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CURVATURE AND HIGHER ORDER BUSER INEQUALITIES FOR
THE GRAPH CONNECTION LAPLACIAN∗

SHIPING LIU† , FLORENTIN MÜNCH‡ , AND NORBERT PEYERIMHOFF§

Abstract. We study the eigenvalues of the connection Laplacian on a graph with an orthogonal
group or unitary group signature. We establish higher order Buser type inequalities, i.e., we provide
upper bounds for eigenvalues in terms of Cheeger constants in the case of nonnegative Ricci curvature.
In this process, we discuss the concepts of Cheeger type constants and a discrete Ricci curvature
for connection Laplacians and study their properties systematically. The Cheeger constants are
defined as mixtures of the expansion rate of the underlying graph and the frustration index of
the signature. The discrete curvature, which can be computed efficiently via solving semidefinite
programming problems, has a characterization by the heat semigroup for functions combined with a
heat semigroup for vector fields on the graph.

Key words. connection Laplacian, Cheeger constants, discrete curvature, Buser inequality,
semidefinite programming, Carstesian product

AMS subject classifications. 05C50, 53C23, 58J35, 05C76, 90C34

DOI. 10.1137/16M1056353

1. Introduction. A graph structure with its Laplacian matrix provides a math-
ematical tool to analyze the similarities between data points: those points with large
enough similarities are connected by an edge. One can also assign edge weights to
quantify such similarities. In many applications, it is noticed that the representation
of the data set can be vastly improved by endowing the edges of the graph additionally
with linear transformations [7, 23, 46]. For example, when the graph is representing a
social network, we hope to attach to each edge an element from the one-dimensional
orthogonal group O(1) = {±1} to indicate two kinds of opposite relationships be-
tween members of the network (vertices). When the graph is representing a higher
dimensional data set, e.g., two-dimensional photos of a three-dimensional object from
different views, one would like to assign to each edge an element of the orthogonal
group O(2) which optimally rotationally aligns photos when comparing their similar-
ity (see, e.g., [7, 46]). In theoretical research, assigning linear transformations to the
edges of a graph also provides mathematical structures that have been found very
useful in various topics, e.g., the study of the Heawood map-coloring problem [21, 22],
the construction of Ramanujan graphs [11, 39], and the study of a discrete analogue
of magnetic operators [45, 47]. Agarwal, Kolla, and Madan [1, section 1.1] pointed
out relations of these additional structures with the famous unique game conjecture
of Khot and their relevance for the synchronization problem is explained in [19].
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We consider such additional structures on the oriented edges of an undirected
graph assuming only values in the orthogonal or unitary groups O(d) or U(d) and
refer to them as d-dimensional signatures and denote them by σ throughout this
paper. The corresponding Laplacian of a graph G with such an additional structure σ
is called the connection Laplacian ∆σ, defined by Singer and Wu [46]. The restriction
to the groups O(d) and U(d) guarantee that ∆σ is self-adjoint and has real eigenvalues.

In fact, the connection Laplacian of a graph yields a very elegant and general
mathematical framework for the analysis of massive data sets, which includes several
extensively studied graph operators as particular cases, e.g., the classical Laplacian,
the signless Laplacian [15], the Laplacian for Harary’s signed graphs [4, 51], and the
discrete magnetic Laplacian [32, 45, 47].

In this paper, we study the spectra of the graph connection Laplacian, which are
closely related to the geometric structure of the underlying graph G with a signature σ
comprising the linear transformations attached to its edges. We describe this geomet-
ric structure by introducing two types of quantities, Cheeger type constants (denoted
by hσk(G)), and a discrete Ricci curvature. The global Ricci curvature condition is
expressed by the notion CDσ(K,n), where K ∈ R is a lower curvature bound and
n > 0 is an upper dimension bound (meaning that CDσ(K,n) implies CDσ(K ′, n′)
for any K ′ ≤ K and n′ ≥ n). Our main theorem is concerned with higher order
Buser type inequalities, showing the close relations between eigenvalues λσk of the
connection Laplacian ∆σ and the Cheeger constants hσk assuming nonnegativity of
the discrete Ricci curvature. In the special case of an unweighted D-regular graph
G, our result takes the following explicit form (the objects in this theorem require
lengthier introductions which will be provided in the following subsections).

Theorem 1.1 (higher order Buser inequalities). Assume that a D-regular un-
weighted graph G with N vertices and a d-dimensional signature σ satisfies CDσ(0,∞).
Then for each natural number 1 ≤ k ≤ N , we have the upper estimates

λσkd ≤ 16D(kd)2 log(2kd)(hσk)
2(1.1)

for the eigenvalues of the associated connection Laplacian ∆σ.

We also obtain a lower bound estimate of the first nonzero eigenvalue of the con-
nection Laplacian by the lower Ricci curvature bound, i.e., we show a Lichnerowicz
type eigenvalue estimate (see Theorem 1.9 later in the introduction). In this process,
the properties of the Cheeger constants and discrete Ricci curvature are explored
systematically. In particular, our eigenvalues estimates help us to deepen the under-
standing of these geometric quantities.

For the interested reader we start with some background information in the setting
of Riemannian manifolds. The following subsection can be skipped but we think that
it is helpful to understand the involved notions in their wider context.

1.1. Background about Ricci curvature and eigenvalue estimates in
Riemannian geometry. We provide a brief survey on the background in Rieman-
nian geometry of the curvature notion and types of eigenvalue estimates that will
be developed in this paper. This explains the motivation of the curvature notion
and terminology like higher order Cheeger and Buser inequalities and Lichnerowicz
inequality.

Let (M, 〈·, ·〉) be a Riemannian manifold of dimension n and ∆ := div ◦ grad ≤ 0
be the Laplace–Beltrami operator of (M, 〈·, ·〉). Bochner’s formula states that for any
smooth functions f on M and any point x ∈M ,
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HIGHER ORDER BUSER INEQUALITIES 259

1

2
∆|gradf |2(x) = |Hessf |2(x) + 〈grad∆f(x), gradf(x)〉+Ric(gradf(x)),

where Hess stands for the Hessian and Ric stands for the Ricci tensor. If the Ricci
curvature of M is lower bounded by K, i.e., Ric(v) ≥ K|v|2 for all v ∈ TxM and all
x ∈M , and, using the estimates Hessf2(x) ≥ 1

n (∆f(x))
2, we obtain for all x ∈M

1

2
∆|gradf |2(x)− 〈grad∆f(x), gradf(x)〉 ≥ 1

n
(∆f(x))2 +K|gradf(x)|2.(1.2)

This inequality relates the Ricci curvature and the Laplace–Beltrami operator.
Bakry and Émery [5, 6] clarify this relation by the following deep observation.

They introduce the following symmetric bilinear forms Γ and Γ2 for two smooth
functions f, g, on M :

2Γ(f, g) := ∆(fg)− f∆g − (∆f)g,(1.3)

2Γ2(f, g) := ∆(Γ(f, g))− Γ(f,∆g)− Γ(∆f, g).(1.4)

Notice that Γ(f, g) = 〈gradf, gradg〉 and Γ2(f, g) = 1
2∆|gradf |2 − 〈grad∆f, gradg〉.

Therefore, the inequality (1.2) can be rewritten as

Γ2(f, f)(x) ≥
1

n
(∆f(x))2 +KΓ(f, f)(x) for all smooth f :M → R.(1.5)

In conclusion, an n-dimensional Riemannian manifold (M, 〈·, ·〉) with Ricci curvature
bounded from below by K satisfies the inequality (1.5). Notice from the definition of
Γ and Γ2 that (1.5) is expressed solely in terms of the Laplace–Beltrami operator ∆.
This suggests a way to define, indirectly, a Ricci curvature notion for a metric space
via the help of a Laplace–Beltrami operator. This will be the Ricci curvature approach
for our discrete setting of graphs.

Suppose M be closed (i.e., compact without boundary). The spectrum of ∆ is
discrete and can be listed with multiplicity as

0 = λ1(M) < λ2(M) ≤ λ3(M) ≤ · · · ≤ λk(M) ≤ · · · ր ∞.

One of the main topics in spectral geometry is to explore lower or upper bounds
of those eigenvalues in terms of geometric quantities. The following estimate is due
to Lichnerowicz. (See, e.g., [20, Chapter 4.G.4].)

Theorem 1.2 (Lichnerowicz estimate). Let (M, 〈·, ·〉) be a closed Riemannian
manifold of dimension n, and suppose that Ricci curvature is lower bounded by K.
Then the first nonzero eigenvalue λ2(M) satisfies

λ2(M) ≥ n

n− 1
K.

The so-called Cheeger constant is defined as

h(M) := inf
S

vol(S)

min{vol(M1), vol(M2)}
,

where S runs over hypersurfaces of M dividing M into two submanifolds M1 and M2

with boundary S. The following estimate is due to Cheeger. (See, e.g., [20, Chapter
4.G.4].)
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Theorem 1.3 (Cheeger inequality). Let (M, 〈·, ·〉) be a closed Riemannian man-
ifold. Then we have

λ2(M) ≥ 1

4
h(M)2.

In 1982, Peter Buser [12] showed that λ2(M) can also be bounded from above by
h(M)2, up to a constant involving Ricci curvature. This result was further improved
by Ledoux [33] and can be stated as follows.

Theorem 1.4 (Buser inequality). Let (M, 〈·, ·〉) be a closed Riemannian manifold
with nonnegative Ricci curvature. Then there exists a universal constant C such that

λ2(M) ≤ Ch(M)2.

It is natural to ask whether there are similar lower and upper bounds for the
higher eigenvalues λk(M), k ≥ 3, involving some kind of multiway Cheeger constants.
In fact, we can define such multiway Cheeger constants in the following way. For any
Borel subset A ⊂M with positive measure, define

φ(A) :=
vol(∂A)

vol(A)
.(1.6)

Then we set for any natural number k,

hk(M) := inf
{Ai}k

i=1

max
1≤i≤k

φ(Ai),(1.7)

where the infimum is taken over all nonempty, disjoint subsets {Ai}ki=1 of M such
that each Ai has positive measure. One can check that

h2(M) = h(M).

Lower bound estimates of λk(M) in terms of hk(M)2 are called higher order Cheeger
inequalities, and upper bound estimates of λk(M) in terms of hk(M)2 under assuming
nonegative Ricci curvature are called higher order Buser inequalities. Higher order
Buser inequalities were first proved by Funano [18] and later improved in [36].

Theorem 1.1 presented in the previous subsection is such a higher order Buser
inequality for the connection Laplacian in the discrete setting of a graph with a signa-
ture. Note that the appearance of a signature requires an adaption of the curvature
condition and of the involved multiway Cheeger constants. These notions are intro-
duced for graphs in the next two subsections.

1.2. Signatures, graph connection Laplacians, and Cheeger constants.
The aim of this subsection is to introduce central notions appearing in our main result,
Theorem 1.1 above, in more detail: signatures, associated connection Laplacians, and
multiway Cheeger constants.

We first fix some relevant notation. Let G = (V,E) be an undirected simple
finite graph with vertex set V and edge set E. For simplicity, we restrict ourselves to
unweighted D-regular graphs in this introduction even though our results are proved
later without this restriction. Let H be a group. For each edge {x, y} ∈ E, we assign
an element σxy ∈ H to it, such that

σyx = σ−1
xy .(1.8)

Actually, we are defining a map σ : Eor → H, where Eor :={(x, y), (y, x) | {x, y} ∈ E}
is the set of all oriented edges. In this paper, we restrict the group H to be the
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d-dimensional orthogonal group O(d) or unitary group U(d) and we call σ a d-
dimensional signature of the graph G.

The (normalized) connection Laplacian ∆σ, as a matrix, is given by

∆σ :=
1

D
Aσ − INd,(1.9)

where D is the (constant) vertex degree and INd is a (Nd)× (Nd)-identity matrix, N
is the size of vertex set V , and Aσ is the (Nd)× (Nd)-matrix, blockwisely defined as

(Aσ)xy =

{
0 if {x, y} 6∈ E;
σxy if (x, y) ∈ Eor.

(1.10)

Due to the special choice of H and (1.8), ∆σ is Hermitian. Hence all eigenvalues of
the matrix ∆σ are real. Note that the connection Laplacian ∆σ in (1.9) is defined as
a negative semidefinite matrix for our later purpose of defining the discrete curvature,
due to a convention originating from Riemannian geometry. However, we still want
to deal with nonnegative eigenvalues. Hence, when we speak of eigenvalues of the
connection Laplacian ∆σ, we mean the eigenvalue of the matrix −∆σ. They can be
listed (counting multiplicity) as

0 ≤ λσ1 ≤ λσ2 ≤ · · ·λσd ≤ · · · ≤ λσ(N−1)d+1 ≤ λσ(N−1)d+2 ≤ · · · ≤ λσNd ≤ 2.(1.11)

Observe that two different signatures do not necessarily lead to different spectra.
Given a function τ : V → H and a signature σ : Eor → H, we consider the new
signature στ defined by

στ
xy := τ(x)−1σxyτ(y) ∀ (x, y) ∈ Eor.(1.12)

Then the corresponding connection Laplacians ∆σ and ∆στ

are unitarily equivalent
and hence share the same spectra. Indeed, it is easy to check that

∆στ

= (Mτ )
−1∆σMτ ,(1.13)

where Mτ stands for a diagonal matrix given blockwisely by (Mτ )xx := τ(x). We call
the function τ a switching function. Two signatures σ and σ′ are said to be switching
equivalent if there exists a switching function τ such that σ′ = στ . It follows from
(1.13) that the eigenvalues of the connection Laplacian ∆σ are switching invariant.

The Cheeger type constants {hσk | k = 1, 2, . . . , N} and the discrete Ricci cur-
vature K∞(σ) that we are going to introduce are also switching invariant. A sig-
nature σ is said to be balanced if it is switching equivalent to the trivial signature
σtriv : Eor → {id} ∈ H. In fact, the constants {hσk | k = 1, 2, . . . , N} are quantifying
the connectivity of the graph and the unbalancedness of the signature σ. The latter is
described by the frustration index ισ(S) of the signature σ restricted to the induced
subgraph of S ⊆ V , with the property that

ισ(S) = 0 ⇔ σ restricted on S is balanced.

By abuse of notation, we will also use S to denote its induced subgraph and denote
by the ES the edges of this induced subgraph. In particular, for an U(1) signature
σ : Eor → U(1), ισ(S) is defined as

ισ(S) := min
τ :S→U(1)

∑

{x,y}∈ES

|σxyτ(y)− τ(x)|,(1.14)
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where the minimum is taken over all switching functions on S. For higher dimensional
signatures, we need to choose a matrix norm to define ισ(S); see Definition 4.3 in
section 4.1. For U(1) signatures, we show that there is an easier way to calculate its
frustration index using spanning trees (see subsection 4.2).

Denote by |E(S, V \ S)| the number of edges connecting S and its complement
V \ S. We then define

φσ(S) :=
ισ(S) + |E(S, V \ S)|

D · |S| ,(1.15)

where |S| is the cardinality of the set S. Note that the term |E(S, V \S)| corresponds
to vol(∂A) and D · |S| corresponds to vol(A) in (1.6). The quotient |E(S,V \S)|

D·|S| can be

understood as an expansion rate of the set S, that is, the ratio between the number
of edges connecting S with the “outside world” and the size of the set S. The contri-
bution of the signature is concentrated in the frustration index ισ(S) which does not
appear in the setting without a signature.

Analogously as in (1.7), the Cheeger constants hσk are then defined as

hσk := min
{Si}k

i=1

max
1≤i≤k

φσ(Si),(1.16)

where the minimum is taken over all nonempty, pairwise disjoint subsets {Si}ki=1

of the vertex set V . Choosing k = 2 and σtriv : Eor → {1} ∈ O(1), we recover
the classical Cheeger constant h = hσtriv

2 , a measure for the connectedness of the
graph G and crucial in the definition of expander graphs (see, e.g., [30]). Multiway
Cheeger constants with trivial signature hσtriv

k are used in the definition of k-way
expanders (see, e.g., [40, 48]). Note that even though these are higher order concepts,
the underlying spaces are still one-dimensional graphs in contrast to the recently very
intensively studied topic of higher dimensional expanders (see, e.g., [28] and references
therein), where expansion properties are generalized to higher dimensional simplicial
complexes.

