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Abstract— This paper addresses the problem of curb detec-
tion for ADAS or autonomous navigation in urban scenarios.
The algorithm is based on clouds of 3D points. It is evaluated
using 3D information from a pair of stereo cameras and a
LIDAR. Curbs are detected based on road surface curvature.
The curvature estimation requires a dense point cloud, therefore
the density of the LIDAR cloud has been augmented using
Iterative Closest Point (ICP) based on the previous scans. The
proposed algorithm can deal with curbs of different curvature
and heights, from as low as 3 cm, in a range up to 20 m
(whenever that curbs are connected in the curvature image).
The curb parameters are modeled using straight lines and
compared to the ground-truth using the lateral error as the
key parameter indicator. The ground-truth sequences were
manually labeled on urban images from the KITTI dataset
and made publicly available for the scientific community.

I. INTRODUCTION AND RELATED WORK

Road detection has been a topic of the utmost relevance in

the fields of Advanced Driver Assistance Systems (ADAS)

and autonomous driving. In the last years, the quality and

performance of ADAS has improved significantly, providing

a crucial contribution for making autonomous driving a real-

ity. Nowadays, some production vehicles are equipped with

systems that take the control of the vehicle in order to reduce

the damage to the occupants in case of accident. All these

systems require accurate scene understanding capability. For

such purpose, vision sensors have been extensively used by

the automotive industry in diverse systems. Lane departure

warning (LDW) and lane keeping systems are clear examples

of that. These types of systems are consolidated in today’s

cars. However their use is limited to highways and roads

with clearly visible lane markers. Robust operation of LDW

systems on unmarked roads and urban environments is still a

challenge. In most non-urban roads, lanes are limited by road

markings. However, metropolitan areas are more complex

and the free space can be restricted by road markings,

parked cars, traffic signs, lampposts and curbs of quite

different heights. The accuracy and reliability of vision based

systems are strongly affected by the large variety of street

configurations, different materials and textures, illumination

changes, etc.

In order to deal with this adversities, research resources

must be oriented to developing algorithms for the reliable

detection of curbs and road edges, see Figure 1. This paper
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calá, Madrid, Spain. email: carlos.fernandez, llorca,

sotelo@aut.uah.es. Christoph Stiller is with the Institute of Mea-
surement and Control Systems at Karlsruhe Institute of Technology, Karl-
sruhe, Germany. email: stiller@kit.edu

focuses on curb detection on urban scenarios. We propose

a versatile curvature-based method which can operate using

dense 3D point clouds regardless the specific sensor. Thus,

our approach has been validated using 3D data captured

from stereo vision and LIDAR. Free space is crucial for

understanding the road scene, providing relevant information

to the path planning module in an autonomous vehicle.

Fig. 1. Top: example of a complex urban scenario. Bottom: the curvature
representation. On the left side, the scene has a high curb in the closer
distance and a lower one further. On the right side, there are two small
curbs, the first one is the boundary for the parking place and the second
one is the limit of the sidewalk.

In situations where no lane markings or curbs are present

in the scene, texture and color information are inherent

features to detect the road edges. The HSI color space is

used in [1] and [2] together with road shape restrictions. An

important issue for vision-based systems is the presence of

shadows in the scene. In [3] an illuminant invariant image

is obtained to remove the influence of the light changes.

This illuminant invariant image is applied to road detection

in [4]. In [5], firstly, patches are extracted from monocular

images and later on analyzed to find local visual properties

for a metric confidence map. Secondly, features called SPa-

tial RAY (SPRAY) are computed on the confidence map.

Afterwards, the ego-lane is extracted applying a semantic

segmentation based on a local classification of the SPRAY

features. In other cases LIDAR is used for enhancing vision-

based systems. In [6], the authors propose a free space

and speed humps detection system based on LIDAR and

a monocular camera. Generally, monocular based systems

are less robust than stereo-vision for road structure recon-

struction. Consequently, in [7] a semantic graph associated

with a stereo-based homography is proposed, where the

road edges are located using the Viterbi algorithm. As a
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continuation of the previous work [8], the authors propose

to solve the homography as a maximum a posteriori (MAP)

