CURVATURE BOUND AND TRAJECTORIES FOR MAGNETIC FIELDS ON A HADAMARD SURFACE

By

Toshiaki ADACHI

Introduction.

On a complete oriented Riemannian manifold M, a closed 2-form B is called a magnetic field. Let Ω denote the skew symmetric operator $\Omega: TM \to TM$ defined by $\langle u, \Omega(v) \rangle = B(u, v)$ for every $u, v \in TM$. We call a smooth curve γ a trajectory for B if it satisfies the equation $\nabla_{\dot{\gamma}} \dot{\gamma} = \Omega(\dot{\gamma})$. Since Ω is skew symmetric, we find that every trajectory has constant speed and is defined for $-\infty < t < \infty$. We shall call a trajectory normal if it is parametrized by its arc length. When γ is a trajectory for B, the curve σ defined by $\sigma(t) = \gamma(\lambda t)$ with some constant λ is a trajectory for λB . We call the norm $||B_x||$ of the operator $B_x: T_xM \times T_xM \to R$ the strength of the magnetic field at the point x. For the trivial magnetic field B = 0, the case without the force of a magnetic field, trajectories are nothing but geodesics. In term of physics it is a trajectory of a charged particle under the action of the magnetic field. For a classical treatment and physical meaning of magnetic fields see [8].

On a Riemann surface M we can write down $B = f \cdot \operatorname{Vol}_M$ with a smooth function f and the volum form Vol_M on M. When f is a constant function, the case of constant strength, the magnetic field is called *uniform*. On surfaces of constant curvature the feature of trajectories are well-known for every uniform magnetic field $k \cdot \operatorname{Vol}_M$. On a Euclidean plane \mathbb{R}^2 they are circles (in usual sense of Euclidean geometry) of radius 1/|k|. On a sphere $S^2(c)$ they are small circles with prime period $2\pi/\sqrt{k^2 + c}$. In these cases all trajectories are closed. On a hyperbolic plane $H^2(-c)$ of constant curvature -c, the situation is different. In his paper [4] Comtet showed that the feature of trajectories changes according to the strength of a uniform magnetic field $k \cdot \operatorname{Vol}_M$. When the strength |k| is greater than \sqrt{c} , normal trajectories are still closed, hence bounded, but if $|k| \le \sqrt{c}$ they are unbounded simple curves, in particular, if $|k| = \sqrt{c}$ they are horocycles. In the preceeding paper [2] we studied trajectories for Kähler magnetic fields $k \cdot B_J$,

Received June 6, 1994.

which are scalar multiples of the Kähler form B_j , on a manifold of complex space form. On a complex projective plane all trajectories for Kähler magnetic fields are closed. But on a complex hyperbolic space $CH^n(-c)$ of constant holomorphic sectional curvature -c, normal trajectories for Kähler magnetic fields have similar properties as of trajectories for uniform magnetic fields on a hyperbolic plane. Their feature depend on the strength of a Kähler magnetic field; trajectories are bounded, horocyclic, or unbounded according to the strength is greater, equal to, or smaller than \sqrt{c} . In this context it is quite natural to pose the following problem. Consider a Hadamard manifold, which is a simply connected complete Riemannian manifold of nonpositive curvature $-\beta^2 \leq \text{Riem}_M \leq -\alpha^2$, $\beta \geq \alpha \geq 0$. Are they true that all trajectories are unbounded if the strength is smaller than α and that all trajectories are bounded if the strength is greater than β ? In this note we shall concerned with this problem on a Hadamard surface.

THEOREM 1. Let $\mathbf{B} = f \cdot \operatorname{Vol}_M$ be a magnetic field with $|f| \le \alpha$ on a Hadamard surface M of curvature $\operatorname{Riem}_M \le -\alpha^2$. Then every normal trajectory for \mathbf{B} is unbounded for both directions.

For Hadamard manifolds we have an important notion of ideal boundary. We denote by $\overline{M} = M \bigcup M(\infty)$ the compactification of a Hadamard surface M with its ideal boundary $M(\infty)$. For a two-sides unbounded curve γ on M, if $\lim_{t\to\infty} \gamma(t)$ and $\lim_{t\to\infty} \gamma(t)$ exist in \overline{M} we denote these points by $\gamma(\infty)$ and $\gamma(-\infty)$ respectively, and call that γ has points of infinity. If we review the Comtet's result from this point of view, it assures the following. On $H^2(-c)$ every trajectory γ for a uniform magnetic field $k \cdot \operatorname{Vol}_{H^2(-c)}$ with $|k| \leq \sqrt{c}$ has points of infinity $\gamma(\infty), \gamma(-\infty)$. When $|k| = \pm \sqrt{c}$ they coincide $\gamma(\infty) = \gamma(-\infty)$, and they are distinct when $|k| < \sqrt{c}$. We show that a similar property holds for general Hadamard surfaces.