Concerning the involvement of a nontrivial signature σ, the definitions of the
Cheeger constants hσk are natural extensions of the constants in [4] and [32], where
H = O(1) and U(1), respectively, and it is closely related to the O(d) frustration ℓ1

constant in [7] (see Remark 4.7 for a detailed explanation).

1.3. Curvature dimension inequalities with signatures. The nonnegativ-
ity of the discrete Ricci curvature K∞(σ), or the curvature dimension inequality with
a signature, CDσ(0,∞), is an extension of the classical curvature dimension inequal-
ity à la Bakry and Émery [5, 6] on graphs, which has been studied extensively in
recent years; see, e.g., [13, 17, 26, 27, 29, 34, 37, 44]. For related notions of curvature
dimension inequalities and their strong implications in establishing various Li-Yau
inequalities for heat semigroups on graphs, we refer to [8, 25, 41, 42]. The definition
of CDσ(0,∞) uses both the connection Laplacian ∆σ and the graph Laplacian ∆,
capturing the structure of the graph (especially its cycles) and the signature (espe-
cially the signature of cycles) locally around each vertex (see Proposition 3.12). The
curvature condition CDσ(0,∞) can be characterized by properties of the classical
heat semigroup Pt := et∆ for functions and the heat semigroup Pσ

t := et∆
σ

for vector
fields (vector valued functions) of the underlying graph (see Theorem 3.20). Another
appealing feature of this curvature notion is that it can be calculated very efficiently.
Indeed, calculating this curvature is equivalent to solving semidefinite programming
problems.
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It actually looks more natural to define the curvature dimension inequality with
a signature using both matrices ∆ and ∆σ when we come back to the general setting:
For a d-dimensional signature σ, the connection Laplacian ∆σ, as an operator, acts
on vector fields, i.e., functions f : V → Kd, where K = R or C.

Definition 1.5. For any two functions f, g : V → Kd, we define

2Γσ(f, g) := ∆(fT g)− fT (∆σg)− (∆σf)T g(1.17)

and

2Γσ
2 (f, g) := ∆Γσ(f, g)− Γσ(f,∆σg)− Γσ(∆σf, g).(1.18)

Note that Γσ(f, g) and Γσ
2 (f, g) are K-valued functions on V . We also write

Γσ(f) := Γσ(f, f) and Γσ
2 (f) := Γσ

2 (f, f), for short. In (1.17) and (1.18), we use the
graph Laplacian whenever we deal with a K-valued function, and we use the graph
connection Laplacian whenever we deal with a K-vector valued function.

Definition 1.6 (CDσ(K,∞) inequality). Let K ∈ R. We say the graph G with
a signature σ satisfies the curvature dimension inequality CDσ(K,∞) if we have for
any vector field f : V → Kd and any vertex x ∈ V ,

Γσ
2 (f)(x) ≥ KΓσ(f)(x).(1.19)

The precise ∞-dimensional Ricci curvature lower bound K∞(σ) is defined as the
largest constant K such that (1.19) holds for all f .

In section 3.6, we show that the above curvature condition CDσ(0,∞) can be
characterized in terms of the corresponding heat semigroups Pt := et∆ and Pσ

t = et∆
σ

as follows:

CDσ(K,∞) ⇔ Γσ(Pσ
t f) ≤ e−2KtPt(Γ

σ(f)) ∀ f : V → Kd, ∀ t ≥ 0.

This is very useful for the proof of Theorem 1.1.
It turns out that every graph G with a signature σ satisfies CDσ( 2

D − 1,∞) (see
Corollary 3.8). This is shown by considering the switching invariance of CDσ(K,∞)
and CDσ inequalities of covering graphs (see sections 3.2 and 3.3). In particular,
every (unweighted) cycle graph with a signature σ : Eor → O(d) or U(d) satisfies
CDσ(0,∞).

Given a graph G and a signature σ, the curvature K∞(σ) can be computed very
efficiently by reformulating the CDσ(K,∞) inequality as linear matrix inequalities
at local neighborhoods of all vertices (see section 3.4). Computing the precise Ricci
curvature lower bound K∞(σ) is then equivalent to solving semidefinite programming
problems. In particular, we derive the precise formula ofK∞(σ) for a triangle (3-cycle)
graph with σ : Eor → U(1) in section 3.5.

Moreover, the class of graphs with signatures satisfying CDσ(0,∞) inequalities
is rich since this curvature property is preserved by taking Cartesian products: Given
two graphs Gi = (Vi, Ei), i = 1, 2, with signatures σi : E

or
i → Hi = O(di) or U(di),

i = 1, 2, denote their Cartesian product graph by G1 × G2 = (V1 × V2, E12). Let us
assign a signature σ̂12 : Eor

12 → H1 ⊗H2 to G1 ×G2 as follows:

σ̂12,(x1,y)(x2,y) := σ1,x1x2
⊗ Id2

for any (x1, x2) ∈ Eor
1 , y ∈ V2;

σ̂12,(x,y1)(x,y2) := Id1
⊗ σ2,y1y2

for any (y1, y2) ∈ Eor
2 , x ∈ V1.

Then we have the following theorem (see Theorem A.3 and Remark A.4).
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Theorem 1.7. Let Gi, i = 1, 2 with signatures σi, i = 1, 2, satisfy CDσ1(K1,∞)
and CDσ2(K2,∞), respectively. Then the Cartesian product graph G1 ×G2 with the
signature σ̂12 satisfies CDσ̂12( 12 min{K1,K2},∞).

In Appendix A, we discuss a similar behavior of the curvature dimension inequal-
ity on the Cartesian product G1 × G2 when we assign to it various choices of edge
weights, vertex measures, and signatures. The behavior of frustration indices and the
Cheeger constant under taking Cartesian products is also discussed in Appendix A.

1.4. Motivation via a dual Buser inequality. Having introduced all relevant
notions, let us have a second look at our main result presented earlier.

Theorem 1.1 (higher order Buser inequalities). Assume that a D-regular un-
weighted graph G with N vertices and a d-dimensional signature σ satisfies CDσ(0,∞).
Then for each natural number 1 ≤ k ≤ N , we have the upper estimates

λσkd ≤ 16D(kd)2 log(2kd)(hσk)
2(1.20)

for the eigenvalues of the associated connection Laplacian ∆σ.

Note that λσkd should be considered as the maximal value of the group of eigenval-
ues {λσ(k−1)d+1, . . . , λ

σ
kd}. There are N different groups of eigenvalues and N Cheeger

constants, correspondingly.
A Buser inequality on graphs satisfying the classical curvature dimension inequal-

ity CD(0,∞) has been established in [29] by extending an argument of Ledoux [33].
In fact, Theorem 1.1 reduces to their result (see (1.21) below) up to a constant, when
k = 2, d = 1, and the signature σ is balanced.

Higher order Buser inequalities for graph Laplacians were proved in [37], via
showing an eigenvalue ratio estimate. However, the method in [36, 37] does not
extend to the connection Laplacian for a general signature σ : Eor → H = O(d) or
U(d), except for the very special case O(1) (see Example 7.5). We discuss extensions
of the methods in [36, 37] for H = O(1) signatures in section 7. For general signatures,
our proof neatly extends Ledoux’s [33] argument for Buser’s inequality and provides
new ideas for establishing higher order Buser inequalities.

In the remainder of this section, we like to discuss a special consequence of The-
orem 1.1, namely, a dual Buser inequality, which can also be viewed as a motivation
for our general result.

Let us start by presenting some known results about Cheeger and dual Cheeger
constants of a graph G and the eigenvalues of the classical graph Laplacian ∆. We
have ∆ := 1

DA − IN , where A is the adjacency matrix of G and its real eigenvalues
can be ordered in size with multiplicities by

0 = λ1 ≤ λ2 ≤ · · · ≤ λN ≤ 2.

We can also view ∆ as a connection Laplacian with the trivial signature σtriv : Eor →
{1} ∈ O(1).

We already mentioned that if we assign to G the trivial O(1) signature σtriv :
Eor → {1} ∈ O(1), then the constant hσtriv

2 coincides with the classical Cheeger
constant of G. If, instead, we assign to G the signature −σtriv : Eor → {−1} ∈ O(1),
then the constant h−σtriv

1 reduces to the bipartiteness ratio of Trevisan [49], or to one
minus the dual Cheeger constant of Bauer and Jost [9]. For details, we refer to [4].
In fact, we have the following relations between eigenvalues, Cheeger constants, and
structural properties of the underlying graph:
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λ2 = 0 ⇔ hσtriv

2 = 0 ⇔ G has at least two connected components;

2− λN = 0 ⇔ h−σtriv

1 = 0 ⇔ G has a bipartite connected component.

The Cheeger [2, 3, 16] and dual Cheeger [9, 49] inequalities assert that

(hσtriv

2 )2

2
≤ λ2 ≤ 2hσtriv

2 and
(h−σtriv

1 )2

2
≤ 2− λN ≤ 2h−σtriv

1 .

For many purposes, it is very useful to have further relations between λ2 (2−λN , resp.)
and hσtriv

2 (h−σtriv

1 , resp.). The authors of [29] prove the following Buser inequality : If
G satisfies the curvature dimension inequality CD(0,∞), then

λ2 ≤ 16D(hσtriv

2 )2.(1.21)

Note that the condition CD(0,∞) can be understood as a special case of CDσ(0,∞)
by choosing σ = σtriv.

In particular, every cycle graph CN with N vertices satisfies CD(0,∞). Moreover,
we have for the graph CN (see, e.g., [35, Proposition 7.4]),

(hσtriv

2 )2 ≤ λ2(CN ) ≤ 5(hσtriv

2 )2,(1.22)

which is in line with the Cheeger inequality and Buser inequality, and also

0.3(h−σtriv

1 )2 ≤ 2− λN (CN ) ≤ 5(h−σtriv

1 )2.(1.23)

A natural question then arises: Is there a similar generalization of the right-hand
side of (1.23)? That is, we are asking for a possible dual Buser inequality for the
graph Laplacian ∆.

Observe that the first eigenvalue of the connection Laplacian ∆−σtriv , also known
as the signless Laplacian [15], is equal to 2− λN . Indeed, one can check that

−∆−σtriv = 2IN − (−∆) = IN +
1

D
A.

Therefore, Theorem 1.1 implies the following result.

Corollary 1.8 (dual Buser inequality). Assume that a D-regular graph G with
N vertices satisfies CD−σtriv(0,∞). Then we have for the largest eigenvalues of the
graph Laplacian ∆ = 1

DA− IN

2− λN ≤ 16(log 2)D(h−σtriv

1 )2.(1.24)

This provides a “dual” version of the Buser inequality in (1.21). We would like
to mention that every cycle graph CN also fulfills the inequality CD−σtriv(0,∞).

Note that the inequality CD−σtriv(0,∞) is not solely defined by replacing the
Laplacian ∆ in (1.3) and (1.4) by ∆−σtriv . In fact, our definition of CD−σtriv(0,∞)
involves both matrices ∆ and ∆−σtriv , as was explained in subsection 1.3. A reason
why both operators are needed in the curvature condition is that the corresponding
heat semigroup P−σtriv

t := et∆
−σtriv does not possess a probability kernel (the operator

P−σtriv

t is not even nonnegative), a property which is essential for the proofs in [29, 33].
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1.5. Lichnerowicz inequality and the jump of the curvature. Let λσ be
the first nonzero eigenvalue of the connection Laplacian ∆σ. Suppose the graph G
is connected. We observed that when σ is unbalanced, λσ1 6= 0, and hence λσ = λσ1 .
Moreover, when ισ(V ) becomes very small, i.e., when σ is very close to being balanced,
λσ = λσ1 becomes very close to 0. Once σ becomes balanced, λσ1 = 0, and λσ = λσ2 > 0.
We say that the quantity λσ jumps when σ becomes balanced.

We show the following Lichnerowicz type eigenvalue estimate in section 6.

Theorem 1.9 (Lichnerowicz inequality). Assume that the graph G with a sig-
nature σ satisfies CDσ(K,∞). Then the first nonzero eigenvalue λσ satisfies

λσ ≥ K.(1.25)

For another Lichnerowicz type eigenvalue estimate for the eigenvalues λ2 and
2−λN of the graph Laplacian ∆ in terms of the coarse Ricci curvature bound due to
Ollivier [43], we refer to [10]. An interesting application of Theorem 1.9 is the follow-
ing: The jump phenomenon of the quantity λσ imposes a similar jump phenomenon
on the curvature.

Figure 1 illustrates the jumps of the first nonzero eigenvalue λσ and the curvature
K∞(σ) of the particular example of a triangle graph C3 with σ : Eor → U(1), when
σ becomes balanced. In Figure 1, the complex variable s = Sgn(C3) ∈ U(1) is the
signature of the triangle (see (2.2) for the definition). The signature σ is balanced if
and only if Re(s) = 1. See section 3.5 for details.

Moreover, Theorem 1.9 also establishes direct relations between Cheeger constants
and the discrete Ricci curvature; see section 6.

1.6. Organization of the paper. In section 2, we set up our general setting
of a graph with edge weights, a general vertex measure, and a signature and discuss
the associated connection Laplacian. In section 3, we discuss various basic proper-
ties of the curvature dimension inequalities with signatures and also their equivalent
definitions. In section 4, we introduce multiway Cheeger constants with signatures
and discuss some of the fundamental properties. Section 5 is devoted to the proof
of our main result, that is, higher order Buser inequalities. In section 6, we prove a

Fig. 1. Curvature and eigenvalues of a signed triangle.
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Lichnerowicz type eigenvalue estimate and discuss its applications. The special case of
graphs with O(1) signatures is treated in section 7, where an eigenvalue ratio estimate
is obtained. In Appendix A, we provide a detailed discussion about the behavior on
Cartesian product graphs of the two concepts, curvature dimension inequalities and
Cheeger constants with signatures. Appendix B contains a counterexample showing
that a combinatorial expression of the frustration index via spanning trees, which we
established in section 4 for graphs with U(1) signatures, no longer holds for U(d)
signatures with d > 1.

2. The connection Laplacian. In this section, we introduce the basic setting
of a graph with edge weights, a vertex measure and a signature, and the corresponding
connection Laplacian.

2.1. Basic setting. Throughout the paper, G = (V,E,w) denotes an undirected
weighted simple finite graph with vertex set V and edge set E. If two vertices x, y ∈ V
are connected by an edge, we write x ∼ y and denote this edge by {x, y}. To each
edge {x, y} ∈ E, we associate a positive symmetric weight wxy = wyx. Let

dx :=
∑

y,y∼x

wxy

be the (weighted) vertex degree of x ∈ V .
For the vertex set V , we assign a finite positive measure µ : V → R>0. The

following two quantities Dnon
G and Dnor

G will appear naturally in our arguments:

Dnon
G := max

x∈V

dx
µ(x)

, and Dnor
G := max

x∈V
max
y,y∼x

µ(x)

wxy
.(2.1)

Typically, one chooses µ(x) = 1 for all x ∈ V (µ = 1V for short), or µ(x) = dx
for all x ∈ V (µ = dV for short). The superscripts in (2.1) are abbreviations for
“nonnormalized” and “normalized,” respectively. Observe that, Dnon

G = maxx∈V dx
for the measure µ = 1V , while Dnor

G = maxx∈V dx for the measure µ = dV and
wxy = 1 for all {x, y} ∈ E.

We write (G,µ, σ) to denote a graph G = (V,E,w) with the vertex measure µ
and the signature σ : Eor → H, where H is a group (recall (1.8)).

Recall from the introduction that σ is balanced if it is switching equivalent to
the trivial signature σtriv : Eor → id ∈ H. Actually, the original definition of bal-
ancedness of a signature by Harary [23] is defined via the signature of cycles of the
underlying graph. Let C be a cycle of G, i.e., a subgraph composed of a sequence
(x1, x2), (x2, x3), . . . , (xℓ−1, xℓ), (xℓ, x1) of distinct edges. Then the signature Sgn(C)
of C is defined as the conjugacy class of the element

σx1x2
σx2x3

· · ·σxℓ−1xℓ
σxℓx1

∈ H.(2.2)

Note that the signature of any cycle is switching invariant. Harary [23] (see also [50])
defines a signature σ : Eor → H to be balanced if the signature of every cycle of G is
(the conjugacy class of the) identity element id ∈ H. In fact, the above two definitions
of balancedness of a signature are equivalent; see [50, Corollary 3.3 and section 9].

For more historical background about signatures of graphs, we refer the reader
to [38, section 3].

