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Abstract

We prove the Lichnerowicz type lower bound estimates for finite connected graphs with
non-negative Ricci curvature.

1 Introduction

In this paper, we discuss different aspects of Ricci curvature on finite weighted graphs, either in
the sense of D. Bakry and M. Emery [1] and [5] or in the sense of Y. Ollivier [7], see also [6].
We give estimates of nonzero eigenvalues of the associated Laplacian via the positive curvature
values, together with some examples to show that these bounds can be sharp.

The basic setting is as follows. Denote by G a finite non-oriented connected graph composed
of a vertex set V with an edge set E, and ρ(x, y) the distance function which equals the minimal
number of edges in any path connecting x and y in V . Write x ∼ y when x is adjacent to y, in
particular, a loop x ∼ x is possible.

Let’s equip G with a weight µ• which is a symmetric function on V × V such that µxy > 0
if x ∼ y and µxy = 0 otherwise. Then (G,µ•) becomes a weighted graph. µ• is called standard
if µxy = 1 for any x ∼ y and µxx = 0. Denote by dx =

∑
y∼x µxy the degree at x, and

VolG =
∑

x∈V dx the volume of G. Define the transition matrix (or Markov operator) M by

M(x, y) :=
µxy

dx
,

which satisfies that ∑

y∼x

M(x, y) = 1, M(x, y)dx = M(y, x)dy.

Define V R to be the space of real valued functions on V , and ∆ the Laplace operator acting on
V R by

∆ := M − Id,
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which means for any f ∈ V R

−∆f(x) =
1

dx

∑

(x,y)∈E

µxy[f(x)− f(y)].

Suppose a function f : V → R satisfies

(−∆)f(x) = λf(x),

then f is called a eigenfunction of Laplace operator on G with eigenvalue λ. Note that 0 is
a trivial eigenvalue of −∆ associated to the constant eigenfunction.

Let λ > 0 be a nontrivial eigenvalue of −∆. In Section 2, we define the Ricci curvature in
the sense of Bakry and Emery, and give an estimate λ ! mK

m−1 through the curvature-dimension
type inequality CD(m,K) for some m > 1 and K > 0. There is a similar bound for eigenvalue in
compact Riemannian manifold with positive Ricci curvature lower bound proved by Lichnerow-
icz. In Section 3, we introduce the Ricci curvature from Ollivier, and give another estimate
λ ∈ [κ, 2κ] via the curvature’s lower bound κ. We also prove that any finite weighted connected
graph can be equipped with a new distance function and transition matrix such that it has a
positive Ricci curvature.

2 The eigenvalue bound in terms of positive Ricci curvature in
the sense of Bakry and Emery

According to Bakry and Emery [1], define a bilinear operator Γ : V R × V R → V R by

Γ(f, g)(x) :=
1

2
{∆(f(x)g(x))− f(x)∆g(x)− g(x)∆f(x)},

and then the Ricci curvature operator on graphs Γ2 by iterating Γ as

Γ2(f, g)(x) :=
1

2
{∆Γ(f, g)(x)− Γ(f,∆g)(x)− Γ(g,∆f)(x)}.

More explicitly, we have

Γ(f, f)(x) =
1

2

1

dx

∑

y∼x

µxy|f(x)− f(y)|2.

From the proof of Theorem 1.2 in [5] we have the following formula for the Ricci curvature
operator on graphs.

Γ2(f, f) =
1

4

1

dx

∑

y∼x

µxy

dy

∑

z∼y

µyz[f(x)− 2f(y) + f(z)]2

−1

2

1

dx

∑

y∼x

µxy[f(x)− f(y)]2 +
1

2
[
1

dx

∑

y∼x

µxy(f(x)− f(y))]2.
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We say that the Laplacian ∆ satisfies the curvature-dimension type inequality CD(m,K) for
some m > 1 if for any f ∈ V R,

(2.1) Γ2(f, f) !
1

m
(∆f)2 +KΓ(f, f).

