Curvature and metric in Riemannian 3-manifolds

By Toshio Nasu

(Received Feb. 9, 1973)

§ 1. Introduction.

Let (M, g) and (\bar{M}, \bar{g}) be two Riemannian n-manifolds $(n \geqq 3)$ and f a diffeomorphism of (M, g) to (\bar{M}, \bar{g}). f is called a curvature-preserving diffeomorphism if for every point $p \in M$ and for every 2 -plane section σ of the tangent space $T_{p}(M)$

$$
\bar{K}\left(f_{*} \sigma\right)=K(\sigma)
$$

holds, where K and \bar{K} denote the sectional curvatures of (M, g) and (\bar{M}, \bar{g}), respectively. A point $p \in M$ is said to be isotropic if $K(\sigma)=$ const. for every 2 -plane section σ of $T_{p}(M)$, and is said to be non-isotropic otherwise.

Recently, R.S. Kulkarni considered in [3] the converse of the theorema egregium of Gauss, which asserts that the curvature is a metric invariant, and proved that the curvature, in general, determines a conformal class of metric, that is, a curvature-preserving diffeomorphism $f:(M, g) \rightarrow(\bar{M}, \bar{g})$ is conformal if the set of non-isotropic points is dense in M (cf. Theorem 1] in [3]). It is natural to ask furthermore whether f is isometric or not. He showed in [3] that the answer to this question is affirmative if $n \geqq 4$ (cf. Fundamental Theorem in [3]), but he obtained only partial results for 3 -manifolds assuming compactness and restricting sign of curvature (cf. § 6 in [3]). The purpose of this note is to give some affirmative answers to the above question for 3 manifolds.

In $\S 2$ we shall prepare some general formulas on the conformal change of metric. In § 3, starting with Kulkarni's results, we shall obtain several lemmas on the curvature-preserving diffeomorphism f for later use. In §4, after constructing a useful constant associated with f whose vanishing gives a necessary and sufficient condition for f to be isometric (cf. Theorem 1), we shall show as a corollary to Theorem 1 that the answer to the above question is also affirmative for conformally flat or compact 3 -manifolds (cf. Corollary 1 and Corollary 2). Furthermore, as an application of Theorem 2 we shall give a partial result for complete manifolds with non-vanishing scalar curvatures (cf. Theorem 3). The hypothesis $n=3$ is essential in $\S 4$.

We shall assume, throughout this paper, that Riemannian manifolds under consideration are connected and of dimension $n \geqq 3$, their metrics are positive
definite, and all manifolds and all diffeomorphisms are of class C^{∞}. For the terminology and notation, we generally follow [3].

§ 2. Notation and conformal diffeomorphism.

In this section, we shall summarize general transformation formulas of some geometric objects under the conformal change of metric (for details see [3] or [5]).

Let (M, g) and (\bar{M}, \bar{g}) be Riemannian n-manifolds with metrics g and \bar{g}, respectively. A diffeomorphism $f:(M, g) \rightarrow(\bar{M}, \bar{g})$ is said to be conformal if the induced metric $g^{*}=f^{*} \bar{g}$ is related to g by

$$
\begin{equation*}
g^{*}=e^{2 \varphi} g, \tag{2.1}
\end{equation*}
$$

where the function φ is necessarily differentiable and is called the associated function of f. φ will be sometimes denoted by φ_{f}. If φ is constant, then f is homothetic, and if φ is identically zero, then f is an isometry.

Let $\mathfrak{F}(M)$ be the ring of differentiable real-valued functions on M and $\mathfrak{X}(M)$ the Lie algebra of differentiable vector fields on M. Let ∇ be the Riemannian connection with respect to the metric g and $R(X, Y)=\nabla_{[X, Y]}-\left[\nabla_{X}, \nabla_{Y}\right](X, Y$ $\in \mathfrak{X}(M)$) the curvature operator of ∇. The Ricci tensor field and the scalar curvature will be denoted by Ric and Sc, respectively. And also we indicate the corresponding quantities with respect to the metric g^{*} or \bar{g} by asterisking or by bar overhead, respectively. Then it is known that the above quantities with respect to g^{*} coincide with the induced ones of the corresponding quantities with respect to \bar{g} by f and we have the following formulas. For any X, $Y \in \mathfrak{X}(M)$, we have

$$
\begin{equation*}
\nabla_{X}^{*} Y=\nabla_{X} Y+S(X, Y) \tag{2.2}
\end{equation*}
$$

with

$$
\begin{equation*}
S(X, Y)=(X \varphi) Y+(Y \varphi) X-\langle X, Y\rangle G, \tag{2.3}
\end{equation*}
$$

where $\langle X, Y\rangle=g(X, Y)$ and $G=\operatorname{grad} \varphi$, the gradient of φ with respect to the metric g. Using the hessian of φ

$$
\begin{align*}
\operatorname{hess}_{\varphi}(X, Y) & =\left(\nabla_{X} d \varphi\right) Y \\
& =\left\langle\nabla_{X} G, Y\right\rangle \tag{2.4}
\end{align*}
$$