2.2. Connection Laplacian. Let K = R or C. Throughout the paper we
restrict H to be the orthogonal group O(d) or the unitary group U(d), of dimension
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d, d ∈ Z>0, when K = R or C, respectivly. For every edge (x, y) ∈ Eor, σxy is a

(d× d)-orthogonal or unitary matrix and we have σyx = σ−1
xy = σT

xy.

For any vector-valued functions f : V → Kd and any vertex x ∈ V , the graph
connection Laplacian ∆σ is defined via

∆σf(x) :=
1

µ(x)

∑

y,y∼x

wxy(σxyf(y)− f(x)) ∈ Kd.

Note that a function f : V → Kd can also be considered as an (Nd)-dimensional

column vector, which we denote by
−→
f ∈ KNd. This vector is well defined once we

enumerate the vertices in V . The Laplacian can then be written as

∆σ = (diagµ)
−1(Aσ − diagD),(2.3)

where diagµ and diagD are (Nd) × (Nd)-diagonal matrices with the diagonal blocks
(diagµ)xx = µ(x)Id and (diagD)xx = dxId for x ∈ V , respectively. Here we use Id for
a (d×d)-identity matrix. The matrix Aσ is defined blockwise as follows. For x, y ∈ V ,
the (d× d)-block of it is given by

(Aσ)xy =

{
0 if {x, y} 6∈ E;
wxyσxy, (x, y) ∈ E.

(2.4)

Then we have
−−→
∆σf = (diagµ)

−1(Aσ − diagD)
−→
f .

If every edge has the trivial signature 1 ∈ O(1), ∆σ reduces to the graph Lapla-
cian ∆. When H = U(1), ∆σ coincides with the discrete magnetic Laplacian
[32, 45, 47].

Given two functions f, g : V → Kd, locally at a vertex x the Hermitian inner
product of f(x) and g(x) is given by f(x)T g(x). The corresponding norm of f(x)

is denoted by |f(x)| :=
√
fT (x)f(x). Globally, we have the following inner product

between f and g:

〈f, g〉µ :=
∑

x∈V

µ(x)f(x)T g(x).(2.5)

We denote by ℓ2(V,Kd;µ) the corresponding Hilbert space of functions. The ℓ2 norm
corresponding to (2.5) is denoted by ‖ · ‖2,µ. Note that ∆σ is a self-adjoint operator
on ℓ2(V,Kd;µ), i.e.,

〈∆σf, g〉µ = 〈f,∆σg〉µ.(2.6)

We call λσ ∈ R an eigenvalue of ∆σ if there exists a nonzero function f : V → Kd

such that ∆σf = −λσf . In fact, all Nd eigenvalues of ∆σ lie in the interval [0, 2Dnon
G ].

Let Σ be the group generated by the elements of {σxy | (x, y) ∈ Eor}. We call
Σ the signature group of the graph (G, σ). If the action of Σ on Kd is reducible, we
have an orthogonal decomposition of Kd, i.e.,

Kd = U1 ⊕ U2 ⊕ · · · ⊕ Ur for some r,

where the Ui’s are pairwise orthogonal w.r.t. the Hermitian inner product of Kd and
each Ui is an Σ-invariant subspace of Kd of dimension di such that

∑r
i=1 di = d. Then

there exist signatures σi : Eor → O(di) or U(di), i = 1, 2, . . . , r, such that we can
write

∆σ = ∆σ1 ⊕∆σ2 ⊕ · · · ⊕∆σr

by identifying each Ui with the vector space Kdi .
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3. Curvature dimension inequalities with signatures. In this section, we
introduce the CDσ(K,n) inequality for K ∈ R and n ∈ R+ and discuss its basic prop-
erties. We will characterize the CDσ inequality in terms of linear matrix inequalities
and also in terms of heat semigroups for functions and vector fields.

3.1. Definitions. We start by discussing several basic properties of the opera-
tors Γσ and Γσ

2 defined in Definition 1.5 (of course, we are using the Laplacians in
our current general setting). First, observe that they have the following Hermitian
properties:

Γσ(f, g) = Γσ(g, f), Γσ
2 (f, g) = Γσ

2 (g, f) ∀f, g : V → Kd.(3.1)

Since the graph Laplacian ∆ satisfies

∑

x∈V

µ(x)∆(fT g)(x) = 0,(3.2)

the definition (1.17) of Γσ and the self-adjointness (2.6) of ∆σ lead to the following
summation by part formula:

∑

x∈V

µ(x)Γσ(f, g)(x) = −〈f,∆σg〉µ = −〈∆σf, g〉µ.(3.3)

Moreover, we have the following properties.

Proposition 3.1. For any two functions f, g : V → Kd and any x ∈ V , we have
(i)

Γσ(f, g)(x) =
1

2µ(x)

∑

y,y∼x

wxy(σxyf(y)− f(x))T (σxyg(y)− g(x));

(ii)

|Γσ(f, g)(x)| ≤
√
Γσ(f)(x)

√
Γσ(g)(x).

Proof. The formula (i) follows from a direct calculation; (ii) is a consequence of
(i) by applying the Cauchy–Schwarz inequality.

Definition 3.2 (CDσ inequality). Let K ∈ R and n ∈ R+. We say that (G,µ, σ)
satisfies the CDσ inequality CDσ(K,n) if we have for any vector field f : V → Kd

and any vertex x ∈ V

Γσ
2 (f)(x) ≥

1

n
|∆σf(x)|2 +KΓσ(f)(x).(3.4)

We call K a lower curvature bound of (G,µ, σ) and n a dimension parameter. We
define the n-dimensional Ricci curvature Kn(G,µ, σ;x) of (G,µ, σ) at the vertex x ∈ V
to be the largest K that the inequality (3.4) holds for a given dimension parameter n.
We further define the precise n-dimensional Ricci curvature lower bound Kn(G,µ, σ)
of (G,µ, σ) as

Kn(G,µ, σ) := min
x∈V

Kn(G,µ, σ;x).(3.5)

We also simply write Kn(σ;x) and Kn(σ) when the setting (G,µ) is clear.
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Note that for given K ∈ R, and n1, n2 ∈ R+ with n1 ≤ n2, the inequality
CDσ(K,n1) implies CDσ(K,n2). In other words, CDσ(K,n) provides a lower cur-
vature bound K and an upper dimension bound n of the graph.

We also remark that rescaling the measure µ by a constant c > 0 leads to

Kn(G, cµ, σ;x) =
1

c
Kn(G,µ, σ;x).(3.6)

We will be particularly interested in graphs satisfying CDσ(K,∞) in this paper.
The classical curvature-dimension inequality CD(K,n) à la Bakry and Émery [6]

on graphs is defined as follows: For any real-valued function f : V → R and any
vertex x, we have

Γ2(f)(x) ≥
1

n
|∆f(x)|2 +KΓ(f)(x).(3.7)

Recall the definitions of Γ and Γ2 from (1.3) and (1.4).
When σ = σtriv : Eor → id ∈ U(d) is the trivial signature, the graph (G,µ, σ) sat-

isfies the inequality CDσ(K,n) if and only if (G,µ) satisfies the inequality CD(K,n).
In fact, this follows immediately from the following general result.

Proposition 3.3. Assume that the action of the signature group Σ of the graph
(G,µ, σ) is decomposable, i.e., we have

∆σ = ∆σ1 ⊕∆σ2 ⊕ · · · ⊕∆σr ,

where σi : Eor → U(di) or O(di), i = 1, 2, . . . , r. Then the graph (G,µ, σ) satisfies
the inequality CDσ(K,n) if and only if (G,µ, σi) satisfies CDσi(K,n) for each i =
1, 2, . . . , r.

Proof. By assumption, for any function f : V → Kd, there exist functions fi :
V → Ui

∼= Kdi , i = 1, 2, . . . , r, such that

fT f = fT1 f1 + fT2 f2 + · · ·+ fTr fr

and
∆σf = ∆σ1f1 ⊕∆σ2f2 ⊕ · · · ⊕∆σrfr.

Hence, for any x ∈ V , we obtain by Definition 1.5,

Γσ(f)(x) =

r∑

i=1

Γσi(fi)(x), and Γσ
2 (f)(x) =

r∑

i=1

Γσi

2 (fi)(x).

We also have

|∆σf(x)|2 =

r∑

i=1

|∆σifi(x)|2 .

Therefore, the inequality

Γσ
2 (f)(x) ≥

1

n
|∆σf(x)|2 +KΓσ(f)(x) ∀x ∈ V

is equivalent to the inequality

r∑

i=1

Γσi

2 (fi)(x) ≥
r∑

i=1

(
1

n
|∆σifi(x)|2 + Γσi(fi)(x)

)
,

and the proposition follows immediately.

D
o

w
n
lo

ad
ed

 0
4
/1

1
/1

9
 t

o
 1

2
9
.2

3
4
.3

9
.1

5
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGHER ORDER BUSER INEQUALITIES 271

Given a graph (G,µ, σ), where σ : Eor → O(d1) or U(d1), we have a natural new
signature

σ ⊗ Id2
: Eor → O(d1d2) or U(d1d2),

(x, y) 7→ σxy ⊗ Id2
,

where Id2
stands for the identity matrix of size d2×d2. The following observation will

be useful in our later discussion about the CDσ inequalities on Cartesian products of
graphs in Appendix A.

Corollary 3.4. A graph (G,µ, σ) satisfies CDσ(K,n) if and only if (G,µ,
σ ⊗ Id2

) satisfies CDσ⊗Id2 (K,n).

Proof. We observe that the action of the signature group of (G, σ⊗ Id2
) on Kd1d2

admits an orthogonal decomposition and, therefore, we have

∆σ⊗Id2 = ∆σ ⊕ · · · ⊕∆σ

︸ ︷︷ ︸
d2 times

.

Corollary 3.4 is then a direct consequence of Proposition 3.3.

3.2. Switching invariance. The CDσ inequality is switching invariant.

Proposition 3.5. If (G,µ, σ) satisfies CDσ(K,n), then (G,µ, στ ) satisfies
CDστ

(K,n) for any switching function τ : V → H.

Proof. Recalling (1.13), we check that we have for any τ :V → H and f, g :V →Kd,

Γστ

(f, g) = Γσ(τ−1f, τ−1g) and Γστ

2 (f, g) = Γσ
2 (τ

−1f, τ−1g),(3.8)

using τ(x)T = τ−1(x). The proposition then follows immediately from (1.13) and
(3.8).

The arguments in the above proof show also that Kn(G,µ, σ;x), introduced in
Definition 3.2, is the switching invariant for any given n.

We denote by dist the canonical graph distance and define the ball of radius r
centered at x ∈ V by

Br(x) := {y ∈ V | dist(x, y) ≤ r}.

Proposition 3.6. Let (G,µ, σ) be given. If the signature of every cycle of length
3 or 4 is equal to (the conjugate class of) id ∈ H, then (G,µ, σ) satisfies CDσ(K,n)
if and only if (G,µ) satisfies CD(K,n).

Proof. Let x ∈ V be a vertex. Since all cycles of 3 or 4 have trivial signature, we
can switch all the signatures of edges in the subgraph induced by the ball B2(x) to
be trivial. Note that the inequality (3.4) only involves the vertices in the ball B2(x).
Then the proposition follows from Propositions 3.5 and 3.3.

3.3. Coverings and a general lower curvature bound. Let (G̃, µ̃, σ̃) and
(G,µ, σ) be two graphs. Let π : (G̃, µ̃, σ̃) → (G,µ, σ) be a graph homomorphism,
namely, π : Ṽ → V is surjective, and if {x̃, ỹ} ∈ Ẽ, then {π(x̃), π(ỹ)} ∈ E. Moreover,
we require

σ̃x̃ỹ = σπ(x̃)π(ỹ), w̃x̃ỹ = wπ(x̃)π(ỹ), and µ̃(x̃) = µ(π(x̃)).(3.9)
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Such a map π is called a covering map if, furthermore, the subgraph of G̃ induced by
the ball B1(x̃) centered at each vertex x̃ ∈ Ṽ is mapped bijectively to the subgraph
of G induced by the ball B1(x). If a covering map π : (G̃, µ̃, σ̃) → (G,µ, σ) exists, we
call the graph (G̃, µ̃, σ̃) a covering graph of (G,µ, σ).

Theorem 3.7. Let (G̃, µ̃, σ̃) be a covering graph of (G,µ, σ). If (G̃, µ̃, σ̃) satisfies
CDσ̃(K,n), then (G,µ, σ) satisfies CDσ(K,n).

Proof. For any function f : V → Kd, we can find a corresponding function f̃ :
Ṽ → Kd such that

f̃(x̃) := f(π(x̃)) ∀ x̃ ∈ Ṽ ,(3.10)

where π is the covering map from (G̃, µ̃, σ̃) to (G,µ, σ).
For any x ∈ V , and any x̃ ∈ π−1(x), we can check by definition of a covering map

that

|∆σ̃ f̃(x̃)|2 = |∆σf(x)|2 , Γσ̃(f̃)(x̃) = Γσ(f)(x), Γσ̃
2 (f̃)(x̃) = Γσ

2 (f)(x).(3.11)

Since (G̃, µ̃, σ̃) satisfies CDσ̃(K,n), we obtain that for any f : V → Kd, and any
vertex x ∈ V ,

Γσ̃
2 (f̃)(x̃) ≥

1

n
|∆σ̃ f̃(x̃)|2 +KΓσ̃(f̃)(x̃).(3.12)

Combining this with (3.11) completes the proof.

Corollary 3.8. Any graph (G,µ, σ) satisfies the inequality

CDσ

(
2

Dnor
G

−Dnon
G , 2

)
.

In particular, any unweighted cycle graph with constant vertex measure µ ≡ ν0 · 1V

and any signature σ : Eor → H satisfies

CDσ(0, 2).

Proof. Let (TG, µ̃, σ̃) be the universal covering of (G,µ, σ), i.e., TG is a tree. It is
shown in [34, Theorem 1.2] (see also [27, Theorem 8]) that (TG, µ̃) satisfies the CD
inequality

CD

(
2

Dnor
TG

−Dnon
TG

, 2

)
.

Due to Proposition 3.6, we know that (TG, µ̃, σ̃) satisfies

CDσ̃

(
2

Dnor
TG

−Dnon
TG

, 2

)
,

since a tree has no cycles. By the definition of a covering graph, we have Dnor
G = Dnor

TG

and Dnon
G = Dnon

TG
. Then the corollary follows directly from Theorem 3.7.

3.4. CD
σ inequality as linear matrix inequalities. In this subsection, we

present an equivalent formulation of the CDσ inequality via linear matrix inequali-
ties. As a consequence, the problem of calculating the Ricci curvature of a graph is
reduced to solving semidefinite programming problems. In this process, we explore
the geometrical information captured by the CDσ inequality of a graph.
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By Definition 1.5, the operators Γσ and Γσ
2 can be considered as two symmetric

sesquilinear forms. Hence they can be represented by Hermitian matrices. For our
purpose, we are interested in considering the two symmetric sesquilinear forms locally
at every vertex x ∈ V . There exist two (Nd) × (Nd)-Hermitian matrices Γσ(x) and
Γσ
2 (x) such that for any two functions f, g : V → Kd,

Γσ(f, g)(x) =
−→
f TΓσ(x)−→g and Γσ

2 (f, g)(x) =
−→
f TΓσ

2 (x)
−→g .(3.13)

Denote by |Br(x)| the cardinality of the set Br(x). Observe that the matrix Γσ(x)
only has a nontrivial block of size |B1(x)| × |B1(x)|, while the matrix Γσ

2 only has a
nontrivial block of size |B2(x)| × |B2(x)|.

We denote by ∆σ(x) the (d × Nd)-matrix such that ∆σf(x) = ∆σ(x)
−→
f for all

functions f : V → Kd. Given two Hermitian matrices M1 and M2, the inequality
M1 ≥M2 means that the matrix M1 −M2 is positive semidefinite. Then we have the
following equivalent definition of CDσ inequality.

Definition 3.9 (CDσ inequality as linear matrix inequalities). Let K ∈ R and
n ∈ R+. A graph (G,µ, σ) satisfies the CDσ inequality CDσ(K,n) if and only if, for
any vertex x ∈ V , the following linear matrix inequality holds:

Γ2(x) ≥
1

n
∆σ(x)T∆σ(x) +KΓσ(x).(3.14)

A direct consequence is the following proposition.

