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Recently, deformable convolution networks have shown the superior performance in object detection due to its ability to adapt to
the geometric variations of object. These methods learn the offset fields under the supervision of localization and recognition.
Nevertheless, the spatial support of these networks may be inexact because the offsets are learned implicitly via extra convolutional
layer. In this work, we present curvature-driven deformable convolutional networks (C-DCNets) that adopt explicit geometric
property of the preceding feature maps to enhance the deformability of convolution operation and make the networks easier to
focus on pertinent image region. To be consistent with postprocessing technology of object detection, we multiply the class
prediction probability by the similarity of predicted boxes and ground truth boxes as the final class prediction probability and
substitute it into the binary cross entropy loss function. The obtained loss function correlates the bounding box regression and
classification. Experimental results on PASCAL VOC and COCO data set show that C-DCNets-based YOLOv4 with the proposed

loss function outperforms state-of-the-art algorithms.

1. Introduction

Attention mechanisms make a neural network pay more
attention to relevant parts of the image than irrelevant parts.
Therefore, they can model long-range dependencies. Spatial
transformer module [1] is a dynamic mechanism, which can
actively spatially transform an image (or a feature map) to
enhance the representations produced by CNNs. “Squeeze-
and-Excitation Networks” (SENet) [2] improve the network
representation by explicitly modeling the interdependencies
between the channels of network’s convolutional features.
“Convolutional Block Attention Module” (CBAM) [3] ap-
plies channel attention modules and spatial attention
modules sequentially so that each branch can learn “what to
focus” and “where to focus” on the channel axis and spatial
axis, respectively. “Selective Kernel Networks” (SKNets) [4]
focus on the adaptive receptive field (RF) size of neurons by
introducing the attention mechanisms. As a particular in-
stantiation of spatial attention mechanisms [5-8],

deformable convolutional networks can capture spatial
transformation since it is utilized to exploit query content
and relative position effectively. The current state-of-the-art
methods for modeling geometric transformations are De-
formable Convolutional Networks (DCNvl1) [6], Deform-
able ConvNets v2 [7], and Point Set Representation for
object detection (RepPoints) [8]. In DCNvI, there are two
modules that aid CNNs in modeling geometric variations.
One is deformable convolution, in which the grid sampling
positions of standard convolution are shifted by 2D offsets
learned via extra convolutional layer. The other is de-
formable Rolpooling, which adds 2D offsets to each bin
position in the regular bin partition of previous Rol pooling
[6]. The incorporation of these modules into a neural net-
work gives it the ability to adjust its feature representation to
object configuration, specifically by deforming network’s
sampling and pooling patterns to fit the object’s structure. In
DCNv2 [7], the learned offset fields and modulated am-
plitude control the sampling position together. However,
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their spatial support may exceed the region of interest be-
cause the offsets and modulation scalar are learned implicitly
by additional convolutional layer. In RepPoints [8], the point
distance loss and the object recognition loss are adopted to
learn the object localization, as deformable convolutions are
operated on an irregular-form grid points and its recogni-
tion feedback can guide training for the positioning of these
points. Compared with DCNv1 and DCNv2, RepPoints have
more constraints on classification module, but its offset fields
are still learned implicitly by convolutional layer. In order to
further improve the deformation ability of Deformable
Convolutional Networks, we introduce the intrinsic geo-
metric property of the input feature maps, and a curvature-
driven deformable convolutional networks (C-DCNets) are
proposed, which use the offset learning guided by curvature
fields of the preceding feature maps to focus the network on
pertinent image region. The proposed method produces
leading results on PASCAL VOC and COCO data set for
object detection.