we define the symmetric (0,2)-tensor field

$$
\begin{equation*}
P(X, Y)=\operatorname{hess}_{\varphi}(X, Y)-(X \varphi)(Y \varphi)+\frac{1}{2}\|G\|^{2}\langle X, Y\rangle, \tag{2.5}
\end{equation*}
$$

where $\|G\|=\langle G, G\rangle^{\frac{1}{2}}$. In general, for a given symmetric (0,2)-tensor field H, we denote by H_{0} the canonical endomorphism of the tangent bundle $\mathfrak{T}(M)$
induced by H, that is, $\left\langle H_{0}(X), Y\right\rangle=H(X, Y)$ for all $X, Y \in \mathscr{X}(M)$. Then by (2.4) and (2.5) we have

$$
\begin{equation*}
P_{0}(X)=\nabla_{X} G-(X \varphi) G+\frac{1}{2}\|G\|^{2} X \tag{2.6}
\end{equation*}
$$

The following transformation formulas of the various tensor fields under the conformal change of metric (2.1) are known :

$$
\begin{equation*}
R^{*}(X, Y) Z=R(X, Y) Z+\widetilde{T}(X, Y) Z \tag{2.7}
\end{equation*}
$$

where

$$
\begin{gather*}
\tilde{T}(X, Y) Z=P(Y, Z) X-P(X, Z) Y+\langle Y, Z\rangle P_{0}(X)-\langle X, Z\rangle P_{0}(Y) \\
\operatorname{Ric}^{*}(X, Y)=\operatorname{Ric}(X, Y)+\mathfrak{N}(X, Y) \tag{2.8}
\end{gather*}
$$

where

$$
\begin{gather*}
\mathfrak{N}(X, Y)=-(n-2) P(X, Y)-\langle X, Y\rangle \text { Trace } P_{0} \\
e^{2 \varphi} \operatorname{Ric}_{0}^{*}(X)=\operatorname{Ric}_{0}(X)+\mathfrak{R}_{0}(X) \tag{2.9}
\end{gather*}
$$

where $\operatorname{Ric}_{0}^{*}$ is defined by $g^{*}\left(\operatorname{Ric}_{0}^{*}(X), Y\right)=\operatorname{Ric}^{*}(X, Y)$ for all $X, Y \in \mathfrak{X}(M)$; and

$$
\begin{equation*}
e^{2 \varphi} \mathrm{Sc}^{*}=\mathrm{Sc}-2(n-1) \text { Trace } P_{0} \tag{2.10}
\end{equation*}
$$

Weyl's conformal curvature tensor on M is a tensor field C of type $(1,3)$ defined by

$$
\begin{align*}
& C(X, Y) Z=R(X, Y) Z+\frac{1}{n-2}\{L(Y, Z) X-L(X, Z) Y \\
&\left.\quad+\langle Y, Z\rangle L_{0}(X)-\langle X, Z\rangle L_{0}(Y)\right\} \tag{2.11}
\end{align*}
$$

for all $X, Y, Z \in \mathfrak{X}(M)$, where we have put

$$
\begin{equation*}
L=\operatorname{Ric}-\frac{\mathrm{Sc}}{2(n-1)} g \tag{2.12}
\end{equation*}
$$

The following Weyl's 3-index tensor D of type $(0,3)$ will also be useful:

$$
\begin{equation*}
D(X, Y, Z)=\left(\nabla_{X} L\right)(Y, Z)-\left(\nabla_{Y} L\right)(X, Z) \tag{2.13}
\end{equation*}
$$

The tensor field C is invariant under any conformal change of metric, and vanishes identically for $n=3$. As is well-known, a necessary and sufficient condition for (M, g) to be conformally flat is that

$$
C=0 \quad \text { for } \quad n>3
$$

and

$$
D=0 \quad \text { for } \quad n=3
$$

We recall the following well-known facts (cf. Yano [5]):
Lemma 1. The tensor fields C and D satisfy the following identities:
(a)

$$
D^{*}(X, Y, Z)=D(X, Y, Z)-(n-2)\langle C(X, Y) Z, G\rangle
$$

(b)

$$
\text { Trace }\left\{X \rightarrow D_{0}(X, Y)\right\}=0
$$

for all $X, Y, Z \in \mathfrak{X}(M)$, where D_{0} is the tensor field of type $(1,2)$ defined by $\left\langle D_{0}(X, Y), Z\right\rangle=D(X, Y, Z)$.

Finally we remark that

$$
\begin{equation*}
\text { Trace }\left\{X \rightarrow\left(\nabla_{X} \operatorname{Ric}_{0}\right)(Y)\right\}=\frac{1}{2} Y(\mathrm{Sc}) \tag{2.14}
\end{equation*}
$$

for all $X, Y \in \mathfrak{X}(M)$.

§ 3. Curvature-preserving diffeomorphism.