Proposition 3.10 (semidefinite programming). The n-dimensional Ricci cur-
vature Kn(G,µ, σ;x) of the the graph (G,µ, σ) at the vertex x ∈ V is the solution of
the following semidefinite programming:

maximize K

subject to Γσ
2 (x)−

1

n
∆σ(x)T∆σ(x) ≥ KΓσ(x).

In the following, we describe the explicit structure of the matrices ∆σ(x),Γσ(x),
and Γσ

2 (x). For simplicity, we restrict to the setting

µ = 1V , i.e., µ(x) = 1 ∀ x ∈ V,(3.15)

and

wxy = 1 ∀ {x, y} ∈ E.(3.16)

Given a vertex x ∈ V , let us denote its neighbors by y1, y2, . . . , ydx
. By abuse of

notation, we still write ∆σ(x) and Γσ(x) for their nontrivial blocks corresponding to
the vertices x, y1, . . . , ydx

. Then it is easy to see that

∆σ(x) =
(
−dxId σxy1

· · · σxydx

)
(3.17)

and

2Γσ(x) =




dxId −σxy1
· · · −σxydx

−σT
xy1

Id · · · 0
...

...
. . .

...
−σT

xydx
0 · · · Id


 .(3.18)
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For the matrix Γσ
2 (x), the structure of the subgraph induced by B2(x) is of rele-

vance. We denote the sphere of radius r centered at a vertex x ∈ V by

Sr(x) := {y ∈ V | dist(x, y) = r}.

Then, the ball B2(x) has the decomposition B2(x) = {x} ⊔ S1(x) ⊔ S2(x).
We first introduce some natural geometric quantities before we present the entries

of the matrix Γσ
2 (x). For any vertex y ∈ S1(x), we have

|S1(y) ∩ S2(x)| :=
∑

z,z∼y,z 6∼x,z 6=x

1(3.19)

and

♯△(x, y) := |S1(y) ∩ S1(x)| :=
∑

z,z∼y,z∼x

1.(3.20)

Note that (3.20) is the number of triangles (i.e., 3-cycles) which contain the two
neighbors x and y. This justifies the notation ♯△(x, y).

For any vertex z ∈ S2(x), we have

|S1(z) ∩ S1(x)| :=
∑

y,y∼x,y∼z

1.(3.21)

Note that (3.21) is related to the number of 4-cycles which contain the two vertices x
and z.

Remark 3.11. The above three geometric quantities are all closely related to the
growth rate of the cardinality of Br(x) (in other words, the volume of Br(x) w.r.t.
the measure µ = 1V ) when the radius r increases.

The quantity ♯△(x, y) counts the number of 3-cycles regardless of their signatures.
A signed version of this quantity is also important, and we define the following quantity
describing the unbalancedness of the triangles containing the two neighbors x and y:

♯σ△(x, y) :=
∑

z,z∼y,z∼x

(Id − σxzσzyσyx) .(3.22)

Note that the balanced triangles containing x and y do not contribute to the expression
in (3.22).

Proposition 3.12. Under the setting of (3.15) and (3.16), the nontrivial block
of Γσ

2 (x), which is Hermitian and of size |B2(x)| × |B2(x)|, is given by the following
blocks:

(4Γσ
2 (x))xx = (3dx + d2x)Id;(3.23)

(4Γσ
2 (x))xy = −

(
3 + dx + |S1(y) ∩ S2(x)|+ ♯σ△(x, y)

)
σxy(3.24)

for any y ∈ S1(x);

(4Γσ
2 (x))xz =

∑

y,y∼x,y∼z

σxyσyz, for any z ∈ S2(x);(3.25)

(4Γσ
2 (x))yy = (5− dx + 3|S1(y) ∩ S2(x)|+ 4♯△(x, y)) Id(3.26)

for any y ∈ S1(x);
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(4Γσ
2 (x))y1y2

= 2σy1xσxy2
− 4σy1y2

(3.27)

for any y1, y2 ∈ S1(x), y1 6= y2, where we use σy1y2
= 0 if {y1, y2} 6∈ E;

(4Γσ
2 (x))yz = −2σyz(3.28)

for any y ∈ S1(x) and z ∈ S2(x), where we use σyz = 0 if {y, z} 6∈ E;

(4Γσ
2 (x))zz = |S1(z) ∩ S1(x)|Id for any z ∈ S2(x);(3.29)

(4Γσ
2 (x))z1z2 = 0 for any z1, z2 ∈ S2(x), z1 6= z2.(3.30)

Proof. This follows from a direct expansion of the identity

Γσ
2 (f, g)(x) =

−→
f TΓσ

2 (x)
−→g for any f, g : V → Kd.

We omit the details here.

Remark 3.13. (i) The block (4Γσ
2 (x))xz above is a signed version of the quan-

tity |S1(z) ∩ S1(x)| in (3.21).
(ii) When y1, y2 ∈ S1(x) are neighbors, i.e., {y1, y2} ∈ E, we have a triangle

containing x, y1, and y2. Then the block (4Γσ
2 (x))y1y2

can be rewritten as

−2 (Id + (Id − σy1xσxy2
σy2y1

))σy1y2
,

which describes the unbalancedness of this triangle.

3.5. Example of a signed triangle. We consider a particular example of a
triangle graph C3, which consists of three vertices x, y, and z, as shown in Figure 2.
We set

µ(x) = µ(y) = µ(z) = 2 and wxy = wxz = wyz = 1.(3.31)

Let σ : Eor → U(1) := {z ∈ C, |z| = 1} be a signature on C3. Assume that the
signature of the cycle C3 is equal to (the conjugacy class of) s ∈ U(1). Then σ is
switching equivalent to the signature given in Figure 2, i.e.,

σxy = σxz = 1 and σyz = s.

Proposition 3.14. Let (C3, µ, σ) be as above and s = Sgn(C3). Then it has
constant ∞-dimensional Ricci curvature at every vertex. As a function of s, K∞(s) :=
K∞(C3, µ, σ) is given by

K∞(s) =





5

4
if s = 1;

5−
√

17 + 8Re(s)

8
otherwise.

(3.32)

x

y zσyz=s

σxz=1σxy=1

Fig. 2. A signed triangle.
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Fig. 3. ∞-dimensional Ricci curvature of a signed triangle.

Remark 3.15. The curvature (3.32) is illustrated in Figure 3 as a function of the
variable Re(s). The function K∞(s) “jumps” at s = 1. That is,

lim
s→1

K∞(s) = 0 but K∞(1) =
5

4
> 0.(3.33)

We will show that such a “jump” appears in a more general setting in section 6.

Proof of Proposition 3.14. Since the curvature is switching invariant, we can
switch the signature σ to be as shown in Figure 2 before calculating the curvature
K∞(σ;x) at x. In fact, one can do similar operations for calculating K∞(y) and
K∞(z). So (C3, µ, σ) has constant curvature and we only need to calculate the curva-
ture at x.

By the fact (3.18) and Proposition 3.12, we can obtain the corresponding matrices
Γσ(x) and Γσ

2 (x). Note that in this example, we choose a different measure (3.31) from
that in (3.15). Hence these matrices differ by a scaling of 1/2 and 1/4, respectively.
Therefore, under the current setting (3.31), we have

2Γσ(x) =
1

2




2 −1 −1
−1 1 0
−1 0 1


 and 4Γσ

2 (x) =
1

4




10 −6 + s −6 + s
−6 + s 7 2− 4s
−6 + s 2− 4s 7


 .

By Proposition 3.10, we need to solve the following semidefinite programming:

maximize K

subject to Γσ
2 (x) ≥ KΓσ(x).(3.34)

Inequality (3.34) is equivalent to positive semidefiniteness of the following matrix:

16Γσ
2 (x)− 16KΓσ(x) =




10− 8K −6 + s+ 4K −6 + s+ 4K
−6 + s+ 4K 7− 4K 2− 4s
−6 + s+ 4K 2− 4s 7− 4K


 .(3.35)D
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By Sylvester’s criterion, this is equivalent to nonnegativity of all principle minors of
the above matrix. Calculating these principle minors, we translate the semidefinite
programming to the following problem:

maximize K

subject to 10− 8K ≥ 0, 7− 4K ≥ 0,

16K2 − 8(6 + Re(s))K + (33 + 12Re(x)) ≥ 0,

16K2 − 56K + (16Re(s) + 29) ≥ 0,

8(1− Re(s))K2 − 10(1− Re(s))K + (1−Re(s))2 ≥ 0.

Rewriting the above inequalities, we obtain

maximize K

subject to K ≤ 5/4, K ≤ 7/4,

K ≥ (5 +
√
17 + 8Re(s))/8 or K ≤ (5−

√
17 + 8Re(s))/8,

K ≥ (7 + 2
√
5− 4Re(s))/4 or K ≤ (7− 2

√
5− 4Re(s))/4,

K ≥ (6 + Re(s) +
√
Re(s)2 + 3)/4 or K ≤ (6 + Re(s)−

√
Re(s)2 + 3)/4.

One can check directly that (3.32) is the solution of this optimization problem.

Similarly, one can calculate the ∞-dimensional Ricci curvature of longer cycles
CN for N ≥ 4.

Proposition 3.16. Let (CN , µ, σ) be a cycle of length N with the edge weights
and measure µ given in (3.31) and s = Sgn(CN ). Then (CN , µ, σ) has constant ∞-
dimensional Ricci curvature at every vertex. Moreover, we have

K∞(C4, µ, σ) =
{

1 if s = 1;
0 otherwise,

(3.36)

and, for N ≥ 5,

K∞(CN , µ, σ) = 0.(3.37)

We remark that new examples of graphs (G, σ) satisfying the CDσ(0,∞) inequal-
ity can be constructed by taking Cartesian products of known examples for various
choices of the signature, edge weights, and vertex measure on the product graph.
We refer to Appendix A for full details about the behavior of CDσ inequalities on
Cartesian product graphs.

3.6. Heat semigroup characterizations of CD
σ inequalities. In this sub-

section, we derive characterizations of the CDσ inequality via the solution of the
following associated continuous time heat equation,





∂u(x, t)

∂t
= ∆σu(x, t),

u(x, 0) = f(x),
(3.38)

where f : V → Kd is an initial function. The solution u : V × [0,∞) → Kd is given
by Pσ

t f := et∆
σ

f , where Pσ
t is a linear operator on the space ℓ2(V,Kd;µ). Clearly,

we have Pσ
0 f = f . It is straightforward to check the following properties of Pσ

t .
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Proposition 3.17. The operator Pσ
t , t ≥ 0, satisfies the following properties:

(i) Pσ
t is a self-adjoint operator on the space ℓ2(V,Kd;µ);

(ii) Pσ
t commutes with ∆σ, i.e., Pσ

t ∆
σ = ∆σPσ

t ;
(iii) Pσ

t P
σ
s = Pσ

t+s for any t, s ≥ 0.

The solution of the heat equation corresponding to the graph Laplacian ∆ is
simply denoted by Pt := et∆. The matrix Pt has the following additional properties
besides the ones listed in Proposition 3.17.

Proposition 3.18. (i) All matrix entries of Pt are real and nonnegative.
(ii) For any constant function c on V , we have Ptc = c.

In particular, the above properties imply that for a function f : V → R with
0 ≤ f(x) ≤ c for all x ∈ V , we have 0 ≤ Ptf(x) ≤ c for all x ∈ V .

Proof. Recall that ∆ can be written as the matrix (diagµ)
−1(A− diagD), where

diagD and diagµ are the diagonal matrices with (diagD)xx = dx and (diagµ)xx = µ(x)
for all x ∈ V , and A is the weighted adjacency matrix. Now we exploit the fact that

all off-diagonal entries of ∆ are nonnegative,(3.39)

and, therefore, we can choose C > 0 such that ∆ + C · IN is entrywise nonnegative.
Then e∆+C·IN is also entrywise nonnegative, which implies that the same holds for
Pt = e∆+C·IN · e−C·IN .

For the constant function c, we have

∆c = 0.(3.40)

Therefore, we have ∂
∂tPtc = 0, which implies Ptc = c.

Remark 3.19. Note that the two facts (3.39) and (3.40) do not extend to general
Pσ
t , even when σ only takes values from O(1) = {±1}. Therefore Proposition 3.18

does not hold for the more general operators Pσ
t .

If n = ∞, the CDσ inequality is equivalent to the following local functional
inequalities of Pσ

t f .

Theorem 3.20. Let (G,µ, σ) be given. Then the following are equivalent:
(i) The inequality CDσ(K,∞) holds, i.e., for any function f : V → Kd, we have

Γσ
2 (f) ≥ KΓσ(f).

(ii) For any function f : V → Kd and t ≥ 0, we have

Γσ(Pσ
t f) ≤ e−2KtPt(Γ

σ(f)).

(iii) For any function f : V → Kd and t ≥ 0, we have

Pt(|f |2)− |Pσ
t f |2 ≥ 1

K
(e2Kt − 1)Γσ(Pσ

t f),

where we replace (e2Kt − 1)/K by 2t in the case K = 0.

Remark 3.21. Theorem 3.20 is similar in spirit to [5, Propostion 3.3]. Note that
Proposition 3.18(i), which is crucial for the proof of [5, Propostion 3.3], is not true for
Pσ
t in general. However, with our definitions of the operators Γσ and Γσ

2 , we avoid
this difficulty.
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Proof. (i) ⇒ (ii): For any 0 ≤ s ≤ t, we consider

F (s) := e−2KsPs(Γ
σ(Pσ

t−sf)).(3.41)

Since F (0) = Γσ(Pσ
t f) and F (t) = e−2KtPt(Γ

σ(f)), it is enough to prove d
dsF (s) ≥ 0.

We calculate

e2Ks d

ds
F (s) = −2KPs(Γ

σ(Pσ
t−sf)) + ∆Ps(Γ

σ(Pσ
t−sf)) + Ps

(
d

ds
Γσ(Pσ

t−sf)

)

and

d

ds
Γσ(Pσ

t−sf) = −Γσ(∆σPσ
t−sf, P

σ
t−sf)− Γσ(Pσ

t−sf,∆
σPσ

t−sf).

Therefore, ∆Ps = Ps∆ and the inequality CDσ(K,∞) imply

d

ds
F (s) = 2e−2KsPs

[
Γσ
2 (P

σ
t−sf)−KΓσ(Pσ

t−sf)
]
≥ 0,

where we used Proposition 3.18(i). This proves (ii).
(ii) ⇒ (iii): For 0 ≤ s ≤ t, we consider

G(s) := Ps(
∣∣Pσ

t−sf
∣∣2).(3.42)

Note that G(0) = |Pσ
t f |2 and G(t) = Pt(|f |2). Using the estimate (ii) and Proposition

3.17, we have

d

ds
G(s) = ∆Ps(

∣∣Pσ
t−sf

∣∣2) + Ps

[
−(Pσ

t−sf)
T (∆σPσ

t−sf)− (∆σPσ
t−sf)

TPσ
t−sf

]

= 2Ps(Γ
σ(Pσ

t−sf)) ≥ 2e2KsΓσ(Pσ
t f).

Therefore, we obtain

G(t)−G(0) =

∫ t

0

d

ds
G(s)ds ≥ 2Γσ(Pσ

t f)

∫ t

0

e2Ksds =
e2Kt − 1

K
Γσ(Pσ

t f).

This proves (iii).
(iii) ⇒ (i): Here, we consider the inequality (iii) at t = 0 and use the expansion

Pσ
t = Id + t∆σ +

t2

2
(∆σ)2 + o(t2).

Dividing (iii) by 2t2 and letting t tend to zero, we obtain

1

4
∆2(|f |2)− 1

4
fT
(
(∆σ)2f

)
− 1

4

(
(∆σ)2f

)T
f − 1

2
(∆σf)T (∆σf)

≥ KΓσ(f) + Γσ(f,∆σf) + Γσ(∆σf, f).

Using Definition 1.5, the above inequality simplifies to

Γσ
2 (f) ≥ KΓσ(f),

which shows (i).

4. Multiway cheeger constants with signatures. In this section, we intro-
duce multiway Cheeger constants with signatures for graphs (G,µ, σ).

D
o

w
n
lo

ad
ed

 0
4
/1

1
/1

9
 t

o
 1

2
9
.2

3
4
.3

9
.1

5
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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4.1. Cheeger constants with signatures. Following the ideas of [32], we in-
troduce a Cheeger type constant of (G,µ, σ) as a mixture of a frustration index and
the expansion rate. For any nonempty subset S ⊆ V , the frustration index ισ(S) is
a measure of the unbalancedness of the signature σ on the induced subgraph of S.
For that purpose, we need to choose a norm on H, to measure the distance between
different elements in H.