The goal of object detection is to predict a set of
bounding boxes and category labels for each object of in-
terest. But there are many near-duplicate predictions be-
cause of the anchor sets and the heuristics that cast target
boxes to anchors. Traditional object detection pipelines
[9, 10] assign foreground/background scores of each class
for multiscale sliding windows based on the features cal-
culated in each window. And deep-learning based object
detectors employ region proposals [11, 12] generated by
convolutional neural networks to replace sliding windows.
For deep-learning based one-stage detectors (e.g., SSD [13],
YOLOv1 ~ YOLOv4 [14-17]), they also use nonunique
assignment rules between ground truth boxes and prediction
boxes even if there are no region proposals. Hence, almost all
state-of-the-art detectors [12-19] need postprocessing. Be-
sides, considering the imbalance of positive and negative
samples, feature imbalance, target imbalance, and image
scene imbalance in target detection, researchers [20, 21]
propose some preprocessing methods similar to sample
augmentation to obtain a balanced learning representation.
Nonmaximum suppression (NMS) [9-12] is a post-
processing part of the object detection framework to avoid
near-identical boxes. Its evaluation score is the product of
Intersection over Union (IoU) and the class prediction
probability, but these two loss functions are used in training
to deal with box regression and classification separately. To
be consistent with NMS, we multiply the class prediction
probability by IoU of predicted boxes and targets as the final
class prediction distribution and substitute it into the binary
cross entropy loss function. The obtained loss function can
achieve the best bipartite matching between the predicted
boxes and ground truth boxes. The main contributions of
this work are summarized as follows:

(1) Curvature-driven deformable convolutional net-
works (C-DCNets) are proposed, which make the
spatial support of the networks adapt much more to
saliency region

(2) A new loss function associated with bounding box
regression and classification is proposed, in which

Mobile Information Systems

the class prediction probability in the binary cross
entropy loss function integrates the similarity of
predicted boxes and targets

(3) We evaluate a C-DCNets based detection frame-
works with the proposed loss function on PASCAL
VOC and COCO data set, against a very competitive
Faster R-CNN [12], YOLOv4 [17], DETR [22], and
deformable DETR [23] baseline

The rest of this paper is organized as follows: In Section
2, the related works of attention mechanisms and post-
processing techniques are reviewed. In Section 3, a curva-
ture-driven deformable convolutional networks and a loss
function associated with bounding box regression and
classification are explained. In Section 4, the experimental
results are given. Finally, Section 5 concludes this paper.

2. Related Work

2.1. Attention Mechanisms. Attention mechanisms are first
studied in natural language processing (NLP) [24-28],
where encoder-decoder attention modules are developed to
facilitate neural machine translation. Certain key elements
are given priority according to a given query to calculate the
output for the query element. And then, self-attention
modules are utilized for modeling intrasentence relations.
When assigning the attention weight to a certain key for a
given query, we need to consider the content of the query
and the content of the key. The query content may be the
features of a word in a sentence, and a key may be another
word within the sentence. Besides, the relative position of the
query and key should be considered. Shortly afterwards,
attention mechanisms are becoming popular in computer
vision [29-32]. Some works have even applied the attention
mechanisms to SAR image [33-37]. In particular, [35] ap-
plies channel attention modules to ship classification in SAR
images. Reference [36] combines traditional hand-crafted
HOG features and CNN features to improve classification
accuracy. A polarization fusion network with geometric
feature embedding (PFGFE-Net) [37] is proposed for SAR
ship classification. References [30-32] successfully extend
relation networks and attention modules to the image do-
main, and a long-range object-object and pixel-pixel rela-
tions are modeled. Reference [30] establishes the
relationship between objects through interaction of their
appearance feature and geometry. In [31], the response of a
pixel is calculated as a weighted sum of all pixel features.
Reference [32] proposes a learnable region feature extractor,
and the previous region feature extraction modules are
unified from the perspective of the pixel-object relations. A
common problem with such methods is that the aggregation
weights and the aggregation operation need to be calculated
on the elements in a pairwise fashion, which brings a high
cost as the amount of calculation is quadratic to the number
of elements. Different with the huge amount of calculation
[6, 30-32], [7, 8] can be perceived as a special attention
mechanism where only a sparse set of elements have nonzero
aggregation weights. According to Zhu’s [5] distinction of
different attention factors based on how to obtain the
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attention weight for a key considering that a query is de-
termined, Deformable Convolutional Networks [6-8] utilize
an attention mechanism based on the query content and
relative position term; they operate more effectively and
efficiently on object detection and semantic segmentation.
The attended elements are specified by the learnable offsets
[6] and the computational overhead is just linear to the
number of elements. Modulation scalar is further introduced
in [7]. RepPoints [8] is an object detection method that
simultaneously models fine-grained localization informa-
tion and identifies local areas significant for object classi-
fication. RepPoints can learn a geometric representation of
objects. However, its deformability also depends only on
implicit learning through an additional convolutional layer,
and its spatial support may exceed the region of interest. To
strength the deformability of convolution operation under
irregular sampling grid, we propose curvature-driven de-
formable convolutional networks (C-DCNets) based on
explicit geometric property of the preceding feature maps,
where the curvature fields are utilized to guide the offsets
learning, and the proposed C-DCNets modules are learned
under the supervision of loss function that correlates the
position accuracy and the class prediction probability.