The following theorem due to Kulkarni is a starting point of this paper:
Theorem K ([3]). Let $f:(M, g) \rightarrow(\bar{M}, \bar{g})$ be a curvature-preserving diffeomorphism of two Riemannian n-manifolds ($n \geqq 3$). Suppose that the set of nonisotropic points is dense in M. Then f is conformal, that is, there exists a function $\varphi \in \mathfrak{F}(M)$ such that

$$
\begin{equation*}
g^{*}=e^{2 \varphi} g \tag{3.1}
\end{equation*}
$$

and furthermore we have

$$
\begin{equation*}
R^{*}=e^{2 \varphi} R . \tag{3.2}
\end{equation*}
$$

From the equations (3.1) and (3.2) it follows immediately

$$
\begin{equation*}
\mathrm{Ric}^{*}=e^{2 \varphi} \mathrm{Ric} \quad \text { and } \quad \mathrm{Sc}^{*}=\mathrm{Sc} \tag{3.3}
\end{equation*}
$$

In this section, we shall prepare, for later use, some basic formulas for the curvature-preserving diffeomorphism f. We shall use only the equations (3.1) and (3.3), so that all results in the following are valid also for the Ricci-curvature-preserving conformal diffeomorphism $f:(M, g) \rightarrow(\bar{M}, \bar{g})$.

From the equations (2.12) and (3.3) we get $L^{*}=e^{2 \varphi} L$, which gives

$$
\begin{align*}
e^{-2 \varphi} D^{*}(X, Y, Z)-D(X, Y, Z)= & (X \varphi) L(Y, Z)-(Y \varphi) L(X, Z) \\
& +\langle X, Z\rangle L(Y, G)-\langle Y, Z\rangle L(X, G) \tag{3.4}
\end{align*}
$$

In fact, we get

$$
\begin{aligned}
D^{*}(X, Y, Z)= & \left(\nabla_{X}^{*} L^{*}\right)(Y, Z)-\left(\nabla_{Y}^{*} L^{*}\right)(X, Z) \\
= & e^{2 \varphi}\left\{2(X \varphi) L(Y, Z)+\left(\nabla_{X}^{*} L\right)(Y, Z)-2(Y \varphi) L(X, Z)-\left(\nabla_{Y}^{*} L\right)(X, Z)\right\} \\
= & e^{2 \varphi}\left[\left\{2(X \varphi) L(Y, Z)+\left(\nabla_{X} L\right)(Y, Z)-L(S(X, Y), Z)-L(Y, S(X, Z))\right\}\right. \\
& \quad-\{\text { replace } X \text { by } Y \text { in the above expression }\}] \\
= & e^{2 \varphi}[D(X, Y, Z)+2\{(X \varphi) L(Y, Z)-(Y \varphi) L(X, Z)\} \\
& \quad-\{L(Y, S(X, Z))-L(X, S(Y, Z))\}] .
\end{aligned}
$$

On the other hand, using (2.3), we obtain

$$
\begin{aligned}
& L(Y, S(X, Z))-L(X, S(Y, Z)) \\
& \quad=(X \varphi) L(Y, Z)+(Z \varphi) L(Y, X)-\langle X, Z\rangle L(Y, G)
\end{aligned}
$$

- \{replace X by Y in the above expression\}

$$
=(X \varphi) L(Y, Z)-(Y \varphi) L(X, Z)-\{\langle X, Z\rangle L(Y, G)-\langle Y, Z\rangle L(X, G)\},
$$

which implies (3.4). The equation (3.4) is equivalent to

$$
\begin{equation*}
D_{0}^{*}(X, Y)-D_{0}(X, Y)=(X \varphi) L_{0}(Y)-(Y \varphi) L_{0}(X)+L(Y, G) X-L(X, G) Y, \tag{3.5}
\end{equation*}
$$ where $g^{*}\left(D_{0}^{*}(X, Y), Z\right)=D^{*}(X, Y, Z)$ for all $X, Y, Z \in \mathfrak{X}(M)$. In (3.5), we take the trace of the linear map $\left\{X \rightarrow\left(D_{0}^{*}(X, Y)-D_{0}(X, Y)\right)\right\}$, where Y is fixed. Then by virtue of (b) in Lemma 1 and

$$
\text { Trace } L_{0}=\frac{n-2}{2(n-1)} \mathrm{Sc}
$$

we have

$$
\begin{equation*}
L(Y, G)-\frac{n-2}{2 n(n-1)} \operatorname{Sc}\langle Y, G\rangle=0 \tag{3.6}
\end{equation*}
$$

because of

$$
\text { Trace }\left\{X \rightarrow(X \varphi) L_{0}(Y)\right\}=L_{0}(Y) \varphi
$$

and

$$
\text { Trace }\{X \rightarrow L(X, G) Y\}=L(Y, G)
$$

For convenience, let us define another symmetric tensor field T of type (0,2) by

$$
\begin{equation*}
T=\operatorname{Ric}-\frac{1}{n} \operatorname{Sc} g . \tag{3.7}
\end{equation*}
$$