Definition 4.1. Given a (d× d)-matrix A = (aij), we define the average (2, 1)-
norm |A|2,1 of A as

|A|2,1 :=
1

d

d∑

i=1




d∑

j=1

|aij |2



1

2

.(4.1)

If we denote the vector of the ith column of A by Ai, this norm can be rewritten as
|A|2,1 := 1

d

∑d
i=1 |Ai|. Recall that |Ai|2 := (Ai)TAi.

Remark 4.2.
(i) The average (2, 1)-norm is smaller or equal to the Frobenius norm (alterna-

tively called the Hilbert–Schmidt norm), i.e., we have for any (d× d)-matrix
A = (aij),

|A|2,1 ≤ 1√
d
|A|F ,(4.2)

where |A|F := (
∑d

i,j=1 |aij |2)
1

2 denotes the Frobenius norm of A. This is a
straightforward consequence of the Cauchy–Schwarz inequality directly.

(ii) The average (2, 1)-norm is not submultiplicative in general, i.e., |AB|2,1 ≤
|A|2,1|B|2,1 is not necessarily true for any (d×d)-matrices A and B. However,
if B ∈ O(d) or U(d), we have

|BA|2,1 = |A|2,1.(4.3)

Note that in this case, |B|2,1 = 1.

Definition 4.3 (frustration index). Let (G,µ, σ) be given. We define the frus-
tration index ισ(S) for ∅ 6= S ⊆ V as

ισ(S) := min
τ :S→H

∑

{x,y}∈ES

wxy|σxyτ(y)− τ(x)|2,1

= min
τ :S→H

∑

{x,y}∈ES

wxy|στ
xy − id|2,1,

where ES is the edge set of the induced subgraph of S in G.

Remark 4.4.
(i) By (4.3), the quantity

|σxyτ(y)− τ(x)|2,1 = |σyxτ(x)− τ(y)|2,1
is independent of the orientation of the edge {x, y} ∈ E. Hence, the summa-
tion

∑
{x,y}∈ES

wxy|σxyτ(y)− τ(x)|2,1 is well defined.

(ii) In the definition of the frustration index, we are taking the infimum over
all possible switching functions. Hence, the frustration index is a switching
invariant quantity.
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(iii) The average (2, 1)-norm is only one possible choice which can be used in the
definition of the frustration index. A more canonical norm to be used is the
Frobenius norm. However, having the aim to present the strongest Buser
type inequalities (5.1) in section 5, we choose the average (2, 1)-norm here
(recall (4.2)).

We denote by |E(S, V \ S)| the boundary measure of S ⊆ V , which is given by

|E(S, V \ S)| :=
∑

x∈S

∑

y 6∈S

wxy.

In the above, we use the convention that wxy = 0 if x 6∼ y. The µ-volume of S is
given by

µ(S) :=
∑

x∈S

µ(x).

Definition 4.5. We call k subsets {Si}ki=1 of V a nontrivial k-subpartition of V
if all Si are nonempty and pairwise disjoint.

Now we are prepared to define the Cheeger constant.

Definition 4.6 (Cheeger constant). Let (G,µ, σ) be given. The k-way Cheeger
constant hσk is defined as

hσk := min
{Si}k

i=1

max
1≤i≤k

φσ(Si),

where the minimum is taken over all possible nontrivial k-subpartitions {Si}ki=1 of V
and

φσ(S) :=
ισ(S) + |E(S, V \ S)|

µ(S)
.

Note that the multiway Cheeger constants defined above are switching invariant.
Definition 4.6 is a natural extension of the Cheeger constants developed in [4, 32] and
is related to the constants discussed in [7].

Remark 4.7 (relations with Bandeira, Singer, and Spielman’s constants). In [7],
Bandeira, Singer, and Spielman introduced the so-called O(d) frustration ℓ1 constant
νG,1 as follows:

νG,1 := min
τ :V→O(d)

1√
dµ(V )

∑

x,y∈V

wxy|σxyτ(y)− τ(x)|F ,

where | · |F denotes the Frobenius norm of a matrix. Modifying νG,1 by also allowing
zero matrices in the image of τ , we obtain

ν∗G,1 := min
τ :V→H∪{0}

∑
x,y∈V wxy|σxyτ(y)− τ(x)|F∑

x∈V µ(x)|τ(x)|F
,

where we denote the (d× d)-zero matrix by 0. Note that |τ(x)|F =
√
d, for τ(x) ∈ H.

We observe the following relation between our Cheeger constant hσ1 and the con-
stant ν∗G,1:

hσ1 ≤ 1

2
ν∗G,1,
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which is verified by the calculation

hσ1 = min
∅6=S⊆V

ισ(S) + |E(S, V \ S)|
µ(S)

= min
τ :V→H∪{0}

∑
{x,y}∈E wxy|σxyτ(y)− τ(x)|2,1∑

x∈V µ(x)|τ(x)|2,1

≤ min
τ :V→H∪{0}

∑
{x,y}∈E wxy|σxyτ(y)− τ(x)|F√

d
∑

x∈V µ(x)|τ(x)|2,1
=

1

2
ν∗G,1.

In the inequality above, we used (4.2).

For convenience, we call {Si}ki=1 a connected, nontrivial k-subpartition of V if all
sets Si ⊆ V are nonempty and pairwise disjoint and if every subgraph induced by Si

is connected. Then the Cheeger constants introduced in Definition 4.6 do not change
if we restrict our considerations to connected, nontrivial k-subpartitions:

Lemma 4.8. Let (G,µ, σ) be given. Then we have

hσk = min
{Si}k

i=1

max
1≤i≤k

φσ(Si),

where the minimum is taken over all possible connected, nontrivial k-subpartitions
{Si}ki=1 of V .

Proof. Let {Si}ki=1 be a possibly nonconnected, nontrivial k-subpartition achiev-

ing hσk . Suppose Si has the connected components W 1
i , . . . ,W

n(i)
i . Then,

φσ(Si)µ(Si) =

n(i)∑

j=1

φσ(W j
i )µ(W

j
i )

and µ(Si) =
∑n

j=1 µ(W
j
i ). Hence, there exists j(i) ∈ {1, 2, . . . , n(i)} such that

φσ(W
j(i)
i ) ≤ φσ(Si). Consequently,

max
1≤i≤k

φσ(W
j(i)
i ) ≤ max

1≤i≤k
φσ(Si) = hσk ,

and thus {W j(i)
i }ki=1 is a connected, nontrivial k-subpartition of V with

hσk = max
1≤i≤k

φσ(W
j(i)
i ).

This implies the lemma.

4.2. Frustration index via spanning trees. This subsection is motivated by
the following question: Is there any easier way to calculate the frustration index ισ(S)
of a subset S ⊆ V ? We will provide an affirmative answer in the case H = U(1).

Note that the average (2, 1)-norm reduces to the absolute value of a complex
number, and the frustration index ισ(S) for S ⊆ V simplifies to

ισ(S) := min
τ :S→U(1)

∑

{x,y}∈ES

wxy|σxyτ(y)− τ(x)|,

where ES is the edge set of the induced subgraph of S. Here our aim is to make it
easier to calculate ισ(S) by considering all spanning trees of the induced subgraph
of S and taking the minimum over so-called constant functions on these trees with
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respect to the signature. This reduces the original minimization problem to a finite
combinatorial problem. We will show in Appendix B via a counterexample that this
reduction is no longer possible in the case of higher dimensional signature groups.

Definition 4.9. Let (G, σ) be a finite, connected graph the signature σ :Eor→H.
A function τ : V → H is constant on G with respect to σ if, for all (x, y) ∈ Eor, we
have

σxyτ(y) = τ(x).

In other words, τ is a switching function such that στ is trivial, i.e., στ
xy = id ∈ H

for all (x, y) ∈ Eor.

Let T = (S,ET ), ET ⊆ ES , be a spanning tree of the induced subgraph of S. We
write CT (S) := {τ : S → U(1) : τ is constant on T with respect to σ}. Moreover, we
define TS as the set of all spanning trees of the induced subgraph of S.

Since T is a tree, the set CT (S) is not empty. Since T is a spanning tree, we have
CT (S) = τU(1) := {τz : S → U(1) | z ∈ U(1)} for any τ ∈ CT (S).

Theorem 4.10. Let S ⊆ V be a nonempty subset of V which induces a connected
subgraph. Then,

ισ(S) = min
T∈TS

∑

{x,y}∈ES

wxy|σxyτT (y)− τT (x)|,(4.4)

where τT denotes an arbitrary representative of CT (S).
Moreover, if a function τ : S → U(1) satisfies

∑
{x,y}∈ES

wxy|σxyτ(y) − τ(x)| =
ισ(S), then there is a spanning tree T = (S,ET ) such that τ is constant on T with
respect to σ.

We remark that in (4.4) we are taking the minimum over a finite set. Moreover,
given a spanning tree T ∈ TS , only terms associated to edges of ES not belonging to
the spanning tree contribute to the sum.

Theorem 4.10 can be considered an extension of [24, Theorem 2], where Harary
and Kabell derived this result on unweighted graphs for the case H = O(1) = {±1}.
Their proof depends in an essential way on the fact that the frustration index in
their setting (which they called line index of balance) only assumes integer values.
Therefore, their proof cannot be extended to the current general setting.

We first prove a basic lemma.

Lemma 4.11. Let Z := {z1, . . . , zn} ⊂ U(1) and w1, . . . , wn > 0. Then we have

min
z∈U(1)

n∑

k=1

wk|z − zk| = min
z∈Z

n∑

k=1

wk|z − zk|.(4.5)

Moreover, if z ∈ U(1) \ Z, then
n∑

k=1

wk|z − zk| > min
z∈Z

n∑

k=1

wk|z − zk|.

Proof. The minimum over on the left-hand side of (4.5) exists, since U(1) is com-
pact and

∑n
k=1 wk|z − zk| is continuous in z. Suppose that the minimum is assumed

in z0 = eit0 with z0 /∈ Z. That is, the function φ : R → R, t 7→ ∑n
k=1 wk|eit − zk|

assumes a local minimum in t0. Since z0 /∈ Z, the second derivative φ′′ exists at t0
and is not negative due to the minimum property. But for all k ∈ {1, . . . , n}, we can
set zk = eitk and compute
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d2

dt2
|eit − eitk |(t0) = 2

d2

dt2

∣∣∣∣sin
t− tk
2

∣∣∣∣ (t0) < 0.

This is a contradiction and, hence, z0 ∈ Z. This finishes the proof of the lemma.

Now, we prove the theorem with the help of the lemma.

Proof of Theorem 4.10. First, we notice that the expression wxy|σxyτT (y)−τT (x)|
does not depend on the choice of τT ∈ CT (S) since CT (S) = τTU(1). Hence, the
restriction to the representative of CT (S) makes sense.

Let τ0 : S → U(1) be a minimizer of
∑

{x,y}∈ES
wxy|σxyτ(y)− τ(x)|. Denote by

E0 := {{x, y} ∈ ES : σxyτ0(y) = τ0(x)}

the set of edges where τ0 is constant with respect to σ. It is sufficient to show that
G0 = (S,E0) is connected since then there is a spanning tree T0 of G0 such that τ0 is
constant on T0 with respect to σ.

Suppose G0 is not connected. Then there is a connected component W ( S.
Denote ∂SW := {(x, y) ∈ Eor

S : x ∈ W, y ∈ S \ W}. We have ∂SW 6= ∅ since S
is connected. Moreover, we have σxyτ0(y) 6= τ0(x) for all (x, y) ∈ ∂SW , since W
is a connected component and, otherwise, y would also belong to W , contradicting
(x, y) ∈ ∂SW .

The previous lemma states that

min
z∈U(1)

∑

(x,y)∈∂SW

wxy|σxyτ0(y)− zτ0(x)| = min
z∈U(1)

∑

(x,y)∈∂SW

wxy|σxyτ0(y)τ0(x)− z|

achieves the minimum only in elements of the set {σxyτ0(y)τ0(x) : (x, y) ∈ ∂SW}.
But 1 /∈ {σxyτ0(y)τ0(x) : (x, y) ∈ ∂SW}, since σxyτ0(y) 6= τ0(x) for all (x, y) ∈ ∂SW .
Hence, there exists z0 ∈ U(1) such that

∑

(x,y)∈∂SW

wxy|σxyτ0(y)− z0τ0(x)| <
∑

(x,y)∈∂SW

wxy|σxyτ0(y)− τ0(x)|.(4.6)

We define τ1 : S → U(1),

τ1(x) :=

{
z0τ0(x) if x ∈W ;

τ0(x) if x ∈ S \W.

Consequently,
∑

{x,y}∈ES

wxy|σxyτ1(y)− τ1(x)|

=
∑

{x,y}∈EW∪ES\W

wxy|σxyτ1(y)− τ1(x)|+
∑

(x,y)∈∂SW

wxy|σxyτ1(y)− τ1(x)|

=
∑

{x,y}∈EW∪ES\W

wxy|σxyτ0(y)− τ0(x)|+
∑

(x,y)∈∂SW

wxy|σxyτ0(y)− z0τ0(x)|

(4.6)
<

∑

{x,y}∈EW∪ES\W

wxy|σxyτ0(y)− τ0(x)|+
∑

(x,y)∈∂SW

wxy|σxyτ0(y)− τ0(x)|

=
∑

{x,y}∈ES

wxy|σxyτ0(y)− τ0(x)|.D
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This is a contradiction to the fact that τ0 is a minimizer of
∑

{x,y}∈ES
wxy

|σxyτ(y)− τ(x)|. Thus, G0 has to be connected. This finishes the proof.

Recall from Lemma 4.8 that the Cheeger constant hσk is the minimum of
max1≤i≤k φ

σ(Si) over all possible connected, nontrivial k-subpartitions {Si}ki=1. There-
fore, Theorem 4.10 implies that the calculation of hσk reduces to a finite combinatorial
minimization problem if H = U(1).

5. Buser inequalities. In this section, we prove our main theorem, namely,
higher order Buser type inequalities for nonnegatively curved graphs (cf. Theorem
1.1 in the introduction).

Theorem 5.1 (main theorem). Let (G,µ, σ) satisfy CDσ(0,∞). Then for all
1 ≤ k ≤ N , we have

√
λσkd ≤ 4

√
Dnor

G

(
kd
√
log(2kd)

)
hσk .(5.1)

Before we present the proof, we first discuss the following two lemmata. We will
use the following notation for the ℓp(V,Kd;µ) norm of functions, 1 ≤ p ≤ ∞,

‖f‖p,µ :=

(
∑

x∈V

µ(x)|f(x)|p
) 1

p

.

For simplicity, we omit the subscript µ in the following arguments.

Lemma 5.2. Assume that (G,µ, σ) satisfies CDσ(0,∞). Then for any function
f : V → Kd and t ≥ 0, we have

‖f − Pσ
t f‖1 ≤

√
2t‖
√
Γσ(f)‖1.(5.2)

Proof. First, the equivalent formulation of the CDσ(0,∞) inequality in Theorem
3.20(iii) implies that

‖
√
Pt(|f |2)‖∞ ≥

√
2t‖
√
Γσ(Pσ

t f)‖∞.(5.3)

The inequality (5.2) is actually a dual version of the above one. We set

g(x) :=

{
0 if f(x)− Pσ

t f(x) = 0;
(f(x)− Pσ

t f(x))/|f(x)− Pσ
t f(x)| otherwise,

and calculate

‖f − Pσ
t f‖1 = 〈f − Pσ

t f, g〉µ =

〈
−
∫ t

0

∂

∂s
Pσ
s fds, g

〉

µ

= −
∫ t

0

〈∆σf, Pσ
s g〉µds

=

∫ t

0

∑

x∈V

µ(x)Γσ(f, Pσ
s g)(x)ds,

where we used the self-adjointness of Pσ
t and the summation by part formula (3.3).

We further apply Proposition 3.1 and the estimate (5.3) to derive
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‖f − Pσ
t f‖1 ≤

∫ t

0

∑

x∈V

µ(x)
√
Γσ(f)(x)

√
Γσ(Pσ

s g)(x)ds

≤
∫ t

0

‖
√

Γσ(f)‖1‖
√

Γσ(Pσ
s g)‖∞ds

≤ ‖
√

Γσ(f)‖1
∫ t

0

1√
2s

‖
√
Ps(|g|2)‖∞ds

≤
√
2t‖
√
Γσ(f)‖1.