2.2. Postprocessing Technology of the Object Detector.
Most deep learning-based detectors use postprocessings
such as nonmaximal suppression (NMS) to avoid near-
duplicates boxes. The original NMS does not consider the
context information. Greedy NMS [38] performs from high
confidence score to low confidence score. Soft NMS [39]
solves the problem of confidence score degradation caused
by object occlusion. The DIoU NMS [40] adds the infor-
mation of the center point distance to the bounding box
screening process on the basis of Soft NMS. Learnable NMS
methods [41] and relation networks [30] explicitly model
relations between different prediction boxes with attention.
In Fast NMS [42], each instance can decide to keep or
discard in parallel, but it removes slightly too many box-
es.Some algorithms use a global inference schemes to model
interactions between all predicted bounding boxes. For
constant-size set prediction, [43] uses deep neural networks
to predict a set of class-agnostic bounding boxes along with a
single score for each box. Reference [44] uses recurrent
neural networks. End-to-end object detection with trans-
former (DETR) [22] is the first combination of bipartite
matching loss and transformers with parallel decoding. And
it uses Hungarian algorithm [45] to find a bipartite matching
between prediction boxes and ground truth boxes, which
enforces permutation-invariance, and guarantees that each
target box has a unique match. However, it suffers from
computational complexity and low performance of small
object detection. In [23], Deformable transformer (De-
formable DETR) is proposed for end-to-end object detec-
tion, whose attention modules only concern a small set of
key sampling points around a reference point. It combines
the advantage of the sparse spatial sampling of deformable
convolution and the relation modeling capability of trans-
formers. For each query, multiscale deformable attention

checks multiple sampling points from multiscale inputs. It
has superior performance in small object detection without
the help of FPN [46]. However, due to the lack of global
inference mode, deformable DETR still uses traditional
NMS to improve its performance. And the complexity of the
deformable transformer is very high when the number of
object queries is large. No matter which kind of NMS, its
evaluation score is the product of class prediction probability
and IoU.

3. Curvature-Driven Deformable
Convolutional Networks for End-To-End
Object Detection

3.1. Curvature-Driven Deformable Convolutional Networks.
Geometric priors [47-49] play an essential role in Bayesian
theory. Gradient priors and curvature flow are widely used
in image denoising, restoration, super resolution, and
other fields. Gradient reflects the first derivative of the
image, which is easy to be affected by noise, and curvature
describes the degree of curvature of an image levelset,
which reflects the change of the first derivative. Compared
with the gradient information, curvature fields reflect the
trend of sampling points towards the salient region of the
image. In this paper, we apply the curvature of the pre-
ceding feature maps to the learnable offset to obtain the
final offset; the larger the curvature, the larger the final
displacement.

3.2. Curvature-Driven Deformable Convolution. The defi-
nition of a curvature of an image levelset is as follows:
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Given a convolutional kernel of K sampling locations, let
wy and p, denote the weight and prespecified offset for the
k-th location, respectively. For example, K =9 and
pr € (-1,-1), (-1,0) ... (1,1) defines a 3 x 3 convolutional
kernel of dilation 1. Let X (p) and Y (p) denote the features at
location p from the input feature maps X and output feature
maps Y, respectively. The curvature-driven deformable
convolution can be expressed as
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Y(p) =) w-X(p+py+Ap; - Curvy), (4)
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where Ap, is the learnable offset for the k-th location and
Curvy, is the curvature vector at the k-th location. We use
bilinear interpolation to compute X(p + p, + Apy - Curvy):

X(p+ pi+ Api- Curv) = Y G(q, p+ py + Apy - Curvy)
q

- X(q),
(5)

where g enumerates all integral spatial locations in the
feature maps X, and G (g, p + pi + Apy - Curvy,) is the two-
dimension bilinear interpolation kernel:

G(q p+pr+ Apy- Curvy) =
9(@e (p+ P + Api - Curvy),)- (6)
Q(Qy (p+ pe+ Apy- Curvk)y)’

where G (a,b) = max (0,1 — |a — b|). The curvature fields are
generated from the input feature maps X and Ap, is ob-
tained via a convolution layer applied over the same feature
maps. The convolution kernel is of the same spatial reso-
lution and dilation as those of the current convolutional
layer. The output offset fields have the same spatial reso-
lution with the input feature maps, and the product of point-
by-point multiplication of offset fields and curvature fields
will be superimposed to the normal grid sampling positions
in the standard convolution. The channel dimension 2K
corresponds to K offsets {A p};_,. During training, both the
convolutional kernels and the offsets are learned simulta-
neously. To learn offsets, the gradients are backpropagated
through the bilinear operations equations (5) and (6). The
added convolution layer and fully connection layer for offset
learning are initialized with zero weights. Their learning
rates are set to 0.1 times of the learning rate for the existing
layers.

Figure 1 shows the 3 x 3 deformable convolution. Fig-
ure 2 shows the sampling locations (93 =729 red points in
each image) in three levels of 3 x 3 deformable filters for
activation units (green points). The receptive field and the
sampling locations in the standard convolution are fixed no
matter how many levels convolution are stacked. The
sampling locations in DCNv1 and DCNV2 (shown in the
middle) are adaptively adjusted according to the scale and
shape of the object. The normalized modulation amplitudes
in DCNV2 are obtained by additional convolutional layers
learning; therefore, the offsets and modulation scalar in
denv2 are entangled with each other. Compared with
DCNv1, there is no big difference in the change of sampling
positions because that the modulation scalar acts on the
whole convolution term. The sampling locations in our
C-DCNets are shown at the bottom. It can be seen from the
figure that the sampling locations in our C-DCNets are more
concentrated in the salient region of the image.

Mobile Information Systems

3.3. Curvature-Driven Deformable Rol Pooling. Given the
input feature map X and a Rol of size w x h and top-left
corner p,, Rol pooling divides the Rol into k x k (k is a free
parameter) bins and outputs a k x k feature map Y. For
(i, j) — th bin 0 <1, j <k, we have
X + P, .
Y = Z (p(;/l pl,]), (7)
pebin(i,j) L]

where n; ; is the number of pixels in the bin. In curvature-
driven  deformable ROI pooling, offsets {A Pij
Curv; ;|0 <i, j <k} are added to the spatial binning positions.

Z X(po + P+ Ap; - Curvi’j)'

pebin(ij) Mij

Y =

(8)

Equation (8) is implemented by bilinear interpolation
equations (5) and (6). Figure 3 shows the process of
obtaining offsets. First, Rol pooling equation (7) generates
the pooled feature maps. Second, curvature fields can be
obtained from the input feature maps, and a fully connection
layer generates the normalized offsets Ap; ;, which are then
transformed to the offsets Ap;; in (8) by element-wise
product with the ROI's width and height, as
Ap; ;= APp;;© (w,h). The effect of curvature-driven de-
formable Rol pooling is shown in Figure 4. The regular grid
structure in the standard Rol pooling will no longer be
maintained, and the deformation ability of the sampled grid
will be enhanced.

3.4. Loss Function Associated with Bounding Box Regression
and Classification. Traditional object detection pipelines
employ nonmaximum suppression (NMS) for selecting the
best prediction bounding box with the maximum score and
remove spurious neighboring detection boxes. First, it sorts all
detection boxes on the basis of their scores. The detection box
M with the maximum score is selected and all other detection
boxes with a significant overlap (using a predefined threshold)
with M are suppressed. The evaluation score of NMS is the
product of class prediction probability and IoU. But the
training loss function in object detection networks uses the loss
of position accuracy for bounding box regression and the loss
of classification for recognition separately, which is not con-
sistent with the evaluation score of NMS.A linear combination
of the [, loss and the generalized IoU loss [50],

Lbox(bij’l;) = giouLiou(bij’E) + EL1||bij - 5"1» 9)

is used in DETR, where ;,,§; € R are hyperparameters.
These two losses are normalized by the number of objects
inside the batch. The generalized IoU loss

Lig, (b;j,b) = [1 - (IoU — (B, 5/ By Ub))/Ib;;, bl)], where

IoU = Ib,-j ﬂbl/lb,-]- Ub|, | -| means area. The union and in-
tersection of box coordinates are used as shorthands for the
boxes themselves. The areas of unions or intersections are
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FiGure 1: Illustration of 3 x 3 curvature-driven deformable convolution.