THEOREM 2. Let $\mathbf{B} = f \cdot \operatorname{Vol}_{M}$ be a magnetic field with $|f| \le \alpha$ on a Hadamard surface M of curvature $\operatorname{Riem}_{M} \le -\alpha^{2} \le 0$. Suppose either $f \le 0$ or $f \ge 0$ except on a compact subset of M. We then have the following.

(1) Every normal trajectory for \boldsymbol{B} has points of infinity.

(2) If $|f| < \alpha$ except on a compact subset of M, every normal trajectory has two distinct points at infinity.

§1. A note on γ -Jacobi fields.

We shall show our theorems by applying the Rauch's comparison theorem. Let $\boldsymbol{B} = f \cdot \operatorname{Vol}_{M}$ be a magnetic field on a oriented surface M. We denote by Ω_{0} the skew symmetric operator associated with the uniform magnetic field Vol_{M} . Clearly the skew symmetric operator associated with \boldsymbol{B} is of the form $\Omega = f \cdot \Omega_{0}$. For a normal trajectory γ for \boldsymbol{B} , we denote by $V_{t}(s)$ the γ -Jacobi field along the geodesic $s \to \sigma(t,s) = \exp_{\gamma(t)} s\Omega_{0}(\dot{\gamma})$ with $V_{t}(0) = \dot{\gamma}(t)$. This Jacobi field V_{t} is perpendicular to $\sigma(t,\cdot)$ and is obtained by the variation $\{\sigma(t+\varepsilon,\cdot)\}_{\varepsilon}$ of geodesics; $V_{t}(s) = \frac{\partial}{\partial t}\sigma(t,s)$.

For the sake of reader's convenience, we recall the explicit formula for normal trajectories and γ -Jacobi fields for uniform magnetic fields on surfaces of constant curvature.

EXAMPLE 1. On a Euclidean plane \mathbf{R}^2 , trajectories for the uniform magnetic fields of strength k satisfy the following equation:

$$\gamma(t) = \left(\frac{1}{k}\cos(kt-\theta), \frac{1}{k}\sin(kt-\theta)\right) + (\xi_1, \xi_2).$$

The variation of geodesics is given by

$$\sigma(t,s) = \left(\frac{1}{k}(1-ks)\cos(kt-\theta), \frac{1}{k}(1-ks)\sin(kt-\theta)\right) + (\xi_1,\xi_2)$$

and the γ -Jacobi field is

$$V_t(s) = (1 - ks)\dot{\gamma}(t),$$

hence it vanishes at $s_0 = 1/k$. The point $\sigma(t, 1/k) = (\xi_1, \xi_2)$ is usually called the center of γ .

EXAMPLE 2. On a sphere $S^2(c) = \{x = \{(x_1, x_2, x_3) \in \mathbb{R}^3 | \langle x, x \rangle = x_1^2 + x_2^2 + x_3^2 = 1\}$ of sectional curvature c, the trajectory γ for the uniform magnetic field of strength k satisfies the following equation when $\gamma(0) = x \in S^2(c), \dot{\gamma}(0) = u \in U_x S^2(c) \approx \{\xi \in \mathbb{R}^3 | \langle x, \xi \rangle = 0, \langle \xi, \xi \rangle = c\}$:

$$\gamma(t) = \frac{1}{k^2 + c} (k^2 + c \cdot \cos\sqrt{k^2 + ct}) \cdot x$$
$$+ \frac{1}{\sqrt{k^2 + c}} \sin\sqrt{k^2 + ct} \cdot u + \frac{k}{k^2 + c} (1 - \cos\sqrt{k^2 + ct}) \cdot \Omega_0(u).$$

Since the variation of geodesics is given by

$$\sigma(t,s) = \gamma(t)\cos\sqrt{cs} + \Omega_0(\dot{\gamma}(t)) \cdot \frac{1}{\sqrt{c}}\sin\sqrt{cs}$$

hence

$$V_t(s) = \dot{\gamma}(t)(\cos\sqrt{cs} - \frac{k}{\sqrt{c}}\sin\sqrt{cs}).$$

Therefore it vanishes at $s_0 = \frac{1}{\sqrt{c}} \tan^{-1} \sqrt{c} / k$. The point $\sigma(t, s_0)$ and the trajectory γ can be regard as a pole and a latitude line of this sphere.

