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ABSTRACT
We consider the existence and efficient construction of boun-
ded curvature paths traversing constant-width regions of the
plane, called corridors. We make explicit a width threshold
τ with the property that (a) all corridors of width at least
τ admit a unit-curvature traversal and (b) for any width
w < τ there exist corridors of width w with no such traver-
sal. Applications to the design of short, but not necessarily
shortest, and high clearance, but not necessarily maximum
clearance, curvature- bounded paths in general polygonal
domains, are also discussed.

1. INTRODUCTION
We are interested in studying the existence and construction
of paths of bounded curvature (e.g. the trace of the midpoint
of the rear axle of a car), in the presence of obstacles in the
plane. The curvature of any smooth path is defined as the
inverse of its minimum curvature radius over all points on
the path. Thus, a κ-curvature path has curvature radius
at least 1/κ at every point. Both 0-curvature (straight)
and ∞-curvature (polygonal) paths are (relatively) simple
special cases. Furthermore, a κ-curvature path becomes a
unit-curvature path under scaling by κ. Thus, it is natural
to restrict attention to unit-curvature paths.

The focus of our present study is the problem of construct-
ing “good” (which could be interpreted as “short” or “high
clearance”, or some combination of these), but not neces-
sarily optimal, curvature-bounded paths in connected, but
not necessarily simply connected, polygonal regions. Such a
region P , called a passageway, is described by (i) a simple
polgonal curve B (the boundary of P), (ii) two distinguished
edges of B (the initial and final gates of P), and (iii) zero or
more disjoint polygonal obstacles in the interior of P . We
seek unit-curvature traversals of P : unit-curvature paths in
the interior of P that connect the initial and final gates and
avoid all obstacles (cf. Fig. 1 (a)).
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Figure 1: (a) passageway P with bounded-curvature
(dot-dashed) and ∞-curvature (dotted) traversals;
(b) a minimum length corridor (shaded), and asso-
ciated bounded-curvature traversal, in P; and (c)
maximum clearance corridor (shaded) and associ-
ated bounded-curvature traversal, in P.



In particular, we want to determine, for a given passage-
way P , whether there exists a unit-curvature traversal of
P . Furthermore, if such a traversal exists, we would like to
construct one whose length (or other criterion of quality)
is close to optimal among all such traversals and, if such
a traversal does not exist, we would like to determine the
smallest curvature bound greater than 1 for which such a
traversal does exist.

1.1 Related work
Curvature-bounded motion-planning problems have received
considerable attention in the robotics literature [3, 6, 7, 11,
18, 25]. For surveys the reader may consult [17, 19, 24].
In general, path planning problems (given a collection of
obstacles and specified initial and final configurations) in
dimensions higher than 2 are hard, even if the curvature
bound κ is set to ∞. Specifically if the dimension is not
fixed the path existence problem is PSPACE-complete [8,
23]. In three dimensions, Canny and Reif [9] proved that
the shortest (polygonal) path problem is NP-hard. In two
dimensions, Reif and Wang [22] showed that the problem of
finding a shortest unit-curvature path in a general polygo-
nal domain (a polygonal region with polygonal obstacles or
holes) is NP-hard.

In contrast, efficient approximation algorithms are known [16,
16, 26, 2]. Boissonnat and Lazard [6] give an O(n2 log n) al-
gorithm for finding shortest unit-curvature paths amid dis-
joint moderate obstacles (convex obstacles bounded by seg-
ments of zero or unit curvature). Agarwal et al. [1] obtain
an O(n2 log n) algorithm for finding shortest unit-curvature
paths in a convex polygonal region. Boissonnat et al. [5]
present a linear time algorithm for finding a convex unit-
curvature path (not necessarily shortest), if one exists, in a
simple polygon. The construction of smooth paths, using
spline functions, in simple polygons (channels) defined by
two polgonal chains, is studied in [4, 20].

A shortest polygonal (i.e. ∞-curvature) path π∞, with spec-
ified endpoints, can be determined efficiently in a simple
polygon [12, 13], in the presence of polygonal obstacles [15],
and with a specified homotopy [14] or minimum clearance
(using Minkowski expansion of all barriers). Furthermore,
using the idea of retraction motion planning [21] a path πmax

of maximum clearance (within a specified homotopy class)
can be determined efficiently from the generalized Voronoi
diagram of the domain.