Here m is called the dimension of ∆, and K the lower bound of the Ricci curvature of ∆. In
particular, if Γ2 ! KΓ, we say that ∆ satisfies CD(∞,K). Correspondingly, for the Laplace-
Beltrami operator ∆ on a complete m-dimensional Riemannion manifold, it fulfills CD(m,K)
iff the Ricci curvature of the Riemanian manifold is bounded below by a constant K.

We proved in [5] that the Ricci flat graphs defined by F. Chung and Yau in [2] and [3] have
the non-negative Ricci curvature in the sense of Bakry-Emery, and also that any locally finite
connected graph satisfies either CD(2, 1

d∗
− 1) if d∗ is finite, or CD(2,−1) if d∗ is infinite, where

d∗ := sup
x∈V

sup
y∼x

dx
µxy

.

Moreover, we have

Theorem 2.1. Suppose that ∆ fulfills a curvature-dimension type inequality CD(m,K) with
m > 1 and K > 0. Then any nonzero eigenvalue λ of −∆ has a lower bound mK

m−1 .

Proof. Suppose f is an eigenfunction satisfying

−∆f(x) = λf(x).

We consider

∑

x

dxΓ2(f, f) =
1

4

∑

x

dx∆|∇f |2(x) + λ
∑

x

dxΓ(f, f)

= λ
∑

x

dxΓ(f, f)

=
λ

2

∑

x

dx|∇f |2(x)

=
λ

2

∑

x

∑

y∼x

(f(x)− f(y))2

= λ
∑

x∼y

(f(x)− f(y))2

= λ
∑

x

f(x)(−∆f(x))dx

= λ2
∑

x

f(x)2dx.
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Combining with (2.1), we have

λ2
∑

x

f(x)2dx ! 1

m

∑

x

dxλ
2f(x)2 +K

∑

x

dxΓ(f, f)

=
λ2

m

∑

x

f(x)2dx +K
∑

x∼y

(f(x)− f(y))2

= (
λ2

m
+Kλ)

∑

x

f(x)2dx.

Thus we have

λ ! mK

m− 1
.

We give an alternative proof of Theorem 2.1 using a maximum principle argument.

Proof. Suppose f is an eigenfunction satisfying

∆f(x) = −λf(x)

for all x ∈ V . We define the function

Q(x) = Γ(f, f)(x) +
λ

m
f2(x).

At the maximum point x∗ of Q we have ∆Q(x∗) ≤ 0. Thus we have

0 ≥ ∆Q(x∗)

= 2Γ2(f, f)(x
∗) + 2Γ(f,∆f)(x∗) +

λ

m
(2f∆f(x∗) + 2Γ(f, f)(x∗))

≥ 2KΓ(f, f)(x∗)− 2λΓ(f, f)(x∗) + 2
λ

m
Γ(f, f)(x∗).

Rearranging yields

λ ≥ m

m− 1
K.

We calculate the curvature-dimension type inequalities for some graphs such as a path, cube
or square. One can find details in Appendix A.

Example. Let G = {a, b} be a path. Then it has a nonzero eigenvalue λ = 2, and satisfies
C(2, 1), which means m = 2, K = 1 and mK

m−1 = 2. Here the estimate in Theorem 2.1 is sharp.

Example. Let G = {a, b, c} be a path. Then it has two nonzero eigenvalues λ = 1 or 2, and
satisfies C(4, 12), which means m = 4, K = 1

2 and mK
m−1 = 2

3 .
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Example. Let G1 and G2 be two graphs as Figure1 and Figure2 together with standard weights.
Then G1 has a nonzero eigenvalue λ = 2

3 , and satisfies C(∞, 23). G2 satisfies C(∞, 16).

