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In [12] J. Simons initiated a study of minimal cones from a more differential geometric
point of view than had previously been attempted. One of Simons’ main results was an
identity for the Laplacian of the second fundamental form of minimal hyper-surfaces.
Coupling this identity with an analysis of the first eigenvalue of a certain differential
operator, he was able to prove that no non-trivial n-dimensional stable minimal cones
exist in R"** for n<6. He was thus able to demonstrate that any boundary of least area
in R™?! 7 <6, must in fact be a hyperplane, because Fleming [7] had demonstrated that
the non-existence of non-trivial stable minimal cones in R* implies the result that the
only boundaries of least area in R" are the hyperplanes.

Simons was in fact able to deduce that, for n<7, the only entire solutions of the

minjmal surface equation
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are linear functions, because De Giorgi [6] had improved Fleming’s result in the non-
parametric case, by showing that the non-existence of non-trivial stable minimal cones in
R™ implies that the only non-parametric boundaries of least area in R™' are the hyper-
planes. The conjecture that the only entire solution of (*) are linear functions was known
as the Bernstein conjecture, after Bernstein [2]. Prior to Simons’ paper, it had been settled
in the case =2 by Bernstein [2], =3 by De Giorgi [6] and »=4 by Almgren [1]. Sub-
sequent to Simons’ paper the conjecture was finally completely settled; it was shown to
be false for n>7 by Bombieri, De Giorgi and Giusti [3].
In the case n=2 Heinz [8] considered solutions of (*) which were defined over a disc
{x€R2 |z —x,| <R}. He proved there is an absolute constant § such that
(4 +28)(@o) < BI B2, (**)

(*) This research was supported in part by the National Science Foundation Grant GP-35543,
AFOSR Contract F-44620-72-C-0031 and Sloan Foundation Grant.
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where x,, %, are principal curvatures of the graph of the solution u of (*). In the case when u
was an entire solution of (*) Heinz let B— oo in (**) and hence proved x, =x%,=0; i.e., (**)
implies Bernstein’s theorem in the case »=2. The result (**) and its proof have been re-
fined by various authors, and a parametric version was obtained by Osserman (See [11]).
However, the methods used were all strictly 2-dimensional.

In this paper we will use Simons’ identity for the Laplacian of the second fundamental
form for minimal hypersurfaces to obtain a number of new estimates for the curvatures of
stable minimal hypersurfaces M which are immersed in a Riemannian manifold N. Under
suitable restrictions on N, we will in fact obtain (see Theorem 3} a pointwise bound for the
principal curvatures of M, provided dim (M) <5. In the special case when N =R"*!, when
M is an area minimizing hypersurface with boundary outside the ball {zx€R"*': |z —z,| < R}
and when n <5, Theorem 3 gives the inequality (cf.{(**) above)

n

z 3{%(270) </3/122’

i=1

where 1, ..., %, are the principal curvatures of M and f is an absolute constant. When
OM =¢, we can let R—oco and deduce x;=0, i=1,'_..., n; i.e., we obtain a proof of Bern-
stein’s Theorem for » <5. A Bernstein-type result which is valid in a more general setting
is given in Theorem 2.

In the final section of the present paper we give a simplified proof of Simons’ result

that there are no non-trivial 6-dimensional stable minimal cones in R?.

§ 1. Notation and preliminary results

In this section, we set up our terminology and record Chern’s [4] computation o
Simons’ inequality for minimal hypersurfaces. (See inequality (1.20) below.) We then
demonstrate that this inequality gives a better lower bound (inequality (1.34)) for the
Laplacian of |A4| (4 =second fundamental form of M) than had previously been realized.

Let M be an oriented n-dimensional manifold immersed in an oriented (n+1)-dimen-
sional Riemannian manifold N. We choose a local field of orthonormal frames ey, ..., €,,4
in N such that, restricted to M, the vectors e, ..., e, are tangent to M. With respect to
this frame field of N, let w,, ..., @,,, be the field of dual frames. Then the structure equa-
tions of N are given by

n+l
dw,-‘—' - z w,,/\a),, w”+ w,,-=0 (1.1)
i=1

n+1

dwv = = kleg‘ A w"" + Qu, (1.2)
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where

1 n+1

Qy=3 > Ko N
2k

and
Kijkl +Kijlk =0.