Taken together these allow us to construct “good” paths of
specified minimum clearance within a fixed homotopy class
in a specified polygonal domain (cf. Fig. 1 (b),(c)). This
motivates the study of curvature bounded paths in constant-
width passageways.

1.2 Overview and summary of results
One of the things that distinguishes our approach is its
departure from the conventional focus on minimum length
curvature-bounded paths (or close approximations thereof),
which appears to be motivated at least as much by the de-
sire to restrict the search space as the need to optimize
the path length. Instead, as we have illustrated, we seek
a unit-curvature path in the neighbourhood of some speci-
fied feasible path π that has some specified clearance. In so

doing we trade a modest (potential) increase in path length
for a guarantee (based on global, but efficiently computable,
properties of the domain) of the existence of a unit-curvature
path that approximates (and, hence, inherits some of the
properties of) π, together with an efficient algorithm for its
construction.

The existence of a unit-curvature approximation of a path π
is thus reduced to the existence of a unit-curvature traver-
sal of a fixed width corridor, the subset of a passageway’s
freespace formed by sweeping a disk of some fixed width
w along π. Note that corridors formed in this way are
connected but not necessarily simply connected (cf. Fig 2).
(Corridors and their properties are described more precisely
in the next section.)

Figure 2: A non-simply-connected corridor and its
centerline

Obviously there is a tradeoff between the width of corri-
dors and the maximum curvature necessary for their traver-
sal since, in general, wider corridors admit gentler turns.
It is interesting to ask what one can say about the (unit-
curvature) traversability of a corridor knowing only its width.
For example, it is easy to see that every corridor of width
at least 2 admits a unit-curvature traversal (in fact the path
traced by the center of a disk of diameter 2 as it rolls along
the boundary of such a corridor has curvature at most 1).
Furthermore, corridors of width 1 are not guaranteed to ad-
mit such a traversal. (The reader is invited to confirm that
the corridor illustrated in Fig. 3 has this property.)

1

1

1

Figure 3: A corridor with no unit-curvature traver-
sal.

One of the main contributions of this paper is to make this
tradeoff explicit. Specifically, let τ be the unique root of the
cubic equation w3 −5w2 −16w +32 = 0 in the interval [1, 2]
(τ ≈ 1.50515). We prove the following:



Theorem 1. (a) For any w < τ there exist corridors of
width w that do not admit a unit-curvature traversal;
(b) Every corridor C of width w ≥ τ admits a unit-curvature
traversal. Furthermore, such a traversal can be constructed
in time linear in the complexity of C.

In Section 2 we provide a more precise definition of corridors
and describe some of their properties. We also introduce a
special class of corridors, called switchbacks that play a fun-
damental role in the proof of Theorem 1(a). Section 3 de-
scribes a normal form for corridor traversals. For the special
case of switchbacks this allows us to describe unit-curvature
traversals as annotations of the shortest (unrestricted cur-
vature) traversal. This leads naturally to the specification
of a critical switchback that embodies the definition of (and
intuition behind) the threshold constant τ . The proof of
Theorem 1(a) itself is outlined in Section 5. The proof of
Theorem 1(b), for the special case of switchback corridors,
is presented in Section 6; the proof for general corridors is
sketched in Section 7. Section 8 mentions some related re-
sults and open questions.

2. CORRIDORS, REDUCED CORRIDORS
AND SWITCHBACKS

As we have defined them, corridors of width w can be ex-
pressed as the Minkowski sum π⊕D of a path π with a disk
D of diameter w. Such a corridor is said to be reduced if it
does not properly contain another corridor π′ ⊕D, where π′

has the same endpoints as π (cf. Fig. 4).
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Figure 4: (a) a corridor and (b) a corresponding
reduced corridor.