problem in a Markov Random Field (MRF) that computes the

binary labels road/non-road, learning the optimal parameters

for the probabilistic algorithm. The matching algorithm for

computing the disparity image is an important stage of a

stereo vision system. As a matter of fact, disparity mis-

matching leads to unexpected results. In order to compensate

for that, in [9] the authors propose a model of arbitrarily

oriented slanted planes aiming at improving the road surface

estimation. In [10], Loopy Belief Propagation is used to

assign points extracted from the 3D point cloud to curb

adjacent surfaces. As a consequence, the reconstruction of

the curbs can be done even in low height curbs up to 20

meters. An improvement of the previous work is presented in

[11], where the authors include a temporal filter to improve

the accuracy and robustness. More recently, a system has

been deployed in [12] based on the sole use of vision, radar,

and accurate digital maps for autonomous driving on all types

of scenarios, including rural roads, small villages and major

cities. For such purpose, visual clues were off-line obtained

and learned in order to develop a robust self-localization

system given the ego-pose, the road structure was extracted

from a highly accurate digital map. The system successfully

traversed more than 100 km in driverless mode along German

roads and cities.

In this paper we propose an algorithm for online road

curb detection based on curvature surface estimation in 3D

point clouds. The clouds can be captured from different

types of sensors, for example LIDAR or stereo cameras. The

point cloud from LIDAR is sparse because of the vertical

resolution. In order to increase the cloud density, an iterative

algorithm is applied to align the latest scans. The proposed

method is included in a more complex system for urban

scene understanding with particular emphasis on unmarked

roads. The rest of the paper is structured as follows: section

II presents a general description of the system, including the

methods for curvature estimation, curb detection and point

cloud upsampling. Results and discussion are presented in

section III. Finally, we analyze our conclusions and future

work in section IV.

II. SYSTEM DESCRIPTION

A. General Description

In this paper, a curb detection method based on surface

curvature is compared using two different inputs. The first

one is the 3D reconstruction point cloud using the Semi

Global Matching (SGM) algorithm based on stereo vision

[13]. The second one is the 3D reconstruction point cloud

obtained from Velodyne. Since we focus on urban environ-

ments, the performance of the system is evaluated using the

public dataset: KITTI Vision Benchmark Suite. [14]. The

dataset provides images and information of urban scenar-

ios from different types of sensors, such as monochrome

and color cameras, multilayer LIDAR, GPS and IMU. The

technical characteristics of the sensors used in this paper

are: 2 Grayscale cameras 1.4 Mpx (Point Grey Flea 2)

and a laserscanner (Velodyne HDL 64E). The height of the

cameras is 1.65 meters and the height of the LIDAR is 1.73

meters. Furthermore, the LIDAR is installed 27 cm behind

the cameras. Consequently, the relationship between camera

and LIDAR poses must be calibrated. The accuracy of the

stereo-based 3D point cloud is reasonable high even for long

distances due to the long stereo baseline (0.54 m) and the

high resolution of the cameras. On the one hand, road scene

reconstruction from stereo is more dense than LIDAR recon-

struction but it is also affected by mismatching errors. On the

other hand, LIDAR provides low noise measurements even

at long range while at large distances the 3D reconstruction

is sparse and dependant on the vertical resolution.

B. Curvature Estimation

The proposed curb detection method is based on surface

curvature estimation presented in [15]. This feature has been

also used in [16] and [17] for free space detection. The

curvature describes the variation along the surface normal

and it varies between 0 and 1, where low values correspond

to flat surfaces. The curvature feature is more robust and

stable than tangent plane normal vectors. For each point p,

the nearest neighbors (NN) pi in a surrounding area defined

by a radius R are selected. These points are used to create a

weighted covariance matrix, where k denotes the number of

NN.

p̄ =
1

k

k

∑
i=1

pi ; µ =
1

k

k

∑
i=1

|p− pi| (1)

wi =

⎧
⎪⎨
⎪⎩

exp
(
− (p−pi)

2

µ2

)
i f |p− pi| ≥ µ

1 otherwise

(2)

C =
k

∑
i=1

wi · (pi − p̄) · (pi − p̄)T (3)

The eigenvector V and eigenvalues λ of C are computed as

C ·V = λ ·V . A curvature measure γ
p
z is defined by equation

4, where λx ≤ λy ≤ λz are the eigenvalues of the covariance

matrix C.