Then we have
Lemma 2. The tensors T and T^{*} satisfy on M the following;
(a) Trace $T_{0}=0$,
(b) $\quad T^{*}=T-(n-2) P+\frac{n-2}{n}\left(\right.$ Trace $\left.P_{0}\right) g$,
(c) $\quad T^{*}=e^{2 \varphi} T$,
(d) $T(X, G)=0$, or equivalently $T_{0}(G)=0$,
(e) $\quad e^{-2 \varphi} D^{*}(X, Y, Z)-D(X, Y, Z)=(X \varphi) T(Y, Z)-(Y \varphi) T(X, Z)$
for all $X, Y, Z \in \mathfrak{X}(M)$.
Proof. The equations (a), (b) and (c) follow immediately. The equation (3.6) implies (d) because of

$$
\begin{equation*}
T=L-\frac{n-2}{2 n(n-1)} \operatorname{Sc} g, \tag{3.8}
\end{equation*}
$$

which is a consequence of (2.12) and (3.7). And also the equation (3.4) implies (e) because of (d) and (3.8). q.e.d.

Eliminating T^{*} from (b) and (c) in Lemma 2, we have by (2.6)

$$
\begin{equation*}
\nabla_{X} G=\frac{1-e^{2 \varphi}}{n-2} T_{0}(X)+(X \varphi) G+\frac{1}{n}\left(\Delta \varphi-\|G\|^{2}\right) X \tag{3.9}
\end{equation*}
$$

for all $X \in \mathfrak{X}(M)$, where $\Delta \varphi$ is the Laplacian of φ defined by

$$
\Delta \varphi=\text { Trace }\left\{X \rightarrow \nabla_{X} G\right\}
$$

The equation (3.9) implies
Lemma 3. The associated function φ of f has the following properties;
(a) the trajectories of the gradient vector field G of φ are geodesic arcs in a neighborhood of an ordinary point of φ,
(b) $\quad d\left(\|G\|^{2}\right)=\frac{2}{n}\left\{\Delta \varphi+(n-1)\|G\|^{2}\right\} d \varphi$.

Proof. Putting $X=G$ in (3.9), we get by (d) in Lemma 2

$$
\nabla_{G} G=\frac{1}{n}\left\{\Delta \varphi+(n-1)\|G\|^{2}\right\} G,
$$

which implies (a) in Lemma 3, Take the inner product of the both sides of (3.9) with G, we have

$$
\frac{1}{2} X\langle G, G\rangle=\frac{1}{n}\left\{\Delta \varphi+(n-1)\|G\|^{2}\right\} X \varphi
$$

for any $X \in \mathfrak{X}(M)$, which implies (b) in Lemma 3. q. e.d.

Let M^{\prime} be an open subset of M defined by

$$
M^{\prime}=\left\{p \in M ; p \text { is the ordinary point of } \varphi,(d \varphi)_{p} \neq 0\right\}
$$

Then we have
Lemma 4. There exist two smooth functions ρ and ψ on M^{\prime} such that
(a) $\quad d(\mathrm{Sc})=\rho d \varphi$, and
(b) $\quad d \rho=\psi d \varphi$.

The function ρ is given explicitly by

$$
\begin{equation*}
\rho=2 n\left(e^{2 \varphi}-1\right)(n-2)^{-2}\|G\|^{-2} \operatorname{Trace}\left(T_{0}^{2}\right) . \tag{3.10}
\end{equation*}
$$

Proof. Putting $Z=G$ in the equations (a) in Lemma 1 and (e) in Lemma 2, we have by (d) in Lemma 2

$$
D^{*}(X, Y, G)=D(X, Y, G) \quad \text { and } \quad e^{-2 \varphi} D^{*}(X, Y, G)=D(X, Y, G),
$$

respectively, and hence by eliminating $D^{*}(X, Y, G)$ from these equations

$$
\left(e^{2 \varphi}-1\right) D(X, Y, G)=0
$$

Since the set of zeroes of the function φ is discrete in M^{\prime}, if there is any, we
have by continuity of $D(X, Y, G)$

$$
\begin{equation*}
D(X, Y, G)=0 \tag{3.11}
\end{equation*}
$$

On the other hand, we get by substituting (3.8) into (2.13)

$$
\begin{align*}
D(X, Y, Z)= & \left(\nabla_{X} T\right)(Y, Z)-\left(\nabla_{Y} T\right)(X, Z) \tag{3.12}\\
& +\frac{n-2}{2 n(n-1)}\{\langle Y, Z\rangle X(\mathrm{Sc})-\langle X, Z\rangle Y(\mathrm{Sc})\}
\end{align*}
$$

Putting $Z=G$ in the above, we get, on account of (3.11),

$$
(X \varphi) Y(\mathrm{Sc})-(Y \varphi) X(\mathrm{Sc})=0,
$$

because

$$
\begin{aligned}
\left(\nabla_{X} T\right)(Y, G)-\left(\nabla_{Y} T\right)(X, G) & =-T\left(Y, \nabla_{X} G\right)+T\left(X, \nabla_{Y} G\right) \quad(\text { by }(\mathrm{d}) \text { in Lemma 2) }) \\
& =\frac{1-e^{2 \varphi}}{n-2}\left\{T\left(X, T_{0}(Y)\right)-T\left(Y, T_{0}(X)\right)\right\} \quad(\text { by (3.9)) }) \\
& =0 .
\end{aligned}
$$

Hence there exists a function ρ defined on M^{\prime} such that

$$
\begin{equation*}
X(\mathrm{Sc})=\rho X \varphi \tag{3.13}
\end{equation*}
$$

on M^{\prime} for all $X \in \mathscr{X}(M)$. Since ρ is independent of X, this implies (a) in Lemma 4.