In the last inequality we used the fact Ps(|g|2) ≤ ‖|g|2‖∞ = 1, which follows from
Proposition 3.18.

We still need the following technical lemma.

Lemma 5.3. For any function f : V → Kd, we have

‖
√
Γσ(f)‖1 ≤

√
2Dnor

G

∑

{x,y}∈E

wxy|σxyf(y)− f(x)|.(5.4)

Proof. It is straightforward to calculate

‖
√
Γσ(f)‖1 =

∑

x∈V

µ(x)

√
1

2µ(x)

∑

y,y∼x

wxy |σxyf(y)− f(x)|2

≤
∑

x∈V

√
µ(x)

2

∑

y,y∼x

√
wxy |σxyf(y)− f(x)|

≤
√
Dnor

G

2

∑

x∈V

∑

y,y∼x

wxy |σxyf(y)− f(x)| .

This simplifies to (5.4), since the summands above are symmetric w.r.t. x and y.

Now, we have all ingredients for the proof of the Buser type inequality (5.1).

Proof of Theorem 5.1. Let {Si}ki=1 be an arbitrary nontrivial k-subpartition of V .
For each Si, let τi : Si → H be the function achieving the values ισ(Si) introduced
in Definition 4.3. We extend each τi trivially to a function on V by assigning zero
matrices to the vertices in V \ Si. By abuse of notation, we denote this extension,
again, by τi : V → H. Each τi gives rise to d pairwise orthogonal functions in
ℓ2(V,Kd;µ):

τ li : V → Kd, x 7→ (τi(x))
l
, l = 1, 2, . . . , d,(5.5)

where (τi(x))
l
denotes the lth column vector of the matrix τi(x). Note that for x ∈ Si,

we have |τ li (x)| = 1.
For every 1 ≤ i ≤ k, we apply Lemma 5.3 to obtain

1

d

d∑

l=1

‖
√
Γσ(τ li )‖1

≤ 1

d

d∑

l=1

√
2Dnor

G


 ∑

{x,y}∈ESi

wxy|σxyτ li (y)− τ li (x)|+ |E(Si, V \ Si)|




≤
√
2Dnor

G (ισ(Si) + |E(Si, V \ Si)|).(5.6)
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On the other hand, we have by Lemma 5.2,

√
2t‖
√
Γσ(τ li )‖1 ≥

∑

x∈V

µ(x)
∣∣τ li (x)− Pσ

t τ
l
i (x)

∣∣

≥
∑

x∈V

µ(x)
∣∣τ li (x)− Pσ

t τ
l
i (x)

∣∣ · |τ li (x)|

≥
∑

x∈V

µ(x)Re
(
(τ li (x))

T (τ li (x)− Pσ
t τ

l
i (x))

)
,

where Re(·) denotes the real part of a complex number, and we used the Cauchy–
Schwarz inequality in the last inequality. By Proposition 3.17, we continue to calculate

√
2t‖
√
Γσ(τ li )‖1 ≥ Re

(
〈τ li , τ li − Pσ

t τ
l
i 〉µ
)
= ‖τ li‖22 − ‖Pσ

t/2τ
l
i‖22.(5.7)

Let {ψn}Nd
n=1 be an orthonormal basis of ℓ2(V,Kd;µ) consisting of the eigenfunctions

corresponding to {λσn}Nd
n=1, respectively. Setting

αl
i,n := 〈τ li , ψn〉µ,

we have

Nd∑

n=1

∣∣αl
i,n

∣∣2 = ‖τ li‖22 = µ(Si)(5.8)

and

‖Pσ
t/2τ

l
i‖22 =

Nd∑

n=1

e−tλσ
n

∣∣αl
i,n

∣∣2 .(5.9)

Now (5.6), (5.7), (5.8), and (5.9) together imply, for each 1 ≤ i ≤ k,

2
√
Dnor

G tφσ(Si) ≥
1

d

d∑

l=1

(
1−

Nd∑

n=1

e−tλσ
n

∣∣αl
i,n

∣∣2

µ(Si)

)

≥1

d

d∑

l=1

(
1−

kd−1∑

n=1

∣∣αl
i,n

∣∣2

µ(Si)
− e−tλσ

kd

Nd∑

n=kd

∣∣αl
i,n

∣∣2

µ(Si)

)

≥1− 1

d

d∑

l=1

kd−1∑

n=1

∣∣αl
i,n

∣∣2

µ(Si)
− e−tλσ

kd .(5.10)

By (5.8), we know

1− 1

d

d∑

l=1

kd−1∑

n=1

∣∣αl
i,n

∣∣2

µ(Si)
≥ 0,

but our aim is to show that for some i0 ∈ {1, 2, . . . , k} this expression is strictly
positive. We rewrite the summands as follows:

∣∣αl
i,n

∣∣2

µ(Si)
=

∣∣∣∣∣

〈
τ li√
µ(Si)

, ψn

〉∣∣∣∣∣

2

.(5.11)
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Since the functions τ li/
√
µ(Si), i = 1, 2, . . . , k, l = 1, 2, . . . , d, are orthonormal in the

space ℓ2(V,Kd;µ), we obtain

k∑

i=1

d∑

l=1

∣∣αl
i,n

∣∣2

µ(Si)
≤ ‖ψn‖22 = 1.(5.12)

Summation over n yields

k∑

i=1

d∑

l=1

kd−1∑

n=1

∣∣αl
i,n

∣∣2

µ(Si)
≤ kd− 1.(5.13)

Consequently, there exists an i0 ∈ {1, 2, . . . , k} such that

1

d

d∑

l=1

kd−1∑

n=1

∣∣αl
i0,n

∣∣2

µ(Si)
≤ 1− 1

kd
.(5.14)

We insert this estimate into inequality (5.10) to obtain

2
√
Dnor

G t max
1≤i≤k

φσ(Si) ≥
1

kd
− e−tλσ

kd .(5.15)

Since the k-subpartition was chosen arbitrarily, we have

2
√
Dnor

G t · hσk ≥ 1

kd
− e−tλσ

kd .(5.16)

For λσkd 6= 0, we choose t = log(2dk)/λσkd to obtain

4
√
Dnor

G kd
√
log(2dk)hσk ≥

√
λσkd.(5.17)

This completes the proof.

Recall from Corollary 3.8 that any graph (G,µ, σ) has a specific finite lower
curvature bound. In case of a negative lower curvature bound, we have the following
result. For a subset S ⊆ V , we define the following constant, which is no greater than
ισ(S):

ι̃σ(S) := min
f :S→K

d

|f(x)|=1, ∀x∈S

∑

{x,y}∈ES

wxy|σxyf(y)− f(x)|.(5.18)

Using this constant, we have the following isoperimetric type inequality.

Theorem 5.4. Let (G,µ, σ) satisfy CDσ(−K,∞), for K ≥ 0. Then for any
subset ∅ 6= S ⊆ V ,

ι̃σ(S) + |E(S, V \ S)| ≥ 1

2
√
2Dnor

G

min

{
(1− e−1)

√
λσ1 ,

λσ1
2
√
2K

}
µ(S).(5.19)

Proof. Modifying the proof of Lemma 5.2 forK ≥ 0, we derive from the inequality
CDσ(−K,∞) that for any function f : V → Kd,

‖f − Pσ
t f‖1 ≤

∫ t

0

√
K

1− e−2Ks
ds‖
√

Γσ(f)‖1.(5.20)
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Using 1− e−u ≥ u/2 for 0 ≤ u ≤ 1, we have for 0 ≤ t ≤ 1/(2K),

‖f − Pσ
t f‖1 ≤ 2

√
t‖
√

Γσ(f)‖1.(5.21)

Let S be an arbitrary nonempty subset of V . Let f0 : S → Kd with |f0(x)| = 1 for
all x ∈ S be the function achieving the value of ι̃σ(S). By similar reasoning as in the
proof of Theorem 5.1, we obtain for 0 ≤ t ≤ 1/(2K),

2
√
2Dnor

G t
(
ι̃σ(S) + |E(S, V \ S)|

)
≥ µ(S)(1− e−tλσ

1 ).(5.22)

If λσ1 ≥ 2K, we set t = 1/λσ1 and obtain

2
√

2Dnor
G

(
ι̃σ(S) + |E(S, V \ S)|

)
≥ µ(S)(1− e−1)

√
λσ1 .(5.23)

If λσ1 < 2K, we set t = 1/(2K) and obtain

2

√
Dnor

G

K

(
ι̃σ(S) + |E(S, V \ S)|

)
≥ µ(S)(1− e−

λσ
1

2K ) ≥ µ(S)
λσ1
4K

.(5.24)

Combining both cases completes the proof.

We now define the following Cheeger type constant h̃σ1 corresponding to ι̃σ(S).

Definition 5.5. Let (G,µ, σ) be given. The constant h̃σ1 is defined as

h̃σ1 = min
∅6=S⊆V

ι̃σ(S) + |E(S, V \ S)|
µ(S)

.

By definition, we observe that h̃σ1 ≤ hσ1 . Theorem 5.4 implies the following esti-
mate immediately.

Corollary 5.6. Let (G,µ, σ) satisfy CDσ(−K,∞),K ≥ 0. Then we have

λσ1 ≤ 8max{(e/(e− 1))2Dnor
G (h̃σ1 )

2,
√
Dnor

G Kh̃σ1}.(5.25)

Note that, for the constant h̃σ1 , the following Cheeger type inequality is proved in
[7, Theorem 4.1] (see also [32, Theorem 4.6 and Remark 4.9]).

Theorem 5.7 (see [7]). Let (G,µ, σ) be given. Then we have

2

5Dnon
G

h̃σ1
2 ≤ λσ1 ≤ 2h̃σ1 .(5.26)

Example 5.8 (signed triangle). We revisit the example of a signed triangle dis-
cussed in section 3.5 (see Figure 2). In this case we have H = U(1) and, therefore,

hσ1 = h̃σ1 . Using Theorem 4.10, we can check

hσ1 =
|s− 1|

6
=

√
2(1− Re(s))

6
.

The Buser type inequality Theorem 5.1 tells us

λσ1 ≤ 32 log 2(hσ1 )
2,(5.27)

while the Cheeger type inequality Theorem 5.7 gives

2

5
(hσ1 )

2 ≤ λσ1 ≤ 2hσ1 .(5.28)

The comparison of the estimates (5.27) and (5.28) is shown in Figure 4, where we
treat the quantities λσ1 and hσ1 as functions of the variable Re(s).
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Fig. 4. Comparison of Cheeger and Buser estimates for a signed triangle.

6. Lichnerowicz estimate and applications. We have the following Lich-
nerowicz type eigenvalue estimate (cf. Theorem 1.9 in the introduction).

Theorem 6.1 (Lichnerowicz inequality). Assume that (G,µ, σ) satisfies CDσ

(K,n) for K ∈ R and n ∈ R+. Then we have for any nonzero eigenvalue λσ of ∆σ,

n− 1

n
λσ ≥ K,(6.1)

where we use the convention (n− 1)/n = 1 in the case n = ∞.

Proof. Let ψ : V → Kd be the corresponding eigenfunction of λσ with unit
ℓ2(V,Kd;µ) norm. Integrating the inequality CDσ(K,n) over the measure µ, we
obtain

∑

x∈V

µ(x)Γσ
2 (ψ)(x) ≥

1

n

∑

x∈V

µ(x) |∆σψ(x)|2 +K
∑

x∈V

µ(x)Γσ(ψ)(x).(6.2)

By (3.2), we have

∑

x∈V

µ(x)Γσ
2 (ψ)(x) = −

∑

x∈V

µ(x)Re(Γσ(ψ,∆σψ)(x)) = λσ
∑

x∈V

µ(x)Γσ(ψ)(x).

Recalling the summation by part formula (3.3), we have

∑

x∈V

µ(x)Γσ(ψ)(x) = −〈ψ,∆σψ〉µ = λσ.

Therefore, (6.2) tells us that

(λσ)2 ≥ 1

n
(λσ)2 + λσK.(6.3)

This implies (6.1) in the case λσ 6= 0.

Consequently, we have the following estimates about the lower curvature bound
of a graph.
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Corollary 6.2. Let (G,µ, σ) satisfy CDσ(K,n), for some K ∈ R and n ∈ R+.
Then we have the following facts:

(i) If n = 1, we have
K ≤ 0.

(ii) If 0 < n < 1, we have K < 0. If, furthermore, σ is not balanced, we have

K ≤ −2(1− n)

5nDnon
G

(h̃σ1 )
2.

(iii) If 1 < n ≤ ∞ and σ is not balanced, we have

K ≤ 2(n− 1)

n
h̃σ1 ≤ 2(n− 1)

n
hσ1 .

Proof. The estimate (i) follows directly from Theorem 6.1. Note that λσ1 is posi-
tive when σ is not balanced. Hence we can combine Theorems 6.1 and 5.7 to conclude
estimates (ii) and (iii).

If the graph has a nonnegative lower curvature bound, we can improve the
estimate Corollary 6.2(iii) by applying Corollary 5.6.

Corollary 6.3. Let (G,µ, σ) satisfy CDσ(K,n) for some K≥0 and 1 < n≤∞.
If the signature σ is not balanced, then we have

K ≤ n− 1

n
min

{
2h̃σ1 ,

8e2

(e− 1)2
Dnor

G (h̃σ1 )
2

}
.(6.4)

Proof. Recall that CDσ(K,n) implies CDσ(K,∞). Hence, Corollary 5.6 is
applicable here.

Remark 6.4 (jump of the curvature around a balanced signature). Suppose that
a graph (G,µ) with a balanced signature has positive n-dimensional Ricci curvature,
i.e., Kn(σtriv) > 0. (Recall that every balanced signature is switching equivalent to
σtriv. Note that by Corollary 6.2, Kn(σtriv) > 0 is possible only when 1 < n ≤ ∞.)
Then by Corollary 6.2, we observe that the curvature Kn(σ) of (G,µ, σ), as a function
of the signature σ, has the following “jump” phenomenon: For unbalanced signatures
σ, when they are close to the balanced signature σtriv,

lim sup
ισ(V )→0

Kn(σ) ≤ 0, but Kn(σtriv) > 0.(6.5)

In the above expression, we use ισ(V ) as a measure for the difference between σ and
σtriv.

The jump of the curvature is closely relate to the jump phenomenon of the first
non-zero eigenvalue of ∆σ. When the signature σ of a connected graph becomes
balanced, the first nonzero eigenvalue jumps from λσ1 to λσ2 .

Example 6.5 (signed triangle). We consider the example of a signed triangle again.
Recall that we have observed the jump phenomenon of the curvature of a signed
triangle in Remark 3.15 (see Figure 3). In Figure 1 of the introduction, the jumps
of the ∞-dimensional Ricci curvature and the first nonzero eigenvalue of a signed
triangle are illustrated in the same diagram.
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We conclude this section by an interesting application of the jump phenomenon
of the curvature.

Theorem 6.6. Suppose that a graph G has at least one cycle, but no cycles of
length 3 or 4. Then, for any signature σ, any edge weights, and any vertex measure
µ, we have

Kn(G,µ, σ) ≤ 0 for any n ∈ R+.

Proof. Since G contains at least one cycle, there exist unbalanced signatures on G.
On the other hand, we have

Kn(G,µ, σ) = Kn(G,µ, σtriv)(6.6)

by Proposition 3.6, as G has no cycles of length 3 or 4. Therefore, ifKn(G,µ, σtriv)>0,
the equality (6.6) leads to a contradiction to the jump of the curvature observed in
Remark 6.4. Hence we must have Kn(G,µ, σ) ≤ 0.

Note that the conditions on the graph in Theorem 6.6 are purely combinatorial,
whereas the curvature estimate holds for any edge weights and vertex measures.

Combining Theorem 6.6 and Corollary 3.8, we obtain an indirect verification of
(3.37). Actually, we obtain the following more general result.

Corollary 6.7. Let N ≥ 5 and (CN , µ, σ) be an unweighted cycle with constant
vertex measure µ = ν0 · 1V . Then we have

Kn(CN , µ, σ) = 0 for any n ≥ 2.

7. Eigenvalue ratios of graphs with O(1) signatures. In this section, we
restrict our considerations to the setting of a graph (G,µ) with a signature

σ : Eor → O(1) = {±1}.
We show that Theorem 5.1 can be applied to derive an upper bound for the ratio of
the kth eigenvalue λσk to the first eigenvalue λσ1 when (G,µ, σ) satisfies CDσ(0,∞).