γ p
z =

λz

λx +λy +λz

(4)

C. Curb Detection

In our reference system, the Z axis is orthogonal to the

road, therefore the curvature γz provides a discriminative

descriptor of the road shape. Curb height and curvature γz are

highly correlated. Consequently, after thorough observation

of urban scenes in the KITTI dataset, a set of thresholds

αi = {1 . . .N} is used to label the type of curb, see Table I:

Curb curvature is different in each scene. For example,

if the curb is a regular one, most of the points exhibit

curvature values γz ∈ [α2,α3), but there are also some curb

points yielding significantly different values, see Figure 2(b).

These measurement outliers are removed by means of a

filtering process. A binary mask is applied for each curvature
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(a) Input image (b) Unfiltered curvatures

(c) Unfiltered mask for γz ∈ [α0,α1) (d) Unfiltered mask for γz ∈ [α1,α2)

(e) Unfiltered mask for γz ∈ [α2,α3) (f) Filtered curvatures

Fig. 2. Filtering process of the noisy input curvatures and the final result.

TABLE I

CURB CURVATURE VALUES

DESCRIPTION CURVATURE COLOR

Flat surface 0 ≤ γz < α0 not painted

Very Small Curbs (∼3 cm) α0 ≤ γz < α1 yellow

Small Curbs (∼5 cm) α1 ≤ γz < α2 orange

Regular Curbs (∼10 cm) α2 ≤ γz < α3 red

Big Obstacles α3 ≤ γz ≤ 1 purple

range using morphological operations and contour analysis.

The resulting masks are merged and re-filtered in order to

get an image like the one shown in Figure 2(f). The use

of fixed or empirical thresholds is then avoided given that

the proposed function is adapted automatically for different

scenes depending on the predominant curvature value.

D. Increase Cloud Density

The point cloud obtained from the stereo sensor is accept-

ably dense, while the LIDAR cloud is sparse given that the

vertical resolution is limited to 0.4 degrees. As a consequence

of that, the algorithm described in Section II-C cannot be

applied directly. The cloud requires being dense enough. For

that purpose, for every point the nearest neighbors (NN) are

fitted to a surface. Then, new points are generated by drawing

samples from the estimated surface. If the road surface is

estimated using a polynomial, the resulting shape of small

curbs is smoothed up and, consequently, those curbs are

partially removed. In order to avoid this problem, an iterative

algorithm is applied to align the sparse clouds from instant

t − n to t. As a result of that alignment, a dense cloud is

created. This algorithm is denoted as Iterative Closest Point

(ICP) [18], [19].

Data: point cloud A = {a1, . . . ,aM}, point cloud

B = {b1, . . . ,bN}, initialized matrix T.

Result: The transformation matrix T which aligns A

and B.

while not converged do

for i = 1 to N do

mi = FindClostestPointInA(T bi)
if ‖mi −T bi‖ ≤ dmax then

wi = 1

else

wi = 0

end if

end for

T = argmin(∑ wi ‖T bi −mi‖
2)

end
Algorithm 1: Standard ICP

The algorithm is illustrated in Algorithm 1. ICP minimizes

the difference between two point clouds iteratively. The first

one A is kept fixed and the other one B is warped to match

the reference. If the clouds are close enough to each other

the initial values for T can be set to identity. For each

iteration, every point in B is transformed using the current

transformation matrix T and matched with the corresponding

point in A. If the distance between the points is greater than

dmax, the points are rejected. As depicted in Figure 3, the ICP

algorithm does not smooth the original data and small curbs
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can still be detected using with the algorithm explained in

Section II-C.

Fig. 3. Top: Single LIDAR scan. Bottom: Point cloud obtained with the
Iterative Closest Point algorithm using the last 5 scans of the LIDAR.

III. RESULTS

The lateral accuracy was evaluated in road sequences

from the KITTI dataset. In such dataset no ground-truth is

provided for curbs detection. A contribution of this paper

is the creation of a public dataset containing a number of

sequences with manually labeled curbs. The ground-truth

was manually annotated in the stereo image and also in

the LIDAR data. The number of labeled sequences in our

dataset is still low, although it will be gradually increased.

The dataset is publicly available at www.isislab.es.