 











 




 

3 The eigenvalue bound in terms of positive Ricci curvature in
the sense of Ricci-Wasserstein

The Ricci curvature or Ricci-Wasserstein curvature for Markov chains was introduced recently
by Y. Ollivier [7]. In general, let (X, d) be a separable and complete metric space, Lip1(d) the
set of 1-Lipschitz functions, P(X) the set of all Borel probability measures, and C(µ, ν) the set
of couplings of any µ and ν ∈ P(X). Here, a coupling in C(µ, ν) is a probability measure on
X ×X associated with two marginals µ and ν respectively. Let m = {mx}x∈X be a family in
P(X). Technically, suppose mx depends measurably on x, and has a finite first moment, i.e.∫
d(o, y)dmx(y) < ∞ for some o ∈ X. Then m is called a random walk on (X, d).
Define the L1 transportation distance (or Wasserstein distance) between mx and my as

T1(mx,my) := inf
π∈C(mx,my)

∫

X×X
d(ξ, η) dπ(ξ, η).

(P(X), T1) becomes a complete metric space. Equivalently, via the Kantorovich duality,

T1(mx,my) = sup
f∈Lip1(d)

∫
f dmx −

∫
f dmy.

One can find more details in C. Villani [8].
According to [7], define the Ricci curvature of (X, d,m) as

κ(x, y) := 1− T1(mx,my)

d(x, y)
.

When (X, d) is a finite weighted connected graph (G, ρ, µ•), we can define the transition family
mx(y) := µxy/dx. In [5], we proved that the Ricci curvature in the sense of Ollivier is bounded
below, see also [6] for some modification of the Ollivier”s Ricci curvature. In this paper, we can
estimate the eigenvalues associated to −∆ by the lower bound of κ(x, y), see also Proposition
30 in [7].
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Theorem 3.1. Suppose that the Ricci curvature of a finite weighted connected graph (G, ρ, µ•)
is at least κ. Then any nonzero eigenvalue λ of −∆ falls in [κ, 2− κ].

Proof. Let f ∈ Lip1(ρ) be an eigenfunction satisfying −∆f = λf . We have

f(x)−
∫

f dmx =
1

dx

∑

y∼x

µxy(f(x)− f(y)) = −∆f(x) = λf(x),

which implies by the definition of Ricci curvature κ(x, y) for any x ∼ y that

1− κ ! 1− κ(x, y) !
∣∣∣∣
∫

f dmx −
∫

f dmy

∣∣∣∣
/
ρ(x, y) = |(1− λ)(f(x)− f(y))|.

Since there exist x and y such that f(x)− f(y) = 1, we obtain κ " λ " 2− κ.

Now we give an instance to show that two interval end-points can be attained.

Example. Let G = {a, b, c} be a complete graph equipped with the usual distance ρ and two
transition matrices respectively

M1 =





0 1
2

1
2

1
2 0 1

2

1
2

1
2 0




, M2 =





1
2

1
4

1
4

1
4

1
2

1
4

1
4

1
4

1
2




.

Then, we calculate that (G, ρ,M1) has a Ricci curvature at least 1
2 and double eigenvalues 3

2 ,
(G, ρ,M2) has a Ricci curvature at least 3

4 and double eigenvalues 3
4 .

We can apply Theorem 3.1 to general complete graphs.

Corollary 3.2. Let G be a complete graph with n vertices satisfying that n ! 2 and µxy = 1
n−1

for any x *= y. Then the associated operator −∆ has a unique nonzero eigenvalue λ = n
n−1 .

Proof. Let p ∈ [0, 1), we define a family of “lazy” transition matrices by

Mp :=





p 1−p
n−1 · · · 1−p

n−1
1−p
n−1

1−p
n−1 p · · · 1−p

n−1
1−p
n−1

...
. . .

. . .
. . .

...