EXAMPLE 3. On the hyperbolic plane $H^2(-c) = \{x = (x_0, x_1, x_2) \in \mathbb{R}^3 | \langle \langle x, x \rangle \rangle = -x_0^2 + x_1^2 + x_2^2 = -1, x_0 \ge 1\}$ of constant sectional curvature -c, the trajectory of the uniform magnetic field of strength k satisfies the following equation if $\gamma(0) = x$ and $\dot{\gamma}(0) = u \in U_x H^2(-c) \simeq \{\xi \in \mathbb{R}^3 | \langle \langle x, \xi \rangle \rangle = 0, \langle \langle \xi, \xi \rangle \rangle = c\}$:

$$\begin{split} \gamma(t) &= \frac{1}{c - k^2} (-k^2 + c \cdot \cosh \sqrt{c - k^2} t) \cdot x + \frac{1}{\sqrt{c - k^2}} \sinh \sqrt{c - k^2} t \cdot u \\ &+ \frac{k}{c - k^2} (-1 + \cosh \sqrt{c - k^2} t) \cdot \Omega_0(u), \quad \text{when } 0 \le k < \sqrt{c}, \\ \gamma(t) &= (1 + \frac{ct^2}{2}) x + t u + \frac{\sqrt{c}t^2}{2} \Omega_0(u), \quad \text{when } k = \sqrt{c}, \\ \gamma(t) &= \frac{1}{k^2 - c} (k^2 - c \cdot \cos \sqrt{k^2 - ct}) \cdot x + \frac{1}{\sqrt{k^2 - c}} \sin \sqrt{k^2 - ct} \cdot u \\ &+ \frac{k}{k^2 - c} (1 - \cos \sqrt{k^2 - ct}) \cdot \Omega_0(u), \quad \text{when } k > \sqrt{c}. \end{split}$$

The variation of geodesics is given by

$$\sigma(t,s) = \gamma(t) \cosh \sqrt{c} s + \Omega_0(\dot{\gamma}(t)) \cdot \frac{1}{\sqrt{c}} \sinh \sqrt{c} s$$

hence

$$V_t(s) = \dot{\gamma}(t) (\cosh \sqrt{cs} - \frac{k}{\sqrt{c}} \sinh \sqrt{cs})$$

Therefore if $|k| > \sqrt{c}$ the γ -Jacobi field vanishes at $s_0 = \frac{1}{\sqrt{c}} \tanh^{-1} \sqrt{c} / k = \frac{1}{2\sqrt{c}} \log \frac{k + \sqrt{c}}{k - \sqrt{c}}$. If $|k| \le \sqrt{c}$ it does not vanish. When $k = \sqrt{c}$, the case that γ is a horocycle, the point $\gamma(\infty) = \gamma(-\infty)$ on the ideal boundary can be regard as the vanishing point of the γ -Jacobi field; $\lim_{s \to \infty} V_t(s) = 0$.

§2. Proofs.

We are now in the position to prove theorems. Let γ be a trajectory for the magnetic field $f \cdot \operatorname{Vol}_M$ with $|f| \leq \alpha$ on a Hadamard surface M of curvature $\operatorname{Riem}_M \leq -\alpha^2$. We compare the norm of the γ -Jacobi field V_t with the norm of γ -Jacobi fields for uniform magnetic fields on a hyperbolic space. Since we have

$$\nabla_{\frac{\partial\sigma}{\partial s}}V_t(0) = \frac{\partial}{\partial s}\frac{\partial}{\partial t}\sigma(t,s)\Big|_{s=0} = \frac{\partial}{\partial t}\Omega_0(\dot{\gamma}(t)) = -f(\gamma(t))\dot{\gamma}(t),$$

we get the following estimate by the Rauch's comparison theorem;

$$\|V_t(s)\| \ge \cosh \alpha s - \frac{1}{\alpha} f(\gamma(t)) \sinh \alpha s$$
.

This gaurantees that if $|f(\gamma(t))| \le \alpha$ then V_t does not vanish anywhere and $\liminf_{s \to \pm \infty} \exp(-\alpha s) \cdot ||V_t(s)|| \ge \frac{1}{2} (1 - |f(\gamma(t))|/\alpha)$ for every t. Since M is diffeomorphic to an Euclidean plane, we find that the geodesic $\sigma(t_1, \cdot)$ and $\sigma(t_2, \cdot)$ do not intersect each other if $t_1 \ne t_2$.

Let $S_r(p)$ denote the geodesic circle $\{x \in M \mid d(x, p) = r\}$ of radius *r* centered at *p*. If we suppose $\gamma \mid_{[0,\infty)}$ is tangent to a geodesic circle $S_r(\gamma(0))$ at $\gamma(t_0)$, then $\sigma(t_0, \cdot)$ passes $\gamma(0)$, which is a contradiction. We therefore have

PROPOSITION. The trajectory rays $\gamma|_{[0,\infty)}$ and $\gamma|_{(-\infty,0)}$ cross only once to every geodesic circle $S_r(\gamma(0))$.

