached at one side. The Bridge Lemma (Lemma 4.2)
implies that such a bridge is of length≥ q−1≥ 2. Consequently,∂ f ∩∂B is a connected
path of edges. The labeling of the vertices in∂B ensures that the length of this path is
≤ 2.

Following the edges of the boundary cycle∂B, we obtain an enumeration of the faces
of T−B, i.e.,T−B = { f1, f2, . . . , fk}. Any two facesfi , f j ∈ T−B with f̄i ∩ f̄ j 6= ∅
have subsequent indices (modk). For otherwise,fi , f j would define a bridge0 over
B of length 2 which is attached at both sides. This is impossible because of the Bridge
Lemma.

We show now that each facef ∈ T − B contributes an edge to∂T . From what was
said before, it is already clear that, in the caseq = 6,∂ f contributes at least two edges to
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∂T . We assume nowq ∈ {3,4}. Letv1, v2 denote the two endpoints of the path∂ f ∩∂B.
First we consider the case where|∂ f ∩ ∂B| = 1. SinceB is admissible at least one ofv1,
v2, sayv1, carries the labela. Therefore,|v1|eB ≥ 3, and it follows thatf does not share
an edge with its corresponding neighbourf1 ∈ T−B in v1. Consequently,f contributes
at least one edge to∂T , in the caseq = 3, and at least two edges, in the caseq = 4.
Next, we have to consider the remaining case|∂ f ∩ ∂B| = 2. In this case, necessarily
|v1|iB = |v2|iB = 1, and hencef does not share an edge with any one of its neighbours
along∂T . Again, f contributes at least one edge to∂T , in the caseq = 3, and at least
two edges, in the caseq = 4.

The previous considerations imply, in particular, that∂T is a closed path without
repeated vertices. Consequently,T is a polygon. We have to show thatT is again admis-
sible. In the casesq = 6,q = 4 eachf ∈ T−B contributes at least two edges to∂T , and
the claim is immediate. Assume nowq = 3. If v ∈ ∂T is of labelb it satisfies|v|iT > 3.
Then alsov ∈ ∂B, and|v|iB > 1. SinceB is admissible, both neighbours ofv along∂B
have labela, and consequently the two facesf1, f2 ∈ T − B which meet inv, do not
share an edge with any neighbour along∂T , and also satisfy|∂ f1∩∂B| = |∂ f2∩∂B| = 1.
Thereforef1, f2 contribute at least two edges to∂T , and henceT is admissible.

Proof of Theorem4.1. We show, inductively, that, for allr ∈ N, the distance balls
Br ( f0) are admissible polygons, and that every facef ∈ Ar ( f0) contributes a connected
path of length≥ 1 to ∂Br ( f0). This obviously holds forr = 0. The induction step is a
particular case of Proposition 4.3. This finishes the proof ofC( f0) = ∅.

5. Growth of Negatively Curved Tessellating Graphs

LetG be a plane tessellating graph without cut locus. In the presence of negative curvature
bounded from above, we have a linear isoperimetric inequality between the volume of
distance spheres and the volume of balls. We show that the isoperimetric constant for
distance balls depends linearly on the curvature bound.

With the notational conventions from Section 3 we defineak = |Ak|,bk = |Bk|. Then
we have

Theorem 5.1(Isoperimetric Inequality for Distance Balls).Let G be a tessellating
plane graph without cut locus. Assume there exist constants c> 0 and d ∈ N ∪ {∞}
such thatχ( f ) ≤ −c, for all f ∈ G, and |v| ≤ d, for all v ∈ V. Then we have, for all
k ≥ 0,

ak+1 ≥ d

d − 1
2cbk,

where we define d/(d − 1) = 1 in the case d= ∞.

Remark. A related result was proved independently by Woess [Wo] andŻuk [Żu].
They showed that a strictly negative (asymptotic) curvature bound implies a strong
isoperimetric inequality area(∂A) ≥ ε · vol(A), whereA is anypolygon. However, in
both references, the interest is focused on the existence of the constantε > 0. The
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dependence ofε on upper curvature bounds is not discussed. Isoperimetric inequalities
for some special families of negatively curved graphs were also given in [Do] and [So].
The notions of area(∂A) and vol(A) used by these authors differ somewhat from ours.
This makes no (qualitative) difference in the case of bounded geometry.

Obviously, the isoperimetric inequality implies exponential growth of distance balls.

Corollary 5.2. LetG, c,d satisfy the assumptions of Theorem5.1. Then

bk ≥
(

1+ d

d − 1
2c

)k

.

Remark. The corollary yields a lower estimate for the growth rate of distance balls for
tessellating plane graphs with upper curvature bound. A corresponding upper estimate
for the growth rate in graphs with lower curvature bound would have implications for
the bottom of the essential spectrum of the graph-theoretic Laplacian (see, e.g., [Fu]).

Before proving Theorem 5.1 we introduce two lemmata. Let

V2
k = {v ∈ ∂Bk | |v|e = 2} and v2

k = |V2
k |.