Note that the connection Laplacian reduces to an operator on ℓ2(V,R;µ). That
is, for any real function f : V → R and any vertex x ∈ V , we have

∆σf(x) :=
1

µ(x)

∑

y,y∼x

wxy(σxyf(y)− f(x)) ∈ R.(7.1)

The eigenvalues of ∆σ can be listed as

0 ≤ λσ1 ≤ · · · ≤ λσk · · · ≤ λσN ≤ 2Dnon
G .

In [4, Theorem 3], Atay and Liu prove the following estimate.

Theorem 7.1 (see [4]). For any graph (G,µ, σ) with σ : Eor → O(1) and any
natural number 1 ≤ k ≤ N , we have

hσ1 ≤ 16
√

2Dnon
G k

λσ1√
λσk
.(7.2)

This result is an extension of the so-called improved Cheeger inequality due to
Kwok et al. [31] for the graph Laplacian ∆. We also mention that in the current
case of O(1) signatures, the multiway Cheeger constants, given in Definition 4.6, have
more explicit combinatorial expressions. We refer to [4] for more details.

As an application of Theorem 5.1, we prove the following eigenvalue ratio
estimates.
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Theorem 7.2. For any graph (G,µ, σ) with σ : Eor → O(1) satisfying CDσ(0,∞)
and any natural number 1 ≤ k ≤ N , there exists an absolute constant C such that

λσk ≤ CDnor
G Dnon

G k2λσ1 .(7.3)

Proof. Since the inequality CDσ(0,∞) is satisfied, we have by Theorem 5.1,

√
λσ1 ≤ 4

√
(log 2)Dnor

G hσ1 .

Combining this with Theorem 7.1, we obtain

√
λσ1 ≤ 64

√
2 log 2

√
Dnor

G Dnon
G k

λσ1√
λσk
.(7.4)

This implies (7.3) immediately.

A direct corollary is the following Buser type inequality.

Corollary 7.3. Let (G,µ, σ) with σ : Eor → O(1) satisfy CDσ(0,∞). Then for
all 1 ≤ k ≤ N , there exists an absolute constant C such that

√
λσk ≤ C

√
Dnon

G Dnor
G khσ1 .(7.5)

Proof. Combining (7.4) with Theorem 7.2 leads to this result immediately.

Remark 7.4. Comparing this result with Theorem 5.1, the advantage of the es-
timate (7.5) lies in the fact that hσ1 ≤ hσk and that the order of k in (7.5) is lower.
However, in the estimate (7.5), the orders of the degrees Dnor

G and Dnon
G are higher

than in Theorem 5.1.

Finally, we observe that Theorem 7.1 and hence the estimate in Corollary 7.3
cannot be true for general signatures σ : Eor → H, even in the one-dimensional case
H = U(1). To explain the reason, let us revisit the example of a signed triangle.

Example 7.5 (signed triangle). The example of a signed triangle, discussed in
section 3.5, carries a U(1) signature σ is assigned (see Figure 2). If Re(s) tends to
1, i.e., if the signature on the triangle tends to be balanced, we observe that λσ2 has
a positive lower bound (see Figure 1), while both λσ1 and hσ1 tend to zero, but at a
different rate (see Figure 4). In fact, by Theorem 5.1, we have

λσ1 ≤ 32 log 2(hσ1 )
2.(7.6)

Assume that Theorem 7.1 holds in this case for k = 2. Combining this with (7.6), we
obtain 1 ≤ Chσ1 for some absolute constant C > 0. This is a contradiction. Hence,
Theorem 7.1 cannot hold for more general signatures.

Appendix A. Curvature and Cheeger constants on Cartesian products.
In this section, we discuss the CDσ inequality and the Cheeger constants on the
Cartesian product of two graphs. For two graphs, G1 = (V1, E1) and G2 = (V2, E2),
their Cartesian product G1 × G2 = (V1 × V2, E12) is defined as follows. Any two
vertices (x1, y1), (x2, y2) ∈ V1 × V2 are connected by an edge in E12 if and only if

either {x1, x2} ∈ E1, y1 = y2 or x1 = x2, {y1, y2} ∈ E2.

A.1. Curvature on Cartesian products. We first discuss the simpler case of
graphs with constant vertex measures.
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A.1.1. Graphs with constant vertex measures. Given two graphs G1 =
(V1, E1, w1) and G2 = (V2, E2, w2), we assign the following edge weights to the Carte-
sian product G1 ×G2 = (V1 × V2, E12):

w12,(x1,y)(x2,y) := w1,x1x2
for any {x1, x2} ∈ E1, y ∈ V2;

w12,(x,y1)(x,y2) := w2,y1y2
for any {y1, y2} ∈ E2, x ∈ V1.(A.1)

Let σi : Eor
i → Hi, i = 1, 2, be the signatures of Gi, i = 1, 2, respectively. We

need to find a proper construction of the signature on the Cartesian product graph
G1 ×G2.

We first consider the case that

H1 = H2 := H = O(d) or U(d) for some d ∈ Z>0.

In this case, we define the signature σ12 : Eor
12 → H as follows:

σ12,(x1,y)(x2,y) := σ1,x1x2
for any (x1, x2) ∈ Eor

1 , y ∈ V2;

σ12,(x,y1)(x,y2) := σ2,y1y2
for any (y1, y2) ∈ Eor

2 , x ∈ V1.(A.2)

Let Σi be the signature group of the graph Gi with σi (recall the definition of the
signature group at the end of section 2.2). We say the two subgroups Σ1 and Σ2 of
H commute if for any s1 ∈ Σ1, s2 ∈ Σ2, we have s1s2 = s2s1.

Theorem A.1. Let (G1, 1V1
, σ1) and (G2, 1V2

, σ2) be two graphs with σi : E
or
i →

H, i = 1, 2. Assume that they satisfy

CDσ1(K1, n1) and CDσ2(K2, n2),

respectively. If their signature groups Σ1 and Σ2 commute, then their Cartesian prod-
uct graph (G1 ×G2, 1V1×V2

, σ12), with the edge weight w12 given in (A.1), satisfies

CDσ12(K1 ∧K2, n1 + n2),

where K1 ∧K2 := min{K1,K2}.
Note that the commutativity restriction of Σ1 and Σ2 is a very natural condition.

The intuition behind the above result is that the “mixed structure” in the Carte-
sian product is “flat.” To be precise, we want for two balanced signatures σ1, σ2 on
G1, G2 that σ12 on G1 × G2 is also balanced. In Figure 5, we show a typical new
cycle created in the process of taking the Cartesian product, where {xi, x} ∈ E1

and {yk, y} ∈ E2. Since Σ1 and Σ2 commute, the signature of this cycle, given by
σ1,xxi

σ2,yyk
σ−1
1,xxi

σ−1
2,yyk

, is trivial.

Proof of Theorem A.1. Let f : V1 × V2 → Kd be any Kd valued function on the
product graph. For fixed y ∈ V2, we define fy(·) := f(·, y) to be a Kd valued function
on G1. Similarly, we define the function fx(·) := f(x, ·) : V2 → Kd.

By the construction of σ12, it is straightforward to check that

∆σ12f(x, y) = ∆σ1fy(x) + ∆σ2fx(y),(A.3)

Γσ12(f)(x, y) = Γσ1(fy)(x) + Γσ2(fx)(y).(A.4)

For the operator Γσ12

2 , we claim that

Γσ12

2 (f)(x, y) ≥ Γσ1

2 (fy)(x) + Γσ2

2 (fx)(y).(A.5)

D
o

w
n
lo

ad
ed

 0
4
/1

1
/1

9
 t

o
 1

2
9
.2

3
4
.3

9
.1

5
4
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGHER ORDER BUSER INEQUALITIES 295

(x,y) (xi,y)

(x,yk) (xi,yk)

σ2,yyk

σ1,xxi

σ2,yyk

σ1,xxi

Fig. 5. A typical cycle in the Cartesian product graph.

Once inequality (A.5) is verified, we apply the CDσ inequalities on G1 and G2 to
estimate

Γσ12

2 (f)(x, y)

≥ 1

n1
|∆σ1fy(x)|2 +K1Γ

σ1(fy)(x) +
1

n2
|∆σ2fx(y)|2 +K2Γ

σ2(fx)(y)

≥ 1

n1 + n2
(|∆σ1fy(x)|+ |∆σ2fx(y)|)2 + (K1 ∧K2) (Γ

σ1(fy)(x) + Γσ2(fx)(y))

≥ 1

n1 + n2
|∆σ12f(x, y)|2 + (K1 ∧K2)Γ

σ12(f)(x, y).

(A.6)

In the third inequality above, we used the triangle inequality and the equalities (A.3)
and (A.4).

Hence, it only remains to prove the claim (A.5). Recall that

2Γσ12

2 (f)(x, y) = ∆Γσ12(f)(x, y)− Γσ(f,∆σ12f)(x, y)− Γσ(∆σ12f, f)(x, y).(A.7)

For simplicity, we denote the neighbors of x in V1 by xi and the neighbors of y in V2
by yk. We will then write, for short,

w1,i := w1,xxi
, w2,k := w2,yyk

, and σ1,i := σ1,xxi
, σ2,k := σ2,yyk

,

and
∑

xi
(
∑

yk
, resp.) the summation over all neighbors of x ∈ V1 (y ∈ V2, resp.).

We first calculate

∆Γσ12(f)(x, y)

=
∑

xi

w1,i (Γ
σ12(f)(xi, y)− Γσ12(f)(x, y))

︸ ︷︷ ︸
=:L1

+
∑

yk

w2,k (Γ
σ12(f)(x, yk)− Γσ12(f)(x, y))

︸ ︷︷ ︸
=:L2

.

Applying (A.4), we obtain

L1 =
∑

xi

w1,i (Γ
σ1(fy)(xi) + Γσ2(fxi)(y)− Γσ1(fy)(x)− Γσ2(fx)(y))

= ∆Γσ1(fy)(x) +
1

2

∑

xi,yk

w1,iw2,k(|σ2,kf(xi, yk)− f(xi, y)|2

− |σ2,kf(x, yk)− f(x, y)|2).(A.8)
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Similarly, we have

L2 = ∆Γσ2(fx)(y) +
1

2

∑

xi,yk

w1,iw2,k(|σ1,if(xi, yk)− f(x, yk)|2

− |σi,if(xi, y)− f(x, y)|2).(A.9)

Now we calculate the remaining terms in (A.7).

Γσ12(f,∆σ12f)(x, y)

=
1

2

∑

xi

w1,i(σ1,if(xi, y)− f(x, y))T (σ1,i∆σ12f(xi, y)−∆σ12f(x, y))

+
1

2

∑

yk

w2,k(σ2,kf(x, yk)− f(x, y))T (σ2,k∆σ12f(x, yk)−∆σ12f(x, y))

=:M1 +M2.(A.10)

Applying the equality (A.3), we obtain

M1 = Γσ1(fy,∆
σ1fy)(x)

+
1

2

∑

xi

w1,i(σ1,if(xi, y)− f(x, y))T (σ1,i∆σ2fxi(y)−∆σ2fx(y)).(A.11)

Hence, we get

M1 − Γσ1(fy,∆
σ1fy)(x)

=
1

2

∑

xi,yk

w1,iw2,k[(σ1,if(xi, y)− f(x, y))T (σ1,iσ2,kf(xi, yk)− σ2,kf(x, yk))

− |σ1,if(xi, y)− f(x, y)|2].(A.12)

Similarly, we have

M2 − Γσ2(fx,∆σ2fx)(y)

=
1

2

∑

xi,yk

w1,iw2,k[(σ2,kf(x, yk)− f(x, y))T (σ2,kσ1,if(xi, yk)− σ1,if(xi, y))

− |σ2,kf(x, yk)− f(x, y)|2].(A.13)

Combining (A.8) and (A.13), we arrive at

(L1 −∆Γσ1(fy)(x))− (M2 − Γσ2(fx,∆σ2fx)(y))− (M2 − Γσ2(fx,∆σ2fx)(y))

=
1

2

∑

xi,yk

w1,iw2,k[|σ2,kf(xi, yk)− f(xi, y)|2 + |σ2,kf(x, yk)− f(x, y)|2

+(σ2,kf(x, yk)− f(x, y))T (σ2,kσ1,if(xi, yk)− σ1,if(xi, y))

+ (σ2,kf(x, yk)− f(x, y))T (σ2,kσ1,if(xi, yk)− σ1,if(xi, y))].

(A.14)

Since Σ1 and Σ2 commute, we have

σ2,kσ1,i = σ1,iσ2,k.
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Therefore, we obtain

(L1 −∆Γσ1(fy)(x))− (M2 − Γσ2(fx,∆σ2fx)(y))− (M2 − Γσ2(fx,∆σ2fx)(y))

=
1

2

∑

xi,yk

w1,iw2,k|σ1,iσ2,kf(xi, yk)− σ1,if(xi, y)− σ2,kf(x, yk) + f(x, y)|2.

(A.15)

Similarly, by combining (A.9) and (A.12), we obtain

(L2 −∆Γσ2(fx)(y))− (M1 − Γσ1(fy,∆
σ1fy)(x))− (M1 − Γσ1(fy,∆σ1fy)(x))

=
1

2

∑

xi,yk

w1,iw2,k|σ2,kσ1,if(xi, yk)− σ2,kf(x, yk)− σ1,if(xi, y) + f(x, y)|2.

(A.16)

Adding (A.15) and (A.16), and using (3.1), we get

2Γσ12

2 (f)(x, y)− 2Γσ1

2 (fy)(x)− 2Γσ2

2 (fx)(y)

=
∑

xi,yk

w1,iw2,k|σ2,kσ1,if(xi, yk)− σ2,kf(x, yk)− σ1,if(xi, y) + f(x, y)|2 ≥ 0.

(A.17)

This proves (A.5).

Remark A.2 (tightness of Theorem A.1). The estimate in Theorem A.1 is tight
at least in the case of taking the Cartesian product of (G,1V , σ) with itself, assuming
that its signature group Σ is abelian. That is, for any given n ∈ R+, the precise lower
curvature bounds satisfy

K2n(G×G,1V×V , σ12) = Kn(G,1V , σ).

Note that the tightness of Theorem A.1 lies in the tightness of (A.6) and (A.17). By
assumption, there exists a function f : V → Kd and a vertex x ∈ V such that

Γσ
2 (f)(x) =

1

n
|∆σf(x)|2 +KΓσ(f)(x) and Γσf(x) 6= 0.

Then we can choose a function F : V × V → Kd satisfying, locally, around the vertex
(x, x) ∈ V × V ,

(i) F (x, x) := f(x);
(ii) F (xi, x) := f(xi) for all xi ∼ x;
(iii) F (x, xk) := f(xk) for all xk ∼ x;
(iv) F (xi, xk) := σ−1

xxi
σ−1
xxk

(σxxk
f(xk)+σ

−1
xxi
f(xi)−f(x)) for all xi ∼ x and xk ∼ x.

Note that (i)–(iii) implies ∆σFx(x) = ∆σF x(x) and, hence, (A.6) holds with equal-
ities. Property (iv) ensures that (A.17) holds also with equality. This shows the
tightness of the result.

Next, we discuss the situation when the two groups H1 and H2 are different. We
assume that

H1 = O(d1), H2 = O(d2), or H1 = U(d1), H2 = U(d2), for some d1, d2 ∈ Z>0,
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where d1, d2 can be different integers. In such a general situation, we construct the
signature σ̂12 : Eor

12 → H1 ⊗H2 on the Cartesian product graph in the following way:

σ̂12,(x1,y)(x2,y) := σ1,x1x2
⊗ Id2

for any (x1, x2) ∈ Eor
1 , y ∈ V2;

σ̂12,(x,y1)(x,y2) := Id1
⊗ σ2,y1y2

for any (y1, y2) ∈ Eor
2 , x ∈ V1,(A.18)

where Idi
is the identity matrix of size di × di, i = 1, 2.

Theorem A.3. Let (G1, 1V1
, σ1) and (G2, 1V2

, σ2) be two graphs with σi :
Eor

i → Hi, i = 1, 2. Assume that they satisfy

CDσ1(K1, n1) and CDσ2(K2, n2),

respectively. Then their Cartesian product graph (G1×G2, 1V1×V2
, σ̂12) with the edge

weight w12 given in (A.1) satisfies

CDσ̂12(K1 ∧K2, n1 + n2).