It is straightforward to confirm that the centerline π of a
reduced corridor of width w forms a simple smooth curve
of curvature at least w/2. In fact if π is the centerline of a
minimum length corridor, not only is the associated corri-
dor reduced but π is composed of straight segments and arcs

of circles of radius exactly w/2. Since an arbitrary smooth
curve of curvature at least w/2 can be approximated arbi-
trarily closely by a curve of this form, we will assume here-
after that any given reduced corridor is expressed in this
way.

Any point p on the centerline π defines two points pL and
pR at distance w/2 from p in directions normal to π at p.
The locus of all such points describes two (not necessarily
simple) curves πL and πR that serve to restrict the corridor
locally. The locus of the segment pLpR traces a continu-
ously changing diameter that does not locally self-intersect.
For this reason, we can view reduced corridors as a fixed se-
quence of straight sections (pipes) and wedges (elbows) (cf.
Fig 5).
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Figure 5: A corridor formed from pipes and elbows.

Viewed in this way, reduced corridors express the constraints
associated with real-world roadways that can cross over them-
selves and spiral while remaining locally planar.

Since corridors of width at least 2 admit straightforward
unit-curvature traversals, it suffices to restrict our attention
to corridors of width w < 2, what we call narrow corri-
dors. Narrow corridors are a particularly interesting special
case of simply connected passageways in that they admit
only monotone traversals (u-turns are impossible). It fol-
lows from this that any curvature-bounded traversal is at
most some constant factor longer than the corridor center-
line.

A long elbow is a corridor segment whose associated arc
spans more than 180◦. A corridor that is composed of a
(necessarily alternating) sequence of left and right long el-
bows (i.e. all of its straight sections have length zero) is
called a switchback. Switchbacks are interesting because
they constitute what are intuitively (and, as we shall see,
provably) the most difficult corridors to traverse. It is not
hard to see that switchbacks are completely characterized
by their shortest (∞-curvature) traversals (which describes
a zig-zag path, each link of length w, between successive cor-
ners). Seriously mixing metaphors, we refer to this path as
the spine of the switchback. Fig. 6 illustrates a switchback
and its associated spine, providing a different view of the
same corridor illustrated in Fig. 2.

3. NORMAL PATHS IN CORRIDORS AND
SWITCHBACKS

If there is a curvature-bounded path joining two configura-
tions I and F then there is a corresponding Dubins path [10],
a smooth curve consisting of line segments and arcs of ra-



Figure 6: A switchback and its spine (dotted)

dius 1. Furthermore, Fortune and Wilfong [11] show that,
in presence of obstacles, a path can be chosen to have an
even more restrictive normal form. An arc of a path is short
(resp. long) if its angle is less than (resp. at least) 180◦.
A short arc of a path is supported if it touches an obstacle
inside of the arc. A long arc is supported if it touches an
obstacle outside of the arc. A path is fully supported if all
its arcs are supported.

Lemma 2 (Fortune and Wilfong [11]). If there is a
curvature-bounded path from I to F in a bounded region with
obstacles, then there is a fully supported path from I to F .

Among other things this allows us to assume that every
long elbow in a reduced corridor is traversed using either a
wide turn (touching the outer boundary of the elbow) or a
shallow turn (touching the elbow centre). It follows that if
a switchback is traversable at all it is traversable by a path
consisting of a sequence of wide and shallow turns, one for
each elbow. The specific wide (resp. shallow) turn used
within a given elbow with center point O is neatly specified
by a line segment of length w − 1 (respectively 1) joining O
to the center A (resp. B) of the turning circle (cf. Fig. 7).

A

B

O

1

w

w − 1

w

Figure 7: A switchback elbow with wide and shallow
turns.

In this way, a full traversal of a switchback is specified by
annotating its spine with appropriate wide or shallow turn
segments at each of its corners. Similarly, the feasibility of
a traversal can be determined by determining feasible wide
and shallow turn segments for each corner in its spine. Of
course the feasibility of a transition from a turn in one elbow

to a turn in its successor requires that the centers of the
associated turning circles be at least distance 2 apart.