We restrict these forms to M. Then
Wyyy =0.
Since 0 =dw,,; = —Zi_1 Wp4y.; A ;, by Cartan’s lemma we can write
Wy~ ;h”w,, by = hy;.

Here and in what follows, the range of summation is from 1 to ».

By using (1.1)-(1.4), we obtain
dw,- = ~Z(ui,/\w,-, w,,+w;,=0,
1
1
dowy,= ~ X wy A 0+ 3 2. Ry, A wy,
P k.l

where
By = Kijkl +hikhjl _hilhﬂc-

277

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

The form X, ; h,;0,0; and the scalar (1/n) X, h;;= H are called respectively the second

fundamental form and the mean curvature of the immersed manifold M. If H is identi-

cally zero, M is said to be minimal.
Now exterior differentiate (1.4) and define &, by

% Ry = by — % By — zk: Iy -
Then

P (b + Ky, ) 0y A @0, =0,

3
P —hiw; = Kniqms = — Knipipe

Next, we exterior differentiate (1.8) and define &, by
; b0, = Ahog, — 2 b0y — IZ iy oy — ; Ry 0.
Then
% (i — % %himRm,kl -3 % Pns Bngar) 0p N @0, =0,
and

thz - hmlc = % him Rmﬂcl + g hm1 B

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)
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Let us now denote the covariant derivative of K,,;, as a curvature tensor of N, by
K, si: m- Then restricting to M, we obtain

Kn+l. 77 Kn+l. ikl Kn+1. i, n+1,khll - Kn+1. tj.n+1hkl + % hlemUk’ (114)
where

ZI K, ., @0 =0dK, ik %Knﬂ.m]kwmi - Z”Krwl. imk @z~ % Kn+1.ijmwmk' (1.15)

The Laplacian Ak, of the second fundamental form %,; is defined by

Ahy=3 b (1.16)
From (1.10), we obtain
Ahil:%hikjk_%Knﬂ.iIkk:%hkUk_ gKrwl.iikk' (1.17)
Also, from (1.13) we obtain
P = Py + ghkamUk'i' %hmtRmkﬂc' (1.18)

Then if we replace 4 in (1.18) by hyyyy — Kpyq 1y (by (1.10)) and if we substitute the right
hand side of (1.18) into &, of (1.17), we obtain

Ahu = % (hkkil - Kn+l.klk; - Kn+1.i}kk) + % (g hkamtﬂc + % hmiRmkik)' (1.19)
From (1.7), (1.14) and (1.19) we then obtain
Ahy= %"’Idm - % Ko o1 ki — g Koo et % (= P K 1,17, n01 = Py Ky i o, 1)

+ m.Ek (Pos K it + Poons K e + 2P K i)

+ m.zk (P o Prge + Preon Prca By — P P Prsg == P B Prg) (1.20)
Now assuming M is minimal in N, so that X, k=0, we obtain
;jhu‘ Ahy= — i‘%khilKnH.kikil - t;khUKnn.Uk:k - ‘;khiz!KnH,k. ntlk

+ m'g.k(2hmjhi1Kmkik+ 2ot Py K pagic) — (sz ). (1.21)

Up to now, we have followed the exposition in [5]. In order to proceed, we assume
that the sectional curvatures of N are bounded between K, and K, and

|VK|2=i 1 kzl me,k,; n<eh (1.22)

For any point p € M, we can choose our frame {e,, ..., e,} at that point so that

hu=liau. (1.23)
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At such a point we have
miZj k(2h,,,, b K iz + 2P by K i) = %(21,2 Ky + 200 Kiie) = i%(l? 22k + A%) K s
= Z (Ai— 4 Ky > K, Z (A~ X)=2nK, ; - 2K2(Z,- A =2nK, ; A (1.24)

It then follows from (1.21), (1.22), (1.23) and (1.24) that

izjhf,Ahi,->—2ViZjh% > Kn—nEy(3 1) + 20 K3 b~ (3 1"

201/2h,+n(2K2 K,) (”hﬁ)—(g k) (1.25)

Now let
|4 =2 B (1.26)
Then (1.25) shows that, at all points where |4|+0,
2l4|Al4] +2(v|4))? A|A|2—2 Z h,k+2z hy Aby,
>2 3 My dold| + 2n(2K, ~ Kyl ~ 24" (1.27)