For the evaluation, straight lines are fitted to the detected

curb points and also to the labeled ground-truth points. The

estimated line and the ground truth are defined by the points

p and q and the direction vectors �u and �v respectively. The

accuracy is evaluated by computing equation 7, where a and

b are the evaluated range, from 6 meters up to 20 meters. In

urban scenarios the driving speed is usually low. Thus, we

consider that an estimation range of 20 meters is enough for

safe maneuvering in most cases.

l =
uy

ux

(x− px)+ py (5)

l̂ =
vy

vx

(x−qx)+qy (6)

RMSE =

√
1

b−a

∫ b

a
(l − l̂)2dx (7)

In the case of the stereo data, the disparity images are

computed using Semi Global Matching (SGM). By accu-

mulating the latest 5 scans of the LIDAR, the density of

the point cloud is enhanced, making it good enough for the

curvature estimation algorithm. The density of the LIDAR

cloud is increased using ICP, therefore some errors during

Fig. 4. Lateral RMSE obtained comparing ground truth and the result of
the algorithm. The results for left and right curbs are separated to evaluate
the performance individually.

the matching stage can yield point clouds with slightly worse

quality than a dense stereo point cloud. In Figure 4, the

lateral error is depicted. The LIDAR error is plotted in

red and the error from the stereo is plotted in blue. The

performance of our approach using the LIDAR data is quite

similar both for the left and right curbs. In addition, the

performance using the 3D data obtained from stereo vision

is also similar to LIDAR for the right most curb. However,

the lateral error on the left curb is significantly higher. By

analyzing the disparity images in several sequences, we

noted that the left part of the image provides noisy and

unrealistic 3D information (see Figure 5) which can be

caused by several factors (e.g., inaccurate calibration). As

shown in Figure 4, when accurate disparity is available (right

curb) the performance of the curvature estimation based

on stereo vision is even better than the LIDAR because

stereo-based point cloud is more dense than that obtained

from the LIDAR. Therefore, we can state that the use of

stereo cameras for ADAS in urban environments is a good-

enough technology for accurate road curb detection. The curb

detection algorithm presents a lateral RMSE of 12cm in a

range from 6 meters to 20 meters for the right most curb,

while the value of RMSE on the left side is 22cm.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper a curb detection estimation algorithm based

on 3D point clouds has been presented. The use of fixed

or empirical thresholds is avoided given that the proposed

function is adapted automatically for different road scenes

depending on the predominant curvature value. A public

dataset of manually labeled curbs has been made available

at www.isislab.es. The algorithm presented in this paper

has successfully been applied for the detection of straight

and curved curbs.

However a geometric detection method is not enough to

get a robust free space detection system due to the fact

that some road limits have the same height as the road.
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(a) Greyscale image

(b) Disparity image

(c) Curvature estimation using stereo point cloud

(d) Output of the curb detection algorithm for the stereo point cloud

(e) Curvature estimation using LIDAR point cloud

(f) Output of the curb detection algorithm for the LIDAR point cloud

Fig. 6. Comparison of curvature estimation. Results obtained on stereo vision are noisier than those obtained on LIDAR.
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(a) Greyscale image of the analyzed frame

(b) Curvature estimation using 3D stereo data

(c) Curvature estimation using LIDAR data

Fig. 5. Comparison of curvature estimation. Stereo calibration and
mismatching errors produce wrong surface reconstruction on the left side
of the image.

For this reason texture and color provide key information

that complements and enhance the geometric reconstruction.

As a future work, a new machine learning approach will

include the geometric reconstruction presented in this paper

together with texture and color information in order to detect

the drivable area.

The proposed algorithm is compared using different

sources for the 3D cloud data. Although the LIDAR cloud is

more accurate than the stereo cloud, it is sparser. In order to

improve the LIDAR cloud density, the Iterative Closest Point

(ICP) has been applied. The density of the resulting cloud is

similar to that of stereo vision systems, while preserving the

accuracy of LIDAR sensors. Another advantage is the fact

that laser-based reflectivity measurements are also available.

The reflectivity is very useful to detect traffic signs and road

markings during daytime and nighttime. In our future work,

an algorithm for road marking detection on all-weather and

all illumination conditions will be developed by jointly using

LIDAR and cameras.
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