Within a single wide elbow with center O, a wide (resp.
shallow) turn arc with center A is earlier than a wide (resp.
shallow) turn with center A′ if the angle formed by line seg-
ment OA and the spine edge entering O is smaller than that
formed by segment OA′. Since earlier turns provide more
flexibility for turns in subsequent elbows, switchback traver-
sals admit an even more restrictive normal form: each turn
in the traversal is the earliest feasible turn of its type within
its elbow. We refer to such traversals as greedy traversals.

4. CRITICAL WIDTH SWITCHBACKS
A typical switchback will admit many distinct traversals
even in our most restrictive (greedy) normal form. In this
section we show how to construct a switchback whose struc-
ture is critical in the sense that, while it admits exponen-
tially many distinct greedy traversals, any one of its greedy
turn transitions can be made infeasible by a small pertur-
bation. The width of this critical corridor defines our width
threshold τ .

Consider the configuration of turning circle centers illus-
trated in Figure 8. The points A and B represent the centers
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Figure 8: Configuration specifying τ .

of aligned wide and shallow turning circles around O. Sim-
ilarly, the points A′ and B′ represent the centers of aligned
wide and shallow turning circles around O′. If |AA′|, |BB′|
and |AB′| are all constrained to be equal to 2, the quadralat-
eral AB′A′B, drawn with AB′ horizontal, has vertical sym-
metry. Thus BA′ is also horizontal and the segments AB
and A′B′ have complementary slopes. Let α denote the an-
gle of deviation of segment AB from the vertical, and let
β denote the angle of deviation of the segment OO′ from
the vertical. We denote by τ the unique value of the width
variable w implied by all of the separation constraints.

Lemma 3. The width τ is the only root of the cubic equa-
tion w3 − 5w2 − 16w + 32 = 0 in the interval [1, 2] (τ ≈
1.50515).

Proof. The condition |AA′| = 2 can be written as

(w sin β)2 + (w cos β + 2(w − 1) cos α)2 = 4. (1)

Since the segment AB′ is horizontal, the condition |AB′| = 2



can be written as

w sin α + w sin β = 2 (2)

(w − 1) cos α + w cos β = cos α (3)

The second equation simplifies to

w cos β = (2 − w) cos α. (4)

Substituting w cos β in Equation (1) we get (w sin β)2 +
(w cos α)2 = 4 or

(w sin β)2 + w2(1 − sin2 α) = 4.

Combining this with Equation (2) we obtain (2−w sin α)2 +
w2(1 − sin2 α) = 4 or

w = 4 sin α. (5)

Thus

w2/4 = (w sin β)2/4 + (w cos β)2/4

= (4 − w2 sin2 α)/4 + ((2 − w) cos α)2/4

= 1 − (w − 1) cos2 α = 1 − (w − 1)(1 − sin2 α)

= 1 − (w − 1)(1 − w2/16).

This simplifies to the cubic equation p(w) = 0 where p(w) =
w3 − 5w2 − 16w +32. Since p(1) = 12 and p(2) = −16 there
is a unique root τ of the polynomial p(w) in the interval
[1, 2]. The approximate value of τ is 1.50515.

The angles α and β, computed from Equation (5) and Equa-
tion (4), satisfy α ≈ 22.103◦ and β ≈ 72.265◦ .

If we take the configuration illustrated in Figure ?? and
compose it with copies of itself and its horizontal reflection
in an alternating sequence we form the annotated spine of a
switchback (cf. Fig 9).
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β
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α

α

β

Figure 9: Critical switchback.

It is easy to confirm that for each successive pair of elbows in
the associated switchback there are kissing transitions (di-
rect transitions between successive turning circles) of three
different forms: wide-wide (from the circle at A to the circle

at A′), shallow-shallow (from the circle at B to the circle
at B′), and wide-shallow (from the circle at A to the circle
at B′). If the angles α or β are changed, or the width w is
reduced below τ , then at least one of these is impossible.

5. PROOF OF THEOREM 1(A)
Suppose w < τ . We outline the construction of a switchback
of width w that does not admit a unit-curvature traversal,
thereby establishing Theorem 1(a). As was the case for the
critical width switchback, it is easiest to describe the con-
struction in terms of the switchback spine.

Consider two successive spine corners and the earliest feasi-
ble wide and shallow turns associated with each corner (cf.
Fig. 10).