The crucial point now is to give a lower bound for X, ,, b} in terms of [V]A4][2.
First, by using (1.10) together with the inequality

2|Kn+1.m| < Kl _Kz’

we obtain
ng hiy > V;j Ry — ViZI (o — )t =V Z Ry — V;j K% vm
> szh_?u—%l/m (K, ~ K). (1.28)
Also,

K —|V]A| = [(Z B3 ( Z Rye)— 2> (g Pishipe)] (% L

k

=3 2 (byhg—hyhii)* B3, (1.29)
115tk Y]
and, using (1.23),
WEt (hyshoy — By hyp)? =4 k(hiihstlc—hsthuk )+ ( Zh t)(zhsuc)
= (Zhizi)gth TR Zhit(thc 2(32]» 1) ( Zhﬂc) (1.30)
z )
But by using (1.28) we obtain
nin—1

Zhi:ik/ zhm + Z%hm—22hm/ (th ~nln—l) (K — K,)? (1.31)
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for all £>0. Here we have used the fact that

VB VA s B C
VA>VB-VC implies A>1+£ .
for any non-negative 4, B, C and any ¢>0.
Then since
IVIA| P = 503 hoh)® (2 35) 7 = 2 (2 huhid (X R < 2hin= 2, B+ 2 bl
AN i ] i i 15k i
= Z R+ ; (’Zthlli)z Z B+ (n—1) Z hj=n Z R, (1.32)
we can conclude from (1.29), (1.30) and (1.31) that
nn—1
itk T ik / (13 A S 2
5 Mo IVIAI> SHh> 1 (M CD &, - Ky
n{in—1
> T VIl P2 - K (1.33)

Combining (1.27) and (1.33), we then have

_2
(1+&)n

|A|AJ4] + |4 > e 2

Ivl4]*- (K, — Ky)" — 20|4] + n(2K, — Ky)| 4. (1.34)
at all points where |4|=0. Actually since |A|A|A|=3A|4|2—|V|4]||* we can in fact
see that this inequality must be globally true in the distribution sense, even if | 4| vanishes
at various points.

The next important inequality is the stability inequality. Recall that a minimal hyper-
surface is called stable if and only if the second variation of the area functional is non-
negative for all compactly supported deformations. Of course it is true that area mini-
mizing hypersurfaces are stable in this sense. A direct computation (cf. [4]) shows that,

if M is stable, then
f AT G K it [P0
for any smooth function f with compact support in M. Therefore
| uai+ o lampr <o

that is

f (nK2+|A|2)f2<f V2. (1.35)
M M
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Replacing f by [4]'*%f (g>0) this gives
[ orcdaperes lasaps [ s orlapvial e slape
M M

+ 2+ 20 AP HvI4D- @D (1.36)
On the other hand if we multiply the inequality (1.34) by f2| 4|2? and integrate over M
we obtain (after integrating by parts in [, ]4|1+2(A|4])/?)

a +2 on fM |4 vl P < — (1 +29) f lArevlalpr

+ {n(K1f2K2)|A|2+[A|4+|V|A||2+2c]A|+n—(n2;1)
M

(Kl - Kz)z} |A,2qu

—2fM l4]**2f(v]A]) - (V). (1.37)

By adding (1.36), (1.37) and using the inequality
2| A|f(V] A]) (V) <egf| A V] A] P +et | 4|2 VS|,

we then have

(ﬁ" a+ore) [, laprvlalr

< [, e MAPYAPIT A (B =R AR 2+ 22
M

2¢

(KI_K2)2f2}' (1.38)

Inequality (1.38) will be of central importance in what follows,

8§ 2. Main results

Throughout this section we will assume M is a stable immersion, so that all the ine-
qualities of § 1 are valid.

First of all, we obtain an L, estimate for 4 by using (1.38) together with (1.36).