1−p
n−1

1−p
n−1 · · · p 1−p

n−1

1−p
n−1

1−p
n−1 · · · 1−p

n−1 p





,

which corresponds to the laplacian ∆p = Mp−Id. Clearly, ∆p = (1−p)∆, in particular, ∆0 = ∆.
So −∆p has a nonzero eigenvalue (1− p)λ.
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Define mp,x(y) = Mp(x, y), then

T1(mp,x,mp,y) = sup
f∈Lip1(ρ)

∣∣∣∣pf(x) +
1− p

n− 1
f(y)− pf(y)− 1− p

n− 1
f(x)

∣∣∣∣ "
|np− 1|
n− 1

,

which means (G, ρ,mp) has a Ricci curvature at least κ = 1− |np−1|
n−1 . By Theorem 3.1, we have

1− |np− 1|
n− 1

" (1− p)λ " 1 +
|np− 1|
n− 1

.

Taking p = n−1, we obtain λ = n
n−1 .

Remark 3.3. When p = n−1, the Ricci curvature κ(x, y) attains the maximum 1 everwhere.

In fact, every finite weighted connected graph G always has a positive Ricci curvature with
some kind of distance function and random walk. Let µ be the normalized volume measure and
E the associated quadratic form, that is,

µ(x) :=
dx

VolG
, E(f, f) := 1

2VolG

∑

x∼y

µxy|f(x)− f(y)|2 = −
∫

f(x) ·∆f(x)dµ(x).

Write E [f ] = E(f, f). Define the effective resistance

R(x, y) := sup
E[f ]&=0

|f(x)− f(y)|2

E [f ] .

Note that
√

R(x, y) is a metric. Define the heat semigroup Pt = et∆ for any t ! 0, and a new
random walk m∗ = {m∗

x}x∈V (depending on α) by

m∗
x(y) :=

∫ ∞

0
αe−αtPt(x, y)dt.

Alternatively, recall the resolvent family {Gα}α>0 in [4], we denote
∫
f dm∗

x =: αGαf(x).

Theorem 3.4. (G,
√
R,m∗) yields a Ricci curvature at least κ > 0 provided that for some α > 0

and o ∈ G holds (2α
∫
R(o, x)dµ(x))1/2 " 1− κ.

Proof. For any f satisfying |f(x)− f(y)| "
√

R(x, y),
∣∣∫ f dm∗

x −
∫
f dm∗

y

∣∣
√

R(x, y)
=

|αGαf(x)− αGαf(y)|√
R(x, y)

"
√

E [αGαf ].

Without loss of generality, let f(o) = 0 for some o. Since E [αGαf ] = α(f − αGαf,αGαf)
according to [4], we estimate that

|f(x)− αGαf(x)| "
∫ √

R(x, y)dm∗
x(y), |αGαf(x)| "

∫ √
R(o, y)dm∗

x(y).

Denote g(x) =
∫ √

R(o, y)dm∗
x(y), we have by using the Hölder inequality

E [αGαf ] " α

∫ (√
R(o, x)g(x) + g2(x)

)
dµ(x) " 2α

∫
R(o, x)dµ(x).

Recall the definition of Ricci curvature, it follows from above estimates.
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Corollary 3.5. With above conditions, any nonzero eigenvalue λ of −∆ has a lower bound κα
1−κ .

Proof. Let f ∈ Lip1(
√
R) be an eigenfunction satisfying −∆f = λf , thus αGαf = α

α+λf . By
the same argument as Theorem 3.1, we have 1− κ ! α

α+λ .

Remark 3.6. It is not hard to obtain another lower bound (
∫
R(o, x)dµ(x))−1 better than κα

1−κ .

A Calculations of examples in Section 2

Recall the formulas of Γ and Γ2.
1. Consider path P1 with vertices a and b.

Γ2(f, f)(a) =
1

4
|f(a)− 2f(b) + f(a)|2 − 1

2
|f(a)− f(b)|2 + 1

2
|f(a)− f(b)|2

= |f(a)− f(b)|2

=
1

2
|f(a)− f(b)|2 + 1

2
|f(a)− f(b)|2

=
1

2
(∆f(a))2 + Γ(f, f)(a).

So m = 2, K = 1.