Lemma 5.3. ∑
f ∈Ak+1

E∂ f = E∂Bk+1 + E∂Bk + 2v2
k .

Proof. Lete∈ ∂ f be an edge of a facef ∈ Ak+1. Then eithere∈ ∂Bk+1 or e∈ ∂Bk or
e is a common edge off and another facẽf ∈ Ak+1. In the latter case, it follows from
Theorem 3.2 that at least one vertexv ∈ ∂e belongs to∂Bk. It is clear that|v|e = 2. If
both vertices ofebelong to∂Bk, then, by Proposition 3.5, we would have∂ f −e⊂ ∂Bk,
and thusf ∈ C( f0). So precisely one vertexv ∈ ∂e belongs toV2

k .

Lemma 5.4. ∑
f ∈Ak+1

∑
v∈∂ f

1

|v| ≤
∑

v∈∂Bk+1

|v|i
|v| +

∑
v∈∂Bk

|v|i
|v| + v

2
k −

ak+1

d
,

with ak+1/d = 0 if d = ∞.

Proof. In what follows we stick to the convention that, if a sum is taken over the
boundary of a ball, the inner and exterior degrees of vertices are always with respect to
this ball. We further defineak+1(v) = |{ f ∈ Ak+1 | v ∈ ∂ f }|.

From Proposition 3.4 it follows that everyv ∈ ∂Bk+1 belongs to at most two faces
of Ak+1. Thus we always haveak+1(v) ≤ 2. If v ∈ ∂Bk+1 belongs to two faces ofAk+1

(this is precisely the case ifak+1(v) = 2), then either|v|iBk+1
= 2 or v ∈ ∂Bk+1 ∩ ∂Bk.

Correspondingly, ifv ∈ ∂Bk satisfiesak+1(v) = 2, we have either|v|eBk
= 2 or v ∈
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∂Bk+1∩∂Bk. In particular, we conclude thatv ∈ ∂Bk∩∂Bk+1 iff v ∈ ∂Bk and|v|eBk
> 2.

We remark further that, for everyf ∈ Ak+1, all verticesv ∈ ∂ f are contained in
∂Bk ∪ ∂Bk+1. Using these facts we deduce∑

f ∈Ak+1

∑
v∈∂ f

1

|v| =
∑

v∈∂Bk∪∂Bk+1

ak+1(v)

|v|

=
∑

v∈∂Bk+1
|v|i=1

1

|v| +
∑

v∈∂Bk+1
|v|i=2

2

|v| +
∑

v∈∂Bk+1
|v|i>2

2

|v| +
∑
v∈∂Bk
|v|e=1

1

|v| +
∑
v∈∂Bk
|v|e=2

2

|v|

≤
∑

v∈∂Bk+1

|v|i
|v| +

∑
v∈∂Bk
|v|e=1

1

|v| −

 ∑
v∈∂Bk+1
|v|i>2

+
∑
v∈∂Bk
|v|e=2

 1

|v| +
∑
v∈∂Bk
|v|e=2

3

|v| .

The inequality of the lemma follows from

−

 ∑
v∈∂Bk+1
|v|i>2

+
∑
v∈∂Bk
|v|e=2

 1

|v| +
∑
v∈∂Bk
|v|e=2

3

|v| ≤ −
ak+1

d
+ v2

k .

We remark that, in this last inequality, the estimate for the first term is obtained
by using the following observation: Theorem 3.2 implies that any two subsequent
faces f1, f2 ∈ Ak+1 meet either in a vertexv ∈ ∂Bk+1 with |v|iBk+1

> 2 or along a
common edge. In the latter case the common edge has a unique vertexv′ ∈ ∂Bk with
|v′|eBk

= 2.

Proof of Theorem5.1. We have

ak+1 =
∑

f ∈Ak+1

χ( f )+ 1

2

∑
f ∈Ak+1

E∂ f −
∑

f ∈Ak+1

∑
v∈∂ f

1

|v| .

It follows from Lemma 5.3 and formula (4) that

ak+1 =
∑

f ∈Ak+1

χ( f )+ 1
2 E∂Bk+1 + 1

2 E∂Bk + v2
k −

∑
f ∈Ak+1

∑
v∈∂ f

1

|v|

=
∑

f ∈Ak+1

χ( f )− χ(Bk+1)− χ(Bk)+ 2+
∑

v∈∂Bk+1

|v|i
|v| +

∑
v∈∂Bk

|v|i
|v|

+ v2
k −

∑
f ∈Ak+1

∑
v∈∂ f

1

|v| .

Using Lemma 5.4 we get

d − 1

d
ak+1 ≥

∑
f ∈Ak+1

χ( f )− χ(Bk+1)− χ(Bk)+ 2

= −2χ(Bk)+ 2≥ 2cbk + 2.
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Remark. There is also an asymptotic version of Corollary 5.2. It can be best stated in
terms of themean Euler-characteristicwhich, for an arbitrary polygonP, is defined as
χ(P) = χ(P)/|P|. Now, letc > 0 be a constant satisfying lim supk→∞ χ(Bk) < −c.
Then the asymptotic version asserts that there are constantsa, k0 > 0 with

bk ≥ a

(
1+ 2

d

d − 1
c

)k

for all k ≥ k0.