The explicit form (3.10) of ρ is obtained as follows. Since $T_{0}(G)=0$ by (d) in Lemma 2, we have

$$
\begin{equation*}
\left(\nabla_{X} T_{0}\right) G=-T_{0}\left(\nabla_{X} G\right) \tag{3.14}
\end{equation*}
$$

We now obtain

$$
\begin{aligned}
& \text { Trace }\{X \rightarrow \text { (the left hand side of (3.14)) }\} \\
& \quad=\text { Trace }\left\{X \rightarrow\left(\nabla_{X} \operatorname{Ric}_{0}\right) G\right\}-\frac{1}{n} \text { Trace }\{X \rightarrow X(\mathrm{Sc}) G\} \\
& \quad=\frac{1}{2} G(\mathrm{Sc})-\frac{1}{n} G(\mathrm{Sc}) \\
& \quad=\frac{n-2}{2 n} \rho\|G\|^{2}
\end{aligned}
$$

and
Trace $\{X \rightarrow$ (the right hand side of (3.14) $)\}$

$$
\begin{equation*}
=\frac{e^{2 \varphi}-1}{n-2} \operatorname{Trace}\left(T_{0}^{2}\right) \tag{3.9}
\end{equation*}
$$

because of the equations (a) and (d) in Lemma 2, so that we obtain (3.10) by equating these two traces.

Finally taking exterior derivative of (a) in Lemma 4 we get (b) in Lemma 4 at once.

§ 4. Theorems.

In this section we shall assume $n=3$ throughout and define an associated constant of the curvature-preserving diffeomorphism.

First, we remark that the restriction " $n=3$ " on the dimension of M implies two important relations as follows. Since Weyl's conformal curvature tensor C vanishes identically, we have by the equation (a) in Lemma 1

$$
\begin{equation*}
D^{*}(X, Y, Z)=D(X, Y, Z) \tag{4.1}
\end{equation*}
$$

for all $X, Y, Z \in \mathfrak{X}(M)$. On the other hand, the equation (d) in Lemma 2 means that G is an eigen-vector of T_{0} corresponding to an eigen-value zero at each point $p \in M^{\prime}$. Hence the equation (a) in Lemma 2 and the assumption $n=3$ imply that the eigen-values of T_{0} are $0, \kappa(p)$ and $-\kappa(p)$ at each point $p \in M^{\prime}$, so that we find

$$
\begin{equation*}
\operatorname{Trace}\left(T_{0}^{3}\right)=0 \tag{4.2}
\end{equation*}
$$

on M^{\prime}.
First we need the following two lemmas.
Lemma 5. We have on M^{\prime}

$$
\phi\|G\|^{2}+\frac{4}{3} \rho \Delta \varphi+\frac{2}{3} \rho\|G\|^{2}=0
$$

Proof. The equation (3.10) yields on M^{\prime}

$$
\begin{equation*}
\rho\|G\|^{2}=6\left(e^{2 \varphi}-1\right) \operatorname{Trace}\left(T_{0}^{2}\right) \tag{4.3}
\end{equation*}
$$

Applying ∇_{G} to (4.3) we obtain directly

$$
\begin{align*}
& 6\left(e^{2 \varphi}-1\right)\|G\|^{-2} \nabla_{G} \operatorname{Trace}\left(T_{0}^{2}\right) \\
& \quad=\phi\|G\|^{2}+\frac{2}{3} \rho\left(\Delta \varphi+2\|G\|^{2}\right)-12 e^{2 \varphi} \operatorname{Trace}\left(T_{0}^{2}\right) \tag{4.4}
\end{align*}
$$

because of the equations

$$
\begin{gathered}
\nabla_{G} \varphi=\|G\|^{2}, \\
\nabla_{G}\left(\|G\|^{2}\right)=\frac{2}{3}\left(\Delta \varphi+2\|G\|^{2}\right)\|G\|^{2} \quad \text { (by (b) in Lemma 3) }
\end{gathered}
$$

and

$$
\nabla_{G} \rho=\psi\|G\|^{2} \quad \text { (by (b) in Lemma 4). }
$$

On the other hand, we get by (e) in Lemma 2 and (4.1)

$$
\left(e^{-2 \varphi}-1\right) D(X, Y, Z)=(X \varphi) T(Y, Z)-(Y \varphi) T(X, Z)
$$

for all $X, Y, Z \in \mathfrak{X}(M)$, so that we obtain by setting $Y=G$ and $Z=T_{0}(X)$

$$
\begin{equation*}
\left(e^{2 \varphi}-1\right) D\left(X, G, T_{0}(X)\right)=e^{2 \varphi}\|G\|^{2}\left\langle T_{0}(X), T_{0}(X)\right\rangle . \tag{4.5}
\end{equation*}
$$