This is an immediate consequence of Theorem A.1 and Corollary 3.4.

Proof of Theorem A.3. By Corollary 3.4, we know that (G1, 1V1
, σ1 ⊗ Id2

) and
(G2, 1V2

, Id1
⊗σ2) satisfy CDσ1⊗Id2 (K1, n1) and CD

Id1⊗σ2(K2, n2), respectively. Note
that for any (x, xi) ∈ Eor

1 and (y, yk) ∈ Eor
2 , we have

(σ1,xxi
⊗ Id2

)(Id1
⊗ σ2,yyk

) = (Id1
⊗ σ2,yyk

)(σ1,xxi
⊗ Id2

).(A.19)

That is, the corresponding signature groups of (G1, 1V1
, σ1 ⊗ Id2

) and (G2, 1V2
, Id1

⊗
σ2) commute. Hence, we can apply Theorem A.1 and finish the proof.

Remark A.4 (vertex measure). In Theorems A.1 and A.3, we use the particular
vertex measure µ(x) = 1 for all vertices x. In fact, we have more flexibility about
those measures. Assume that the vertex measures of G1, G2, G1 × G2 take constant
values ν1, ν2, ν12 ∈ R, respectively. Then under the assumptions of Theorem A.1
(replacing 1Vi

by νi ·1Vi
), we have that the graph (G1×G2, ν12 ·1V1×V2

, σ12) satisfies

CDσ12

(
1

ν12
(ν1K1 ∧ ν2K2), n1 + n2

)
.

The result in Theorem A.3 can be generalized similarly.

A.1.2. Graphs with nonconstant vertex measures. For two graphs (G1, µ1)
and (G2, µ2) whose vertex measures are not necessarily constant, we modify the def-
inition of the edge weights of their Cartesian product. In [14], Chung and Tetali
introduced the edge weight for the Cartesian product G1 ×G2 = (V1 × V2, E12)

w✷

12,(x1,y)(x2,y)
:= w1,x1x2

µ2(y) for any {x1, x2} ∈ E1, y ∈ V2;

w✷

12,(x,y1)(x,y2)
:= w2,y1y2

µ1(x) for any {y1, y2} ∈ E2, x ∈ V1,(A.20)

and the specific vertex measure

2µ1µ2 : V1 × V1 ∋ (x, y) 7→ 2µ1(x)µ2(y) ∈ R.(A.21)

Observe that, in the case µi = dVi
, i = 1, 2, we have

2µ1(x)µ2(y) =
∑

xi

w✷

12,(xi,y)(x,y)
+
∑

yk

w✷

12,(x,yk)(x,y)
.

The definitions (A.20) and (A.21) lead to a Laplacian associated to a natural random
walk on the product graph G1 ×G2.
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Theorem A.5. Let (G1, µ1, σ1) and (G2, µ2, σ2) be two graphs with σi : E
or
i → H,

i = 1, 2. Assume that they satisfy

CDσ1(K1, n1) and CDσ2(K2, n2),

respectively. If their signature groups Σ1 and Σ2 commute, then their Cartesian prod-
uct graph (G1 ×G2, 2µ1µ2, σ12), with the edge weight w✷

12 given in (A.20), satisfies

CDσ12

(
1

2
(K1 ∧K2), n1 + n2

)
,

where K1 ∧K2 := min{K1,K2}.
Proof. The proof is analogous to the proof of Theorem A.1. We only mention

here that, this time, we have

∆σ12f(x, y) =
1

2
∆σ1fy(x) +

1

2
∆σ2fx(y),

Γσ12(f)(x, y) =
1

2
Γσ1(fy)(x) +

1

2
Γσ2(fx)(y),

and

Γσ12

2 (f)(x, y) ≥ 1

4
Γσ1

2 (fy)(x) +
1

4
Γσ2

2 (fx)(y).

The last inequality above is derived from

2µ(x)µ(y) (4Γσ12

2 (f)(x, y)− Γσ1

2 (fy)(x)− Γσ2

2 (fx)(y))

=
∑

xi,yk

w1,iw2,k|σ2,kσ1,if(xi, yk)− σ2,kf(x, yk)− σ1,if(xi, y) + f(x, y)|2 ≥ 0.

Remark A.6. Let us assign a general vertex measure µ12 to the Cartesian product
graph. Then, under the assumption of Theorem A.5, a proof analogous to the proof
of Theorem A.1 yields that (G1 × G2, µ12, σ12), with the edge weight w✷

12 given in
(A.20), satisfies

CDσ12

(
min

(x,y)∈V1×V2

µ1(x)µ2(y)

µ12(x, y)
(K1 ∧K2), n1 + n2

)
.

Note that this general result also includes Theorem A.1 as a particular case.

A result similar to Theorem A.3 follows immediately from Theorem A.5.

Theorem A.7. Let (G1, µ1, σ1) and (G2, µ2, σ2) be two graphs with σi : E
or
i →

Hi, i = 1, 2. Assume that they satisfy

CDσ1(K1, n1) and CDσ2(K2, n2),

respectively. Then their Cartesian product graph (G1 × G2, µ12, σ̂12), with the edge
weight w✷

12 given in (A.20), satisfies

CDσ̂12

(
min

(x,y)∈V1×V2

µ1(x)µ2(y)

µ12(x, y)
(K1 ∧K2), n1 + n2

)
.
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A.2. Cheeger constants on Cartesian products. In this subsection, we dis-
cuss relations between the Cheeger constants on two graphs and on their Cartesian
products.

Recall (4.3), i.e., for any (d×d)-matrix A and any B ∈ O(d) or U(d), their average
(2, 1)-norm satisfies

|BA|2,1 = |A|2,1.(A.22)

This ensures the following relation between the Cheeger constants.

Theorem A.8. Let (G1, 1V1
, σ1) and (G2, 1V2

, σ2) be two graphs with σi :
Eor

i → Hi, i = 1, 2. Suppose that H1 and H2 are embedded in a group H12 such
that H1 and H2 commute. Define σ12 as in (A.2). Then the kl-way Cheeger constant
hσ12

kl of their Cartesian product graph (G1 × G2, 1V1×V2
, σ12), with the edge weight

w12 given in (A.1), satisfies

hσ12

kl ≤ hσ1

k + hσ2

l .

We first show the following lemma.

Lemma A.9. For any subsets Si ⊆ Vi, i = 1, 2, we have

ισ12(S1 × S2) ≤ |S1|ισ2(S2) + |S2|ισ1(S1).(A.23)

Proof. Let τi : Si → Hi be the function that achieves the frustration index ισi(Si).
Set τ := τ1τ2 : S1 × S2 → H12. Then, by definition, we calculate

ισ12(S1 × S2)

≤
∑

y∈S2

∑

{x,x′}∈ES1

w1,xx′ |σ1,xx′τ1(x
′)τ2(y)− τ1(x)τ2(y)|2,1

+
∑

x∈S1

∑

{y,y′}∈ES2

w2,yy′ |σ2,yy′τ1(x)τ2(y
′)− τ1(x)τ2(y)|2,1

= |S2|
∑

{x,x′}∈ES1

w1,xx′ |σ1,xx′τ1(x
′)− τ1(x)|2,1

+ |S1|
∑

{y,y′}∈ES2

w2,yy′ |σ2,yy′τ2(y
′)− τ2(y)|2,1.

In the last equality, we used that H1 and H2 commute and (A.22). This implies the
lemma immediately.

Proof of Theorem A.8. For any two subsets Si ⊆ Vi, i = 1, 2, it is straightforward
to check that

|E(S1 × S2, V1 × V2 \ S1 × S2)| ≤ |S2||E(S1, V1 \ S1)|+ |S1||E(S2, V2 \ S2)|.

Combining this with Lemma A.9, and using the fact |S1 × S2| = |S1||S2|, we obtain

φσ12(S1 × S2) ≤ φσ1(S1) + φσ2(S2).

Then the theorem follows immediately, by definition, since every nontrivial k-

subpartition {S(i)
1 }ki=1 of V1 and every nontrivial l-subpartition {S(j)

2 }lj=1 of V2 in-

duce a nontrivial kl-subpartition {S(i)
1 × S

(j)
2 }k,li=1,j=1 of V1 × V2.
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Note that Theorem A.8 can be applied in the following particular case: Given two
signatures σi : E

or
i → Hi, i = 1, 2, we can embed them into H1 ⊗H2 by identifying

H1 with H1 ⊗ Id2
and H2 with Id1

⊗ H2, respectively. Then the signature σ12 on
G1 ×G2 coincides with the signature σ̂12 given in (A.18).

For graphs with nonconstant vertex measures, we can extend the above proof to
obtain the following result.

Theorem A.10. Let (G1, µ1, σ1) and (G2, µ2, σ2) be two graphs with σi :
Eor

i → Hi, i = 1, 2. Then the kl-way Cheeger constant hσ̂12

kl of their Cartesian product
graph (G1 ×G2, 2µ1µ2, σ̂12), with the edge weight w✷

12 given in (A.20), satisfies

hσ̂12

kl ≤ 1

2
(hσ1

k + hσ2

l ).

Appendix B. Frustration index and spanning trees. In section 4.2, we
showed that, in the case H = U(1), there is an easier way to calculate the frustration
index of a subset S ⊆ V . Recall that the frustration index ισ(S) is defined as the
minimum of

∑
{x,y}∈S wxy|σxyτ(y) − τ(x)|2,1 over all possible switching functions τ

on S. Theorem 4.10 tells us that it is enough to take the minimum of

∑

{x,y}∈S

wxy|σxyτT (y)− τT (x)|2,1(B.1)

over all spanning trees T of S, where τT is an arbitrary representative of the set

CT (S) = {τ : S → U(1) : τ is constant on T w.r.t. σ}.

Recall that (B.1) is well defined because for any two τ1, τ2 ∈ CT (S), there exists
z ∈ U(1) such that τ1 = τ2z, and hence

|σxyτ1(y)− τ1(x)|2,1 = |(σxyτ2(y)− τ2(x))z|2,1 = |σxyτ2(y)− τ2(x)|2,1.(B.2)

That is, the quantity |σxyτT (x) − τT (y)|2,1 does not depend on the choice of τT ∈
CT (S).

It is natural to ask whether Theorem 4.10 can be generalized to higher dimensional
signatures, i.e., H = U(d), for d ≥ 2. We first observe that, for the signature σ :
Eor → U(d), d ≥ 2, the quantity (B.1) is not well defined since it depends on the
representatives! Note that for any (d × d)-matrices A and B ∈ U(d), we do not
always have |AB|2,1 = |A|2,1 (recall that |BA|2,1 = |A|2,1). But this is needed in the
verification of (B.2).

However, if we use the Frobenius norm | · |F instead, (B.1) is still well defined. In
this section, we present a counterexample to show that Theorem 4.10 does not hold
for higher dimensional signatures, even if we use the Frobenius norm in the definition
of the frustration index.

Recall that Lemma 4.11, which is a statement about the metric space S1 = U(1),
plays a crucial role in the proof of Theorem 4.10. This lemma does not generalize
to higher dimensional spheres. Already in S2, we have the following counterexample:
For three equidistributed points P1, P2, P3 on a meridian close to the north pole N ,
we have

d(P1, P2) + d(P1, P3) > d(N,P1) + d(N,P2) + d(N,P3),

where d denotes the intrinsic distance in S2. Lifting this example into U(2) by using
the Hopf fibration S1 → SU(2) ∼= S3 → S2, we obtain the following matrices in U(2):
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A0 =

(
0 −1
1 0

)
, Aj =

(
reiαk −

√
1− r2√

1− r2 re−iαk

)
, k = 1, 2, 3,(B.3)

where r ∈ [0, 1], αk = 2(k − 1)π/3. We check that

|Ak −Al|F =
√
6r ∀ 1 ≤ k 6= l ≤ 3

and

|A0 −Ak|F = 2

√
1−

√
1− r2 ∀ k = 1, 2, 3.

Therefore, for small r (e.g., when r ≤ 0.85),

3∑

k=1

|A0 −Ak|F < min
A∈{A1,A2,A3}

3∑

k=1

|A−Ak|F .(B.4)

Equation (B.4) implies that the generalization of Lemma 4.11 does not hold in U(2).
For later purposes, we transform one of the matrices {A1, A2, A3} to be the iden-

tity matrix I2. Set

B0 = A−1
3 A0, Bk = A−1

3 Ak, k = 1, 2, 3.

Then we have B3 = I2. Using the definition of the Frobenius norm, we obtain

|B1 −B2|F = |B2 −B3|F = |B3 −B1|F =
√
6r,(B.5)

and, for small r,

3∑

k=1

|B0 −Bk|F < min
B∈{B1,B2,B3}

3∑

k=1

|B −Bk|F ≤ |B1 − I2|F + |B2 − I2|F .(B.6)

Let us consider the graph shown in Figure 6. This is a graph with vertex set
V = {x, y, z, w}, edge set E = {{x, y}, {y, z}, {z, w}, {w, x}, {y, w}}, and a signature
σ : Eor → U(2) as shown in the figure.

Proposition B.1. For the graph as shown in Figure 6, we have

ισF (V ) := min
τ :V→U(2)

∑

{x,y}∈ES

wxy|σxyτ(y)− τ(x)|F < min
T∈TS

∑

{x,y}∈E

|σxyτT (y)− τT (x)|F ,

where τT is a representative of the set

CT (V ) = {τ : V → U(2) : τ is constant on T w.r.t. σ}.

x

y

z

w

σxy=I2

σyw=I2

σyz=I2

σxw=B1 σzw=B2

Fig. 6. A counterexample.
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Proof. Observe that T1 = (V, {{x, y}, {y, w}, {y, z}}) is a spanning tree and that
the function τT1

≡ I2 is a constant function on T1 with respect to σ. We calculate

∑

{x,y}∈E

|σxyτT1
(y)− τT1

(x)|F = |B1 − I2|2,1 + |B2 − I2|F

(B.6)
>

3∑

k=1

|B0 −Bk|F

=
∑

{x,y}∈E

|σxyτ0(y)− τ0(x)|F ,

where the switching function τ0 is defined via τ0(x) = τ0(y) = τ0(z) = B0, τ0(w) = I2.
Therefore, by definition, we have

ισF (V ) <
∑

{x,y}∈E

|σxyτT1
(y)− τT1

(x)|F .(B.7)

The graph in Figure 6 has eight spanning trees, which we denote by Ti, i = 1, 2, . . . , 8.
We claim that

∑

{x,y}∈E

|σxyτTi
(y)− τTi

(x)|F = |B1 − I2|F + |B2 − I2|F ∀ i = 1, 2, . . . , 8.(B.8)

The proposition then follows immediately from (B.7) and (B.8).
Claim (B.8) can be checked directly with the help of (B.5) for all choices of

spanning trees.
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[15] D. Cvetković and S. K. Simić, Towards a spectral theory of graphs based on the signless

Laplacian, I, Publ. Inst. Math. (Beograd) (N.S.), 85 (2009), pp. 19–33.
[16] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random

walks, Trans. Amer. Math. Soc., 284 (1984), pp. 787–794.
[17] K. D. Elworthy, Manifolds and graphs with mostly positive curvatures, in: Stochastic Analysis

and Applications (Lisbon, 1989), Progr. Probab. 26, Birkhäuser Boston, Boston, MA, 1991,
pp. 96–110.

[18] K. Funano, Eigenvalues of Laplacian and Multi-way Isoperimetric Constants on Weighted

Riemannian Manifolds, arXiv:1307.3919v1, 2013.
[19] T. Gao, J. Brodzki, and S. Mukherjee, The Geometry of Synchronization Problems and

Learning Group Actions, arXiv:1610.09051, 2016.
[20] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, 3rd ed., Universitext,

Springer-Verlag, Berlin, 2004.
[21] J. L. Gross, Voltage graphs, Discrete Math., 9 (1974), pp. 239–246.
[22] J. L. Gross and T. W. Tucker, Quotients of complete graphs: Revisiting the Heawood

map-coloring problem, Pacific J. Math., 55 (1974), pp. 391–402.
[23] F. Harary, On the notion of balance of a signed graph, Michigan Math. J., 2 (1953), pp.

143–146.
[24] F. Harary and J. A. Kabell, A simple algorithm to detect balance in signed graphs, Math.

Social Sci., 1 (1980/81), pp. 131–136.
[25] P. Horn, Y. Lin, S. Liu, and S.-T. Yau, Volume doubling, Poincaré inequality and Gaussian
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