This proposition leads us to Theorem 1. In order to see Theorem 2, we denote by u_t for $t \neq 0$ the unit tangent vector at $p = \gamma(0)$ such that the geodesic emanating from p with the initial speed u_t joins p and $\gamma(t)$. We set $u_0 = \dot{\gamma}(0)$. Since γ is unbounded in both directions, we may treat the case that f is nonpositive (or nonnegative) on M. We then find the smooth curve $(u_t)_{t \in [0,\infty)}$ on $U_p M \simeq S^1$ rotates counterclockwisely if $f \ge 0$ and rotates clockwisely if $f \le 0$. If we suppose $u_{t_0} = \pm \Omega_0(u_0)$ for some t_0 , then $\sigma(0, \cdot)$ passes $\gamma(t_0)$. Hence we find that $\{u_t\}_t \subset U_p M \setminus \{\pm \Omega_0(u_0)\}$ and the limit $u_{\infty} = \lim_{t \to \infty} u_t$ exists. Similarly, we find that the limit $u_{-\infty} = \lim_{t \to -\infty} u_t$ exists. We therefore get that γ has points at infinity;

$$\gamma(\infty) = \rho_{u_{\infty}}(\infty)$$
 and $\gamma(-\infty) = \rho_{u_{\infty}}(\infty)$,

where ρ_{ν} denote the geodesic with $\dot{\rho}(0) = \nu$. Now we suppose that γ has a single point at infinity: $\gamma(\infty) = \gamma(-\infty)$. This means $u_{\infty} = u_{-\infty}$, hence $\gamma(\infty) = \sigma(t,\infty)$ for every t. This can not occur when $f < \alpha$. We get the conclusion of Theorem 2.

In view of our proof, we can conclude the following.

REMARK. Consider a magnetic field $B = f \cdot \operatorname{Vol}_{M}, |f| \le \alpha$, on a Hadamard surface M of curvature $\operatorname{Riem}_{M} \le -\alpha^{2} < 0$.

(1) A trajectory γ for **B** has a single point at infinity $\gamma(\infty) = \gamma(-\infty)$ if and only if all the geodesic $\sigma(t, \cdot)$ converges to that point $\sigma(t, \infty) = \gamma(\infty)$.

(2) If a trajectory γ has a single point at infinity, then the magnetic angle at that point is $\pi/2$. Here the magnetic angle means the angle between the outer tangent vector of γ and the outer tangent vector of geodesics ρ with $\rho(\infty) = \gamma(\infty)$ (c.f.[2]).

REMARK. Let $\mathbf{B} = k \cdot \operatorname{Vol}_{M}, |k| < \alpha$ be a uniform magnetic field on a Hadamard surface M of bounded negative curvature $-\beta^{2} \leq \operatorname{Riem}_{M} \leq -\alpha^{2} < 0$. We have a positive ε such that the angle $\leq (\dot{\gamma}(0), \dot{\rho}(0))$ between a trajectory γ for \mathbf{B} and a geodesic ρ with $\gamma(0) = \rho(0)$ and $\gamma(\infty) = \rho(\infty)$ is always not greater than $\pi - \varepsilon$.

References

- [1] T. Adachi, Ideal boundary of a complete metric space, Kumamoto J. Math. 7 (1993), 51–59.
- [2] T. Adachi, Kähler magnetic flows on a manifold of constant holomorphic sectional curvature, Tokyo J. Math. 18 (1995), 473–483.
- [3] W. Ballmann, M. Gromov and V. Schroeder, Manifold of nonpositive curvature, Birkhäuser 1985.
- [4] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North Holland, Amsterdam 1975.
- [5] A. Comtet, On the Landau levels on the hyperbolic plane, Ann of Phys. 173 (1987), 185–209.
- [6] F. Ohtsuka, Rigidity of compact ideal boundaries of manifolds joined by Hausdorff approximations, Tsukuba J. Math. 18 (1994), 439-447.
- [7] K. Nomizu and K. Yano, On circles and sphere in Riemannian geometry, Math. Ann. 210 (1974), 163-170.
- [8] T. Sunada, Magnetic flows on a Riemann surface, Proc. KAIST Math. Warkshop, 8 (1993), Analysis and Geometry, 93-108.
- [9] T. Adachi, A comparison theorem for magnetic Jacobi fields, to appear in Proc. Edinburgh Math. Soc.
- T. Adachi, Magnetic flows for a surface of negative curvature, Bull. Nagoya Institute of Tech.
 47 (1995), 161–170

Department of Mathematics

Nagoya Institute of Technology

Gokiso, Showa-ku, Nagoya 466

Japan

e-mail address: d43019a@nucc.cc.nagoya-u.ac.jp

230