Then we have by (3.12) and (a) in Lemma 4

$$
\begin{align*}
D\left(X, G, T_{0}(X)\right)= & \left(\nabla_{X} T\right)\left(G, T_{0}(X)\right)-\left(\nabla_{G} T\right)\left(X, T_{0}(X)\right) \tag{4.6}\\
& +\frac{\rho}{12}\left\{(X \varphi)\left\langle G, T_{0}(X)\right\rangle-(G \varphi)\left\langle X, T_{0}(X)\right\rangle\right\}
\end{align*}
$$

Fix a point $p \in M^{\prime}$ and let $E=\left\{E_{1}, E_{2}, E_{3}\right\}$ be a local orthonormal frame in a neighborhood of p such that $\nabla_{E_{i}} E_{j}=0$ at p for all i, j. Putting $X=E_{i}$ in (4.5) and summing up for $i=1,2,3$, we have

$$
\begin{gather*}
-\left(e^{2 \varphi}-1\right)\left\{\frac{1}{3}\left(\Delta \varphi-\|G\|^{2}\right) \operatorname{Trace}\left(T_{0}^{2}\right)+\frac{1}{2} \nabla_{G} \operatorname{Trace}\left(T_{0}^{2}\right)\right\} \\
=e^{2 \varphi}\|G\|^{2} \operatorname{Trace}\left(T_{0}^{2}\right) \tag{4.7}
\end{gather*}
$$

because we have at p

$$
\begin{aligned}
\sum_{i}\left(\nabla_{E_{i}} T\right)\left(G, T_{0}\left(E_{i}\right)\right)= & -\sum_{i} T\left(\nabla_{E_{i}} G, T_{0}\left(E_{i}\right)\right) \quad \text { (by (d) in Lemma 2) } \\
= & \left(e^{2 \varphi}-1\right) \sum_{i} T\left(T_{0}\left(E_{i}\right), T_{0}\left(E_{i}\right)\right) \\
& \left.-\frac{1}{3}\left(\Delta \varphi-\|G\|^{2}\right) \sum_{i} T\left(E_{i}, T_{0}\left(E_{i}\right)\right) \quad \text { (by (3.9)) }\right) \\
= & -\frac{1}{3}\left(\Delta \varphi-\|G\|^{2}\right) \operatorname{Trace}\left(T_{0}^{2}\right) \quad \text { (by (4.2)) }
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i}\left(\nabla_{G} T\right)\left(E_{i}, T_{0}\left(E_{i}\right)\right) & =\frac{1}{2} \sum_{i} \nabla_{G}\left\langle T_{0}\left(E_{i}\right), T_{0}\left(E_{i}\right)\right\rangle-\sum_{i} T\left(\nabla_{G} E_{i}, T_{0}\left(E_{i}\right)\right) \\
& =\frac{1}{2} \nabla_{G} \operatorname{Trace}\left(T_{0}^{2}\right)
\end{aligned}
$$

If we eliminate $\nabla_{G}\left(\operatorname{Trace}\left(T_{0}^{2}\right)\right)$ from (4.4) and (4.7) and substitute (4.3) into the resulting equation, then the lemma follows.

Lemma 6. Let F be a function on M defined by

$$
\begin{equation*}
F=\left(e^{-2 \varphi}-1\right)\|G\|^{2} \operatorname{Trace}\left(T_{0}^{2}\right) \tag{4.8}
\end{equation*}
$$

Then it is constant on M.
Proof. We may assume that M^{\prime} is not empty. Evidently the function F is smooth on M and given by

$$
\begin{equation*}
F=-\frac{1}{6} e^{-2 \varphi} \rho\|G\|^{4} \tag{4.9}
\end{equation*}
$$

on M^{\prime} by (4.3). Hence, from the equations (b) in Lemma 3 and (b) in Lemma 4 we have by direct calculation

$$
\begin{aligned}
-6 d F & =e^{-2 \varphi}\|G\|^{2}\left(\phi\|G\|^{2}+\frac{4}{3} \rho \Delta \varphi+\frac{2}{3} \rho\|G\|^{2}\right) d \varphi \\
& =0
\end{aligned}
$$

(by Lemma 5)
on M^{\prime}. Consequently, F is constant on each connected component of M^{\prime}. Thus, because of (4.8) we find $F=0$ on M if $M \neq M^{\prime}$, that is, if there exists at least one stationary point of φ. If $M=M^{\prime}, F$ is obviously constant on M by connectedness of M.
q. e.d.

For the diffeomorphism f in Theorem K for $n=3$, we define

$$
c_{f}=\left(e^{-2 \varphi}-1\right)\|G\|^{2} \operatorname{Trace}\left(T_{0}^{2}\right) .
$$

Then owing to Lemma 6 we can call c_{f} the associated constant of the curvaturepreserving diffeomorphism f.