2. Consider path P2 with vertices a,b and c, where b is adjacent to a and c.

Γ2(f, f)(a) =
1

4
· 1
2
(|f(a)− 2f(b) + f(a)|2 + |f(a)− 2f(b) + f(c)|2)

−1

2
|f(a)− f(b)|2 + 1

2
|f(a)− f(b)|2

=
1

2
|f(a)− f(b)|2 + |f(a)− 2f(b) + f(c)|2

! 1

4
|f(a)− f(b)|2 + 1

4
|f(a)− f(b)|2

=
1

4
(∆f(a))2 +

1

2
Γ(f, f)(a).

Γ2(f, f)(c) = Γ2(f, f)(a).

Γ2(f, f)(b) =
1

4
· 1
2
(|f(b)− 2f(a) + f(b)|2 + |f(b)− 2f(c) + f(b)|2)

−1

2
· 1
2
(|f(a)− f(b)|2 + |f(c)− f(b)|2) + 1

2
(∆f(b))2

=
1

4
(|f(a)− f(b)|2 + |f(c)− f(b)|2) + 1

2
(∆f(b))2

=
1

2
(∆f(b))2 +

1

2
· 1
2
(|f(a)− f(b)|2 + |f(c)− f(b)|2)

=
1

2
(∆f(b))2 + Γ(f, f)(b).
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So m = 4, K = 1
2 .

3. Consider the cube in Figure1.

Γ2(φ,φ)(a)

=
1

4
· 1
3

∑

y∼x

1

3

∑

z∼y

|φ(x)− 2φ(y) + φ(z)|2 − 1

2
· 1
3

∑

y∼x

|φ(x)− φ(y)|2 + 1

2

(
1

3

∑

y∼x

(φ(x)− φ(y))

)2

=
1

36

(
∑

z∼b

|φ(a)− 2φ(b) + φ(z)|2 +
∑

z∼d

|φ(a)− 2φ(d) + φ(z)|2 +
∑

z∼e

|φ(a)− 2φ(e) + φ(z)|2
)

−1

6

∑

y∼a

|φ(a)− φ(y)|2 + 1

18

(
∑

y∼a

(φ(a)− φ(y))

)2

=
1

36

(
|2φ(a)− 2φ(b)|2 + |φ(a)− 2φ(b) + φ(c)|2 + |φ(a)− 2φ(b) + φ(f)|2

+ |2φ(a)− 2φ(d)|2 + |φ(a)− 2φ(d) + φ(c)|2 + |φ(a)− 2φ(d) + φ(h)|2

+ |2φ(a)− 2φ(e)|2 + |φ(a)− 2φ(e) + φ(f)|2 + |φ(a)− 2φ(e) + φ(b)|2
)

−1

6

∑

y∼a

|φ(a)− φ(y)|2 + 1

18
|3φ(a)− φ(b)− φ(d)− φ(e)|2

! 1

36

(
2|φ(b)− φ(d)|2 + 2|φ(b)− φ(e)|2 + 2|φ(d)− φ(e)|2

)

+

(
4

36
− 1

6

)∑

y∼a

|φ(a)− φ(y)|2 + 1

18
|3φ(a)− φ(b)− φ(d)− φ(e)|2

=
1

9

∑

y∼a

|φ(a)− φ(y)|2 =
2

3
Γ(φ,φ)(a).

So m = ∞, K = 2
3 .