TuaworEeM 1. For each p€{4,4+ V%) and for each non-negative smooth function f with
compact support in M, we have

fM |4 <ﬂfM (VAP + (**+ K, ~ K, + max { — K,, 0})*"2f],

where § is a constant depending only on n and p.
19 -- 752904 Acta mathematica 134, Imprimé le 3 Octobre 1975
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Proof. Let ¢=(p—4)/2, so that ¢>0 and ¢*<2/n. By using (1.38) with ¢ chosen small
enough to ensure 2/[(1 + &)n] —(1 -+¢£)g2 >0, we have

[ Ml IvIAirr <, [ Q4P 10+ (= 3EAP =2+ P2 + (K~ K AP,

2.1)
where $, depends only on =, p.
On the other hand, (1.36) says
[ 1apr< [ @+ artlarivlal e+ 209 diorviah - 44P= v
M
+ [ (ap-sluse - nkapr). 2.2)
By the Cauchy inequality we have
(|41 4])-(|4]P2 V) <3| 4|2p| V] 4] B+ 3 A2 Vi3, 23)
and by using Young’s inequality we have the following for each £>0:
c|A|P-3<e|A|P+B5¢7", (2.4)

| 4172 Vf|2 = P AP VEEP) <elAPP+B(VIPIF), - (25)
max {(K, —3K,)| 4|72, ~nK,|4|?-?} <e|A4|?+B, (max {K,—3K,, —nK,, 0})"* (2.6)
(By—K2| A]74 <e]| 4|7 +B(K, — Kp)", (2.7)

where §,, ..., f; are determined by &, p.
Now let M, be defined by
M, ={z€M: {+0}.

Then using (2.1), (2.3)—(2.7) in the inequality (2.2) we obtain

(1~ Bee) f l4br<p, f VI @ (R K

+ (max { K, — 3K,, —nK,,0})"* %} (2.8)
where f; depends on %, p and 8, depends on &, n, p.
If we now take £=1/(28,) and replace f by f*'> the required inequality easily follows.
Suppose now that we have a constant By with 0 <R <oo and a family of subsets
{Bg} re . r, defined by
B, ={x€M: r(x) < R},

where r ig a given Lipschitz function on M with

|Vr[<1 a.e.on M.
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Suppose also that each By is compact and

M= UB;, B,

Re&(0, Ro)
We have in mind the particular cases where the By are either geodesic balls of radius
R in M or the intersection with M of geodesic balls of radius R in N. (We note that in the
former case, the immersion of M into N need not even be proper.)
Now let f=y r, where y is the Lipschitz function on R with y(t)=1 for t<6R,
(0€(0,1) a given constant) y(t) =0 for ¢> R and with y(t) decreasing linearly for t€(OR, R).
It is then not difficult to see that Theorem 1 implies

f |AlP<BR?|By|, RE(0,R,), 0€(0,1), pE(0.4+V8/n), (2.9)
Bor

where ,§=,B{(1 —0)-? +[R¥c**+ K, — K, +max{— K,, 0})]"?} (8 as in Lemma 1) and | B,|
is the n-dimensional volume of Bj.
Note that if c=0 and K, =K, >0, then (2.9) gives

B
AP < R?|By|.
L,,,,' P<a—gp” 1P
Thus if limp . R~?| Bg| =0 for some p€(0, 4+ V%), we must then have | 4| =0; that is,
we have the Bernstein type result stated in the following theorem.

THEOREM 2. Suppose K, =K,>0, ¢c=0 and limp .o, R~?| By| =0 for some p€(0,4+
V§/71,). Then M is totally geodesic.

Remarks. 1. Suppose N is complete and M is a boundary of least area in N in the
sense that M =8U =aU for some open U< N and Vol (aU N 4)< Vol (64 N U) for each
open A< N with compact closure. Then we can take r to be geodesic distance in N and
prove that

| Bz| <3 Vol (8g),

where Sj is the geodesic sphere of radius R in N.

In particular, if N is flat we deduce that | B| has order at most R" and hence there is
a p satisfying the conditions of Theorem 2 provided n <4+ V§/71,, that is, n<5. Thus we
deduce that any boundary of least area in N is totally geodesic if n<5. In particular, we
deduce Bernstein’s theorem for minimal graphs in R**! when n<35.