Theorem 1. Under the circumstances of Theorem K, suppose $n=3$. Then a necessary and sufficient condition for f to be isometric is $c_{f}=0$.

Proof. The necessity is trivial, so we prove the sufficiency in the following. For the moment, suppose that M^{\prime} is non-empty. Then, the set of zeroes of the function φ is closed in M^{\prime}, which is open. Thus we can choose a point and its open neighborhood $U \subset M^{\prime}$, on which $\varphi \neq 0$. By the assumption $c_{f}=0$, we find Trace $\left(T_{0}^{2}\right)=0$ on U, from which $T=0$, i. e. Ric $=\frac{1}{n} \operatorname{Sc} g$ on U, because we have

$$
\operatorname{Trace}\left(T_{0}^{2}\right)=\left\langle T_{0}, T_{0}\right\rangle
$$

where \langle,$\rangle denotes the canonical inner product on tensor algebra induced by$ Riemannian metric g. Since $C=0$ on M by the assumption $n=3$, this implies by the equations (2.11) and (2.12)

$$
R(X, Y) Z=\frac{\mathrm{Sc}}{n(n-1)}\{\langle X, Z\rangle Y-\langle Y, Z\rangle X\}
$$

on U. Thus each point of U is isotropic. But this contradicts the assumption that the set of non-isotropic points is dense in M. Thus M^{\prime} is empty, that is. $d \varphi=0$ on M. So f is homothetic. Then we have

$$
\bar{K}\left(f_{*} \sigma\right)=e^{-2 \varphi} K(\sigma)
$$

by (2.7) for any 2-plane section $\sigma \subset T_{p}(M)$ at any point $p \in M$. Since f is curvature-preserving, we obtain

$$
\left(e^{2 \varphi}-1\right) K(\boldsymbol{\sigma})=0 .
$$

Since, by the assumption of Theorem 1, $K \neq 0$ for at least one σ at almost all points, it follows $\varphi=0$. Thus, f is isometric.
q. e. d.

Corollary 1. Under the assumptions of Theorem K, suppose that $n=3$ and (M, g) is conformally flat. Then f is an isometry.

Proof. Since (M, g) is conformally flat and $n=3$, we have $D^{*}=D=0$. So, it follows from (e) in Lemma 2

$$
(X \varphi) T_{0}(Y)-(Y \varphi) T_{0}(X)=0
$$

for all $X, Y \in \mathfrak{X}(M)$. Setting $Y=G$ in the above, we find easily $c_{f}=0$ by (d) in Lemma 2. Hence f is an isometry by Theorem 1. q.e.d.

This Corollary has been obtained independently in a different way by Kulkarni [4].

Corollary 2. Under the assumptions of Theorem K, suppose that $n=3$ and M is compact. Then f is an isometry.

Proof. Since there exists at least one stationary point of φ by compactness of M, it follows $c_{f}=0$, from which f is isometric by Theorem 1. q. e.d.

Corollary 2 is an improvement of the results of Kulkarni (cf. Theorem 6 and Theorem 7 in [3]) in the sense that the additional assumptions on the sign of curvature have been removed in Corollary 2.

The author does not know as yet whether there exists a global nonisometric curvature-preserving diffeomorphism satisfying the assumptions of Theorem K in the case $n=3$. In this respect, it may be helpful to keep the next theorem in mind while constructing such an example, if there is.

Theorem 2. Under the circumstances of Theorem K, suppose $n=3$. A necessary and sufficient condition for f to be non-isometric is that the manifold (M, g) and the associated function φ of f satisfy simultaneously the following three conditions (a), (b) and (c):
(a) φ has no stationary point on M,
(b) there exists no isotropic point on M,
(c) the range of φ is either $\varphi>0$ or $\varphi<0$, or, equivalently, satisfy simultaneously the two conditions (a) and
(d) the scalar curvature Sc has no stationary point on M.

Proof. The condition $c_{f} \neq 0$ is equivalent to the following:
(i) $\|G\| \neq 0$,
(ii) $\operatorname{Trace}\left(T_{0}^{2}\right) \neq 0$ and
(iii) $e^{2 \varphi} \neq 1$.

Evidently (i) \Leftrightarrow (a). We have (ii) $\Leftrightarrow T_{0} \neq 0$, which is equivalent to the condition (b) by the assumption $n=3$, as is easily verified by Lemma 1 in [3]. Since M is assumed to be connected and φ is continuous on M, the range of φ is a connected subset of \boldsymbol{R}, so that we see (iii) \Leftrightarrow (c). Owing to another expression (4.9)) of c_{f}, we find similarly $c_{f} \neq 0 \Leftrightarrow\{(\mathrm{a})$ and (d)\}. Thus, Theorem 2 follows from Theorem 1.
q. e.d.