4. Consider the square in Figure2.

Γ2(φ,φ)(a)

=
1

4
· 1
3

(
1

2

∑

z∼b

|φ(a)− 2φ(b) + φ(z)|2 + 1

2

∑

z∼d

|φ(a)− 2φ(d) + φ(z)|2

+
1

3

∑

z∼c

|φ(a)− 2φ(c) + φ(z)|2
)

− 1

2
· 1
3

∑

y∼a

|φ(a)− φ(y)|2 + 1

2

(
1

3

∑

y∼a

(φ(a)− φ(y))

)2

=
1

12

(
1

2
|2φ(a)− 2φ(b)|2 + 1

2
|φ(a)− 2φ(b) + φ(c)|2 + 1

2
|2φ(a)− 2φ(d)|2

+
1

2
|φ(a)− 2φ(d) + φ(c)|2 + 1

3
|2φ(a)− 2φ(c)|2 + 1

3
|φ(a)− 2φ(c) + φ(b)|2

+
1

3
|φ(a)− 2φ(c) + φ(d)|2

)
− 1

6

∑

y∼a

|φ(a)− φ(y)|2 + 1

18
|3φ(a)− φ(b)− φ(c)− φ(d)|2
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! 1

12

(
2

3
|φ(a)− φ(b)|2 + 2

3
|φ(a)− φ(d)|2 + 1

2
· 1
2
|2φ(b)− 2φ(d)|2 + 1

3
|φ(a)− 2φ(c) + φ(b)|2

+
1

3
|φ(a)− 2φ(c) + φ(d)|2

)
− 1

18

∑

y∼a

|φ(a)− φ(y)|2 + 1

18
|3φ(a)− φ(b)− φ(c)− φ(d)|2

! 1

12

(
1

3
|φ(a)− φ(b)|2 + 1

3
|φ(a)− φ(d)|2 + |φ(b)− φ(d)|2 + 1

3
· 1
2
|2φ(b)− 2φ(c)|2

+
1

3
· 1
2
|2φ(c)− 2φ(d)|2

)
− 1

18

∑

y∼a

|φ(a)− φ(y)|2 + 1

18
|3φ(a)− φ(b)− φ(c)− φ(d)|2

=
1

36

(
6|φ(a)− φ(b)|2 + 6|φ(a)− φ(c)|2 + 6|φ(a)− φ(d)|2 + |φ(b)− φ(d)|2

)

− 1

18

∑

y∼a

|φ(a)− φ(y)|2

! 1

12

∑

y∼a

|φ(a)− φ(y)|2 − 1

18

∑

y∼a

|φ(a)− φ(y)|2 =
1

6
Γ(φ,φ)(a).

So m = ∞, K = 1
6 .

Γ2(φ,φ)(b)

=
1

4
· 1
2

(
1

3

∑

z∼a

|φ(b)− 2φ(a) + φ(z)|2 + 1

3

∑

z∼c

|φ(b)− 2φ(c) + φ(z)|2
)

−1

2
· 1
2

∑

y∼b

|φ(b)− φ(y)|2 + 1

2



1

2

∑

y∼b

(φ(b)− φ(y))




2

=
1

8
· 1
3

(
|2φ(b)− 2φ(a)|2 + |φ(b)− 2φ(a) + φ(c)|2 + |φ(b)− 2φ(a) + φ(d)|2

+|2φ(b)− 2φ(c)|2 + |φ(b)− 2φ(c) + φ(a)|2 + |φ(b)− 2φ(c) + φ(d)|2
)

−1

4

∑

y∼b

|φ(b)− φ(y)|2 + 1

8
|2φ(b)− φ(a)− φ(c)|2

! 1

8
· 1
3

(
1

2
|3φ(c)− 3φ(a)|2 + 1

2
|2φ(c)− 2φ(a)|2

)

+

(
1

6
− 1

4

)∑

y∼b

|φ(b)− φ(y)|2 + 1

8
|2φ(b)− φ(a)− φ(c)|2

=
1

48

(
5|φ(a)− φ(c)|2 + 12|φ(b)− φ(a)|2 + 12|φ(b)− φ(c)|2

)
− 1

12

∑

y∼a

|φ(a)− φ(y)|2

! 1

4

∑

y∼b

|φ(b)− φ(y)|2 − 1

12

∑

y∼b

|φ(b)− φ(y)|2 =
2

3
Γ(φ,φ)(b).

So m = ∞, K = 2
3 .
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