This follows immediately from the key estimate

ak+1 ≥ −2
d

d − 1
(χ(Bk)− 1) (11)

in the above proof.

6. Regular Tessellating Graphs

In this section we restrict our considerations ton-regular graphs, i.e., plane tessellating
graphsG satisfying|v| = n, for all verticesv ∈ V. For these graphs it is possible to
derive growth formulas which are more precise than the general isoperimetric inequality
of the previous section. Note also that non-positively curvedn-regular graphs are always
of type(p,q).

Let f0 ∈ F be a fixed face in ann-regular graphG. The numbersak,bk are defined
as before. Moreover, we introduce the following numbers for any distance ballBk( f0):

cj
k = |{v ∈ ∂Bk| |v|e = j }|.

Lemma 6.1. LetG an n-regular graph with C( f0) = ∅. Then

χ(Bk) = 1+
n−1∑
j=1

n− 2 j

2n
cj

k .

Proof. This is an immediate consequence ofE∂Bk =
∑n−1

j=1 cj
k and (4).

Lemma 6.2. Let G be an n-regular graph with C( f0) = ∅. Then the coefficients cj
k

satisfy the following recurrence relations:

(i) cn−2
k+1 = c2

k,
(ii) cl−2

k+1 = cl
k, for 3≤ l ≤ n− 1.

Moreover, for k ≥ 0,

ak+2− ak+1 = cn−1
k+1 − c1

k+1.

Proof. We use the enumeration of the faces inAk+1 introduced in Theorem 3.2. Note
that any vertexv ∈ ∂Bk+1 with |v|e = n−2 belongs to precisely one common edgeeof
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two subsequent faces inAk+1, and vice versa. The other vertexv′ of this edgee belongs
to ∂Bk, and satisfies|v|e = 2. Conversely, any vertexv′ ∈ ∂Bk with |v′|e = 2 belongs
to a common edgee of two subsequent faces inAk+1. This proves (i).

Note, for the proof of (ii), that any vertexv ∈ ∂Bk with |v|e = l , 3 ≤ l ≤ n− 1, is
also a vertex of∂Bk+1 with |v|e = l − 2, and vice versa.

A moment’s thought shows thatak+1 coincides with the number of verticesv ∈ ∂Bk

with |v|e > 1. Using this and the recurrence relations, we obtain

ak+1 =
n−1∑
j=2

cj
k = c2

k +
n−1∑
j=3

cj
k

= cn−2
k+1 +

n−3∑
j=1

cj
k+1 = c1

k+1+
n−1∑
j=2

cj
k+1− cn−1

k+1

= c1
k+1+ ak+2− cn−1

k+1.

Proposition 6.3. Let G be an n-regular graph without cut locus. Then we have, for
k ≥ 1,

χ(Bk) = 1− n− 2

2n
(ak+1− ak)+

n−2∑
j=2

n− 2 j

2n
cj

k .

Proof. This follows immediately from the Lemmas 6.1 and 6.2.

Corollary 6.4. LetG be an n-regular graph without cut locus, and n∈ {3,4,6}. Then,
for k ≥ 1,

χ(Bk) = 1− n− 2

2n
(ak+1− ak).

Proof. In the casesn = 3 andn = 4, there is nothing to do. Observe, for the case
n = 6, thatcj

k = 0 for even values ofj .

Remark. Interestingly, Corollary 6.4 has a counterpart in Riemannian geometry. The
differenceak+1 − ak corresponds to a derivative in the continuous context, and an easy
computation shows that

1

2π

∫
Br (p)

κ(q)d vol(q) = 1− 1

2π
L ′(r ),

whereBr (p) denotes a geodesic ball of radiusr in a Riemannian 2-manifoldM , κ(q)
denotes the Gaussian curvature,r is assumed to be smaller than the injectivity radius of
p ∈ M , andL(r ) denotes the length of the geodesic sphereSr (p).

Remark. The recurrence relations show, forn-regular graphs without cut locus, that the
coefficients{cj

k+1}j of the distance ballBk+1 are already determined by the coefficients

{cj
k}j of the distance ballBk, with the only exception ofcn−1

k+1. This implies, together
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with the other results in this section, that all three sequences{cj
k}jk , {χ(Bk)}k and{ak}k

determine each other mutually, and, consequently, carry the same information about the
regular graphG.

We, finally, compare the estimate (11) of the previous section with the statement of
Corollary 6.4 in the particular case of ann-regular graph,n ∈ {3,4,6}. Estimate (11)
yields in this case

χ(Bk) ≥ 1− n− 1

2n
ak+1,

whereas Corollary 6.4 shows that

χ(Bk) = 1− n− 2

2n
ak+1+ n− 2

2n
ak.
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