*******remark on initial state?******
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Figure 10: Tight transition configuration.

Since A′ and B′ denote the positions of earliest wide and
shallow turns around corner O′, it follows that max{|AB′|, |BB′|} =
2 and max{|AA′|, |BA′|} = 2. If we choose |AB′| = |BB′| =
|AA′| = 2, then the positions of A′,B′ and O′ are completely
determined relative to A,B and O. Furthermore, the (clock-
wise) angle B′O′A′ must be less than the (clockwise) angle
AOB.

Lemma 4. If w < τ and ∠AOB ≥ 180◦ then ∠B′O′A′ <
∠AOB.

Proof. It suffices to relax the constraint that |OO′| = w
in Figure 10 and insist instead that ∠B′O′A′ = ∠AOB (cf.
Figure 11).

A

B

B
′

A
′

O

O
′

1

w
1

w − 1

w − 1

2

2 2

Figure 11: Proof of Lemma 4.

Once again the positions of A′,B′ and O′ are completely
determined relative to A,B and O. By exploiting the sym-
metry of the configuration, it is easy to show that |OO′| > w



(in fact, this holds when ∠AOB = 180◦ and |OO′| increases
monotonically with ∠AOB, for ∠AOB > 180◦. It follows
that if we reduce the length of segment OO′ to w, the angle
∠B′O′A′ must decrease (since point B′ remains fixed and
point A′ must remain on the circle of radius 2 centered at
A).

A completely symmetric argument (essentially viewing Fig-
ure 10 upside down, and reversing the roles of A and A′ etc.)
shows that, assuming w < τ , ∠B′O′A′ < ∠AOB in the case
where ∠AOB < 180◦ as well.

Thus, if we start with any initial configuration of the turn
segments (describing the earliest feasible turns in an initial
elbow) and we chain together, in an alternating sequence,
many copies of the construction of Figure 10 and its vertical
reflection, adjusting the turn segments to reflect the devia-
tions in successive elbows, we produce an annotated spine
(and, implicitly, a switchback) with the property that the
forward angle at the final corner can be made arbitrarily
small.

It is easy to confirm that as long as the forward angle ∠AOB
is no smaller than some critical value Θ the point B′ is well
defined (i.e. |AB′| = |BB′| = 2 is satisfiable). However,
when ∠AOB = Θ it is easy to check that the point A′

does not exist. Thus, at some point in our construction a
wide turn is no longer feasible. If we break the sequence at
this point and add one last very wide elbow (with the spine
edge passing through the center of the last shallow turning
circle, for example) then a continuation from the last shallow
turn becomes impossible. Since neither a wide or shallow
turn is possible at this point, the resulting switchback is not
traversable.

6. PROOF OF THEOREM ??(B) FOR SWITCH-
BACKS

We first outline a proof of Theorem 1(b) for the special case
of switchbacks. (Of course, the bound is tight even in this
case by the result of the preceeding section.)

Let S be an arbitrary switchback of width w = τ and let
p1, p2, . . . , pn be its spine. The proof of the lower bound de-
pended critically on the property of the configuration defin-
ing τ that the angles α and γ, describing sustainable wide
and shallow turns, are equal. In effect the wide and shallow
turn circles are aligned with their associated corner. The
key idea of the proof is that for each corner in succession it
is always possible to find such an aligned pair of wide and
shallow turns such that each turn associated with corner pi

is reachable from at least one of the turns associated with
corner pi−1.

Lemma 5. Let Ai−1Bi−1 be an aligned turn configuration
at corner pi−1. Then there exists an aligned turn configura-
tion AiBi at corner pi.