The technique developed in the proofs of Lemma 5 in [1] and Proposition 10.4 in [2] is applicable to the following

Theorem 3. Under the assumptions of Theorem K, suppose that $n=3$ and two metrics g, \bar{g} are complete. If f is an onto diffeomorphism and Sc does not
vanish, then f is an isometry.
Proof. On the contrary, assume that f is non-isometric. Then the function $\lambda=\|G\|$ vanishes nowhere on M by (a) of Theorem 2. The range of Sc is either $\mathrm{Sc}>0$ or $\mathrm{Sc}<0$, and hence one of two functions $\left(1-e^{2 \varphi}\right) \mathrm{Sc}$ and $\left(1-e^{-2 \varphi}\right) \mathrm{Sc}$ is positive-valued, because of (c) of Theorem 2. The diffeomorphism f is onto and the associated functions φ_{f} and $\bar{\varphi}_{f^{-1}}$ of conformal diffeomorphisms f and f^{-1}, respectively, are related by

$$
\bar{\varphi}_{f^{-1}}=-\varphi_{f} \circ f^{-1},
$$

so that we have by the equation (3.3)

$$
\left\{\left(1-e^{2 \bar{\varphi}_{f}-1}\right) \overline{\mathrm{Sc}}\right\} \circ f=\left(1-e^{-2 \varphi_{f}}\right) \mathrm{Sc} .
$$

Thus, we may assume that

$$
\begin{equation*}
\left(1-e^{2 \varphi}\right) \mathrm{Sc}>0 \tag{4.10}
\end{equation*}
$$

by considering f^{-1}, if necessary. The trajectory $x(t)$ of the vector field G passing through a point $p=x(0)$ of M is a geodesic by (a) of Lemma 3, We can assume that the parameter t is the arc-length. Let $X=\frac{1}{\lambda} G$ be the unit tangent vector field to $x(t)$. Then we have along $x(t)$

$$
\begin{align*}
2 \lambda \frac{d \lambda}{d t} & =\nabla_{X}\|G\|^{2}=\frac{1}{\lambda} \nabla_{G}\|G\|^{2} \\
& =\frac{2}{3} \lambda\left(\Delta \varphi+2 \lambda^{2}\right) \tag{4.11}
\end{align*}
$$

by (b) in Lemma 3. On the other hand, we obtain by (2.10)

$$
\begin{equation*}
\left(1-e^{2 \varphi}\right) \mathrm{Sc}=4 \text { Trace } P_{0}=4\left(\Delta \varphi+\frac{1}{2} \lambda^{2}\right) . \tag{4.12}
\end{equation*}
$$

Eliminating $\Delta \varphi$ from the equations (4.11) and (4.12) we get

$$
\begin{equation*}
\frac{d \lambda}{d t}=\frac{1}{2} \lambda^{2}+\alpha(t) \tag{4.13}
\end{equation*}
$$

along $x(t)$, where $\alpha=\frac{1}{12}\left(1-e^{2 \varphi}\right) \mathrm{Sc}$ is a smooth positive-valued function by (4.10).

We consider an auxiliary differential equation

$$
\begin{equation*}
\frac{d \lambda}{d t}=\frac{1}{2} \lambda^{2} \tag{4.14}
\end{equation*}
$$

on the (t, λ)-plane. The solution of (4.14) with initial condition $\mu(0)=\|G\|_{p}$ $(=\lambda(0))>0$ is given by

$$
\mu(t)=-\frac{2}{t-a},
$$

where $a=2\|G\|_{p}^{-1}>0$. It is easy to prove that for the solution $\lambda(t)$ of (4.13) and the continuous solution $\mu(t)$ of (4.14) it holds

$$
\mu(t) \leqq \lambda(t) \quad \text { for } \quad 0 \leqq t<a .
$$

Hence the function $\lambda(t)=\|G\|(x(t))$ must have a singularity at finite positive time. But this is impossible, because $x(t)$ must be extended indefinitely with respect to the arc-length parameter t by the completeness of the metric g and the function $\lambda(t)$ must be defined for all t. Thus, f is isometric. q.e.d.

References

[1] S. Ishihara, Groups of projective transformations and groups of conformal transformations, J. Math. Soc. Japan, 9 (1957), 195-227.
[2] R.S. Kulkarni, Curvature structures and conformal transformations, J. Differential Geometry, 4 (1969), 425-451.
[3] R.S. Kulkarni, Curvature and metric, Ann. of Math., 91 (1970), 311-331.
[4] R.S. Kulkarni, Equivalence of Kähler manifolds and other equivalence problem, J. Differential Geometry, 9 (1974), 401-408.
[5] K. Yano, Integral formulas in Riemannian geometry, Dekker, New York, 1970.
Added in proof. Very recently, in the direction of Theorem 2, S.T. Yau has proved that there exist an open Riemannian 3-manifold (M, g) and a nonisometric diffeomorphism f satisfying the assumptions of Theorem K [cf. S. T. Yau: Curvature preserving diffeomorphisms, Ann. of Math., 100 (1974), 121130].

Toshio Nasu
Department of Mathematics Faculty of General Education Okayama University Tsushima, Okayama Japan