FIGURE 2: The sampling locations (93 =729 red points in each
image) in three levels of 3 x 3 deformable filters for activation units
(green points). Top: original image; the second row: DCNvI; the
third row: DCNv2; bottom: C-DCNets.

computed by min/max of the linear functions of b;; and b,
which makes the loss sufficiently well behaved for stochastic
gradients. B (b;;, b) means the largest box containing b, ;and b
(the areas involving B are also computed based on min/max of
linear functions of the box coordinates). Different with DETR,
our problem is not N-to-N matching. Generally speaking, the
number of prediction bounding boxes is much larger than the
number of ground truth boxes. For YOLOv3/YOLOV4, the last
several  convolutional layers  predict 3-d  tensor
Sx 8% [3# (4+ 1+ C)] where the input image is divided into
Sx§ grid and C is the classes number.To correlate the
bounding box regression and classification, we multiply the
class prediction probability by IoU of predicted boxes and
ground truth boxes as the final class prediction distribution and
substitute it into the binary cross entropy loss function:

s . .
_ Z) ugbj lz: [IOU * ﬁflog(Plj) +<1 —IoU = P{)log(l - Plj)],

1= ceEclasses

(10)
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FiGure 3: Illustration of 3 x 3 curvature-driven deformable Rol pooling.

FIGURE 4: [llustration of offset parts in (curvature-driven) deformable Rol pooling in R-FCN [11] and 3 x 3 binsm(yellow) for an input Rol
(red). Top: original Rol; the second row: DCNv1; the third row: DCNv2; bottom: our C-DCNets.

where I]?.hj denotes if object appears in cell i and I]l.o.bj denotes  loss function in YOLOv4 with (10) and original L,,, (bij,E)
that the jth bounding box predictor in cell i is responsible for ~ with L, . (b;;,b); therefore the whole loss function in
that prediction. We replace the original binary cross entropy ~ YOLOV4 is

ij>
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is the loss of confidence predictions for boxes. The maxi-
mum matching between the prediction bounding boxes and
ground truth boxes can be obtained by the loss function
associated class prediction probability and position accuracy
because this loss function is directly representative of the
core evaluation metric. And DCNets modules in detection
network are also supervised by this loss function. Figure 5
shows the example results from COCO validation using
YOLOvV4 trained employing (left to right) original loss
function and the proposed loss function (11).

4. Experimental Results

4.1. Ablation Study. We use PASCAL VOC 2007 [51] and
COCO 2017 data set [52] and follow their original protocol.
For PASCAL VOC 2007, training is performed on the union
of VOC 2007 trainval and VOC 2012 trainval and evaluating
on VOC 2007 test set. For COCO, our models are trained
and evaluated on the 120k images of the COCO 2017 trainval
and 20k images of the COCO 2017 test-dev set. For eval-
uation, we use Apbbox (AP50 + AP55 +---+
AP90 + AP95)/10, where AP50 means mean average pre-
cision (mAP) with IoU threshold of 0.50 and AP95 means
mAPs with IoU threshold of 0.95 as performance mea-
surement. We do not deliberately distinguish between small
objects, middle objects, and large objects because Faster-
RCNN and YOLOvV3/YOLOV4 are superior to small object
detection. And the latest transformer based target detector
[53] shows excellent small target detection performance.
ImageNet [54] pretrained ResNet-50 [55] is utilized as the
backbone. For comparison with the same standard, we re-
port results of Faster-RCNN/YOLOv4 with the backbone
ResNet-50 even though YOLOv4 recommends CSPDar-
knet53 backbone. In training and inference, parameter
setting and training strategy mainly follow DCNv1 [6] and
DCNv2 (7] except the image resolution, iterations, and
learning rates. The images are resized to have a shorter side
of 600 pixels. A total of 30k and 50k iterations are performed
on PASCAL VOC and COCO, respectively. The learning
rates are 1073, DCNv1 [6] and DCNv2 [7] show that the
more regular 3 x 3 convolutions are replaced, the better the
final result is. According to DCNV2, employing deformable
layers in the conv3 ~ conv stages achieves the best tradeoff

Z [IoU * T’flog(P{) +<1 —IoU = P{)log(l - Pl])]