Proof. By the switchback property |pi−1pi| = τ . There
are two configurations Ai

′Bi
′ and Ai

′′Bi
′′, at points pi

′ and

Ai−1

pi−1

Bi−1

β − γ

pi

π − β − γ

φ

β + γ

pi

β − γ + φ

pi

β − γ

Figure 12: Strategies for next feasible turns.
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Figure 13: Proof of the range property.

pi
′′ respectively, in Figure 12 that correspond to the defini-

tion of τ , see Fig. 7. They share the same point Bi
′ = Ai

′′

at the corner of the lune formed by two circles of radius 2
with centers Ai−1 and Bi−1. The angle ∠pi

′pi−1pi
′′ is equal

to 2γ and ∠pi−1pi
′Bi

′ = β + γ and ∠pi−1pi
′′Bi

′′ = β − γ.
If the point pi moves upward from pi

′′ and the points Ai
′′

and Bi
′′ remain on the lune keeping their distances from pi

then the angle Bi
′′piAi

′′ increases and becomes larger than
π. Similarly, if the point pi moves downward from pi

′ then
the angle Bi

′piAi
′ increases and becomes larger than π. It

remains to consider the locations of the point pi in between
pi

′ and pi
′′.

Note that the segment pi−1pi rotates by the angle 2γ when
pi moves from pi

′ to pi
′′. The segment Ai

′Bi
′ rotates to the

segment Ai
′′Bi

′′ by the angle 2γ with respect to the rotating
segment pi−1pi. So, in general, we define two points Ai and
Bi as endpoints of the continuously moving segment, see



Fig. 12. Let φ be the angle pipi−1pi
′. Then ∠pipi+1Bi =

β + γ − φ.

Let x = ∠Bi−1pi−1pi = β − γ + φ and y = ∠pi−1piBi −
∠Bi−1pi−1pi = 2γ −2φ. The squared distance |Ai−1Ai| can
be written as

|Ai−1Ai|2 =

(w sin x− (w−1) sin y)2 +((w−1)+w cos x+(w−1) cos y)2

= w2+2(w−1)2+2w(w−1)(− sin x sin y+cos x cos y+cos x)

+ 2(w − 1)2 cos y

= w2+2(w−1)2+2w(w−1)(cos(x+y)+cosx)+2(w−1)2 cos y.

Note that

cos(x+y)+cosx = 2 cos(x+y/2) cos(y/2) = 2 cos β cos(γ−φ).

Hence

|Ai−1Ai|2 = w2 + 2(w − 1)2

+ 4w(w − 1) cos β cos(γ − φ) + 2(w − 1)2 cos(2(γ − φ)).

The minimum value of |Ai−1Ai| is achieved when φ = 0 and
is equal to 2.

Let x and y be as above and let z = cos(γ−φ). The squared
distance |Bi−1Bi| can be written as a quadratic equation in
terms of z

|Bi−1Bi|2 = (w sin x + sin y)2 + (1 − w cos x + cos y)2

= w2 + 2 + 2w(sin x sin y − cos x cos y − cos x) + 2 cos y

= w2 + 2 − 2w(cos(x + y) + cos x) + 2 cos y

= w2 + 2 − 2w cos β cos(γ − φ) + 4 cos2(γ − φ) − 2

= 4z2 − 2(w cos β)z + w2.

Since φ ∈ [0, 2γ], the angle γ −φ varies from γ to −γ. Then
z ∈ [cos γ, 1]. Let z0 = w cos β/4 be the value of z that
minimizes |Bi−1Bi|2. We show that z > z0 for any φ[0, 2γ].
It means cos γ > (w cos β)/4. By Equation (4) it reduces to
4 cos γ > (2 − w) cos γ or 4 > 2 − w or w < 2.

The minimum of |Bi−1Bi|2 is achieved when φ ∈ {0, 2γ}.
Then |Bi−1Bi| = 2. Therefore |Bi−1Bi| ≥ 2 for any φ ∈
[0, 2γ].

7. UPPER BOUND FOR GENERAL COR-
RIDORS

In this section we outline the proof of Theorem 1(b) in its
full generality exploiting the similarities with the proof of
the special case (switchbacks) from the preceding section.

As in the case of switchbacks, we construct a unit-curvature
traversal of an arbitrary corridor C of width w ≥ τ incremen-
tally, using the shortest path p1, p2, . . . , pn (of unbounded
curvature) through C (the analogue of the switchback spine)
as a template. We show that at each of a subsequence of
points (called critical points) along this path we can define
aligned turning configurations with the property (as before)
that both turning circles associated with the ith critical
point can be reached from at least one of the turning circles
associated with the i − 1st critical point.