(11)

B ) ) . ) $* B . ) . )
-y uf;bj[agln(cg) +(1 - a;)ln(1 - C{)] oy XY ugoobJ[agln(cg) +(1 - @;)m@ - c,z)].

i=0 j=0

between accuracy and efficiency for object detection on
COCO. To construct different deformable convolutional
networks, we replace the layers of 3 x 3 convolution in the
conv3 ~ conv5 stage in YOLOv4 and Faster R-CNN with
deformable/modulated-deformable/curvature-driven-defor
mable conv layers. And aligned Rolpooling is replaced by
deformable/modulated-deformable/curvature-driven-defor
mable Rolpooling. In our experiments, the models are
trained with 2 Nvidia GTX 2080Ti GPUs.

The comparison results of DCNvl, DCNv2, and cur-
vature-driven deformation modeling on PASCAL VOC data
set are shown in Table 1, and the comparison results on
COCO data set are shown in Table 2. On PASCAL VOC, the
DCNV1 obtains an increase of 2.1% ~ 2.5% in AP* scores
compared to the baseline, and DCNv2 module obtains
further gains about 1.9% ~ 1.9% on the basis of DCNv1. On
COCO, the DCNvI obtains an AP"°* score of 40.1% for
Faster R-CNN and 42.3% for YOLOv4 when the layers of
3 x3 convolution in the conv3 ~ conv5 stage and the
aligned Rolpooling layer are replaced by their deformable
counterparts, which are higher than the baseline about
0.6% ~ 0.7%, respectively. DCNv2 obtains further gains
about 1.1% ~ 1.3% in AP**°* scores with a small increase in
parameters addition and FLOPs. The accuracies of DCNv1
and DCNv2 are lower than that reported in [6, 7]; the main
reason is that the model we trained is slightly worse.
Compared with the significant improvements of PASCAL
VOC by DCNv1 and DCNv2, the improvements on COCO
are not very significant. The reason is that COCO is larger
and more challenging, which makes it more difficult to learn
the offsets and modulation scalar implicitly. As shown in the
table, our C-DCNets get better results. On PASCAL VOC,
our curvature-driven deformation model vyields a
75.2% AP™ on Faster R-CNN and 76.5% AP"* for
YOLOvV4, which is 3.4%% and 3.5% higher than that of the
DCNv1 for Faster R-CNN and YOLOV4, respectively. On
COCO, our curvature-driven deformation model yields a
43.3% APY* on Faster R-CNN and 45.2% AP™* for
YOLOV4, which is 3.2% and 2.9% higher than that of the
DCNv1 for Faster R-CNN and YOLOV4, respectively. Note
that the parameter quantity of our C-DCNets is the same as
that of DCNv1l model, FLOPs are slightly increased with
DCNv1 model, and the performance is better than that of
DCNv2. The improvement of performance is mainly due to
the stronger deformation ability of our model.

Extensive ablation studies in object detection are per-
formed to validate the efficacy and efficiency of the com-
bination of the C-DCNets and the proposed loss function
(11). We apply YOLOv4 model with C-dconv@
c3 ~ ¢5+Cdpool and replace YOLOv4’s original loss func-
tion with the proposed loss function (11). For DETR, we
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F1GURE 5: Example results from COCO validation using YOLOv4 trained employing (left to right) original loss function and the proposed
loss function (11). Ground truth is shown by a solid line and predictions are represented with dashed lines.

TaBLE 1: Detection results on PASCAL VOC 2007 test set. The detectors are Faster R-CNN and YOLOv4.

) Faster R-CNN YOLOv4

Method Shorter side (600) b b

APpbbox AP, AP, APpbbox APy, AP,
Baseline Regular 69.7 78.6 62.5 70.5 79.8 63.4

. dconv@c3 ~ c5+
Deformation dpool(DCNv1) [6] 71.8 81.4 65.3 73.0 82.5 65.9
Modulated deformation mdconv@cs ~ c5+ 73.7 83.8 68.5 74.9 84.3 69.6
Mdpool [7]

Curvature-driven C-dconvec3 ~ c5+ 75.2 85.4 71.6 76.5 86.2 73.5
Deformation Cdpool

The input images are of shorts side 600 pixels. In the setting column, “(m)dconv” and “(m)dpool” stand for (modulated) deformable convolution and
(modulated) deformable Rolpooling, respectively. “C-dconv” and “C-dpool” stand for curvature-driven deformable convolution and curvature-driven
deformable Rolpooling, And dconv@c3 ~ ¢5 stands for applying deformable conv layers at stages conv3 ~ conv5, C-dconv@c3 ~ ¢5” stands for applying
curvature-driven deformable conv layers at stages conv3 ~ conv5. The bold value means the best value of each item.

TaBLE 2: Ablation study on DCNv1, DCNv2, and our C-DCNets.

Method Shorter side Faster R-CNN YOLOv4
etho
(600) APPYox AP, AP, #param FLOP AP"* AP, AP, #param FLOP

Baseline Regular 394 608 424 5130M 1001G 417 635 447 268M 1464G

. dconv@c3 ~ c5+
Deformation dpool(DONvD) [g] 201 628 436 5270M 1028G 423 649 461 285M  1505G
Modulated deformation md;}g;focls [;]CS Y 44 630 441 655M 1462G 434 652 476 363M 1782G
Curvature-driven C-deonv@c3 ~c5+ 455 o5 474 527M 1091G 452 670 498 285M 1654G
Deformation Cdpool

The input images are of shorts side 600 pixels. And all settings are consistent with Table 1. The bold value means the best value of each item.

choose ResNet-50-based DETR model with 3 encoder, 3
decoder layers, and width 256 because of the limitation of
our GPU configuration. DETR model is trained for 100
epochs on 2 Nvidia GTX 2080Ti GPUs, and batch size is set
as 4. Other parameters mainly follow DETR [22]. For de-
formable DETR, we just run one-stage mechanism with
single-scale inputs, the backbone is ResNet-50, and the
number of object queries is set as 100. Other hyperparameter
setting and training strategy mainly follow deformable
DETR [23]. Our DETR has a lower performance than
published results because the baseline DETR has 6 encoder,
6 decoder layers, and width 256 with long training schedule.

Deformable DETR achieves the best performance with
10 x less training epochs compared with DETR. Even
through deformable DETR greatly reduces the amount of
computation, its complexity is much great than YOLOv4,
YOLOv4 with C-DCNets, and YOLOv4 with C-DCNets and
the proposed loss function (11). Actually, deformable
transformer will degenerate to deformable convolution
when multiscale attention is not applied, and K=1. The
comparison results of different end-to-end detectors are
shown in Table 3. It can be seen from the table that YOLOv4
with C-DCNets and the proposed loss function achieves
better results with low complexity.
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TaBLE 3: Comparison results of different end-to-end detectors.

Model GFLOPS/FPS  # Params AP APy, AP,
YOLOv4 146.4/42 26.8 41.7 63.5 44.7
YOLOV4 with

C-dconv@c3 ~ c5+Cdpool 165.4/40 28.5 45.2 67.0 49.8
YOLOV4 with C-dconv@c3 ~ c¢5+Cdpool and the proposed loss function 168.5/40 28.5 46.0 69.2 51.3
DETR 80/19 37.4 38.8% 59.9 414
Deformable DETR 173/16 40 43.8% 65.2 48.5

The first row shows results YOLOv4 baseline. The second row shows YOLOv4 models with C-dconv@c3 ~ c5+Cdpool. The third row shows results for
YOLOvV4 models with C-dconv@c3 ~ c¢5+Cdpool and the proposed loss function (11). The fourth row shows results for DETR model and the last row shows
results for deformable DETR. Results are reported on the COCO 2017 validation set. The bold value means the best value of each item.

5. Conclusion

In this paper, curvature-driven deformable convolution
networks (C-DCNets) are proposed. The deformation ability
of convolution operation with irregular grid is further en-
hanced. The final offset fields are not only driven by the task
goal, but also guided by the curvature fields of the preceding
feature maps, which deform networks sampling and pooling
patterns to fit the object’s structure. To be consistent with the
evaluation score of postprocessing of detection network, a
new loss function associated with bounding box regression
and classification is proposed, in which the class prediction
probability in the binary cross entropy loss function inte-
grates the similarity of the predicted boxes and targets.
Experimental results on PASCAL VOC 2007 and COCO
2017 data sets show that C-DCNets based YOLOv4 with the
proposed loss function outperforms state-of-the-art detec-
tors without bells and whistles.
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