Two considerations make the general proof considerably more
involved:
(i) successive points on the shortest path may belong to the
same or opposite side of the corridor;
(ii) the length of individual segments on the shortest path
may be less than τ or greater than τ .

A point pi on the shortest path through C is critical if either
(i) i = 1, or (ii) pi−1 and pi lie on the opposite sides of the
corridor, or (iii) pi is the first vertex after a critical point
pj , j < i which lies outside at least one of the disks, shallow
turn or wide turn at pj , see Fig. 14.

The intuition is that non-critical vertices may not be suitable
as “checkpoints” at which we can establish a new configura-
tion with aligned turning circles. (Note that if pi lies in the
intersection of the shallow and wide turn disks of its criti-
cal predecessor pj then a shallow turn at pi, which passes
through pi, may not be possible.)

A transition is a path between turn circles of two consec-
utive critical points. A s − s transition corresponds to the
path between shallow turn circles of two consecutive critical
points. There are also s−w, w −w, and w −w transitions.
In order to represent two paths (reaching shallow and wide
turns) we use notation: s−s, w−w transition, s−sw transi-
tion (s−s and s−w paths), and w−sw transition (w−s and
w − w paths). A same side transition is defined by critical
points on the same side, otherwise the transition is called
an opposite side transition.

We show that a transition always exists. The transition
depends on the location of next critical point (and its side).
Our argument involves a large number of cases.

For same-side transitions we distinguish short (distance less
than dmax, defined to be the distance |OP | in Figure 15)
and long transitions.

A

B
p1

p2

pj

pi

pk

Figure 14: Critical points. pi is the first point of Π
outside the shaded lune.

Figure 17 (respectively, Figures 18 and 19) illustrates the
coverage of short s−s,w−w transitions (respectively, s−sw
transitions and w−sw transitions). (As the Figures suggest,
the details are somewhat involved.)

Sufficiently long transitions of either type (same or opposite
side) are achieved by essentially the same mechanism. A
transition is made from the initial configuration to the next
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Figure 16: Case with a barrier in shaded region.

edge on the shortest path. This edge is then followed until
the path reaches the neighbourhood of the target configura-
tion at which point a transition is made to each of the two
turn disks defining that configuration. Figure 16 illustrates
some of the subtlety needed for long transitions (especially
at the boundary between short and long transitions).

8. CONCLUSION
We have shown how to construct unit-curvature traversals
of corridors of width τ , the minimum width for which such
traversals are guaranteed to exist. (An efficient implemen-
tation is discussed in the full paper.) It remains to demon-
strate an efficient algorithm to determine if a unit-curvature
traversal exists for specific corridors of width less than τ .

Similar results (with a slightly smaller width threshold τ0 =
2
√

3 − 2 ≈ 1.46410 can be shown for the restricted case
of simple (non-self-intersecting) corridors. It also turns out
that our algorithms and analysis of the curvature-bounded
traversal problem for corridors have application to other nat-
ural problems that do not relate directly to motion plan-
ning. One of these, the curvature-bounded separation prob-
lem, takes as input two collections of polygonal objects (say
red objects and blue objects) together with a curve C that
divides the plane into two unbounded regions containing red
or blue objects exclusively, and asks for a curvature-bounded
homotope of C. As before the existence of such a separator
depends on the placement (and in particular the proximity)
of the objects. We are able to provide an exact specifica-
tion of the minimum object separation that guarantees the
existence of a curvature-bounded separator.

An additional application concerns the curvature-bounded
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Figure 17: Region Rss−ww.
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Figure 18: Region Rs−sw.

polyline approximation problem: given a polygonal chain A
and a bound δ > 0, find a curvature-bounded curve Ã such
that (i) there exists a continuous bijection λ from A to Ã

satisfying |λ(p) − p| ≤ δ, and (ii) Ã respects the corners of
A in the sense that if A turns right (respectively, left) at

corner p then p lies to the right (respectively, left) of Ã.
Once again the existence of such an approximation depends
on the shape of A and the parameter δ, but we are able to
specify a minimum value ∆ such that δ ≥ ∆ guarantees an
approximation regardless of the shape of A.
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