The dimensional restriction n <5 can be relaxed if the volume growth of N is small.
For example if N is the product of the (n —4)-dimensional torus and the 5-dimensional

Euclidean space, then all boundaries of least area in N are totally geodesic.
19* — 752904 Acta mathematica 134. Imprimé le 3 Octobre 1975
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In the case <5 we now show that one can actually obtain a pointwise bound for
| 4|, provided appropriate restrictions are imposed on N.
We here continue to use the family of subsets {Bg}z e, r,) introduced above.

TurorEM 3. Suppose N is simply connected, complete and has non-positive curvature
(K, <0). Then if n<5 and
R(? + | K,|)+ R Bg| <Py,
we have
sup |4| < BB~

Byp

for each G €(0,1), where §§ is a consiant depending only on 0, n and (.

Remarks. We note that in the special case when N =R"*!, if M is a boundary of least
area in {€R"*!: |2 —~2y| <R,} and if By is the intersection with M of the ball {z€R"**:
|z —w,| <R}, then (because R™"|Bg| <(n+1)w,,,/2—see Remark 1 after Theorem 2)

the inequality of the theorem implies
IAl(xO) <p/B, R<R,, (2.10)

where 8, is an absolute constant. (Note that §, can be computed explicitly.) If By=co
we can let R co in (2.10) and obtain another proof of Bernstein’s theorem for n <5.

It is an open question whether or not an inequality like (2.10) is true in the case » =6.
In the case n =2 an inequality of the form (2.10) was first established for non-parametric
surfaces in [8]. An analogous result, also in the case n =2, was established by Osserman
(see [11]). Osserman’s result was proved subject to the assumption that the Gauss map
omits a neighborhood of 82; no stability condition was assumed. However, since it is not
clear whether or not a 2-dimensional boundary of least area must have a Gauss inap which
omits a neighborhood of 82 (at least when we restrict the Gauss i:nap to By, R<R,), our

inequality seems to be of some interest even in the case n=2.

Proof of Theorem 3. By (1.27) it is not difficult to check that the function » = R-285+
| 42 satisfies an inequality of the form
Au+B(R2+|4|2)u>0, @.11)
where f, is a constant depending only on =.

We now need to recall a well known result from the theory of elliptic equations (see

for example [10], Theorem 5.3.1): Suppose ¢ is a non-negative function satisfying

Ap+ed >0
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on some ball K, of radius R in R*. Then for each ¢>0 and each §€(0,1)

sup ¢<cl{R‘"f ¢2dx}1l2, (2.12)

Kgp

where ¢, depends only on n, ¢, 6 and R*f ., |c|"**"2dx.

The same argument can be used to bound functions u satisfying (2.11) on M. The
only difficulty in modifying the proof from R" to the present manifold setting is that one
needs a suitable Sobolev inequality. Under the hypotheses stated in Theorem 3 such an
inequality has been proved in [9]. In fact it is proved in [9] that if N is simply connected,
complete and has non-positive curvature then

{f fnl(n—l)}("ﬁl)m<cf |Vf|
SC
M M

for any smooth f with compact support in M, where ¢, depends only on =.
Thus we can copy the R® proof of (2.12) and obtain

1/2
sup |AI2<63{R_"f (R2B%+ |A|2)2} R
Bor Br

where ¢, depends on R°f, (R-2+|A|%)"*®2 n, ¢ and 6. Choosing £>0 such that
n+&<4+V8/n (which can be done for n <5) and using (2.9), we then have Theorem 3.

§ 3. Minimal cones in R" !

We conclude this paper with a simplified proof of Simons’ theorem concerning the
non-existence of stable 6-dimensional minimal cones in R?.

We let € be an n-dimensional stable minimal cone in R**! with vertex 0. That is, C
is a union of rays emanating from 0 such that C — {0} is a n-dimensional C® stable minimal
submanifold of R"*1,

Using (1.27) and (1.29) together with the fact that ¢=K,=K,=0 (since N=R"*'in

this case), we have

[ A|AlA] -+ |4 = 4142 5 e

41,8,k
at all points of C—{0} for which | 4| +0, where
Oirsre = PyPege —Mpshu, 4,9, 7,8, k=1, ..., n.
Then clearly, since h;;=h, and h,; =hy, (by (1.10)), we then have
n
[lAlA| -4 >20412 3 3 e (3.1)

k=1jf%n,r%n,8+n
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If we now choose a frame e,, ..., ¢, at a given point « in such a way that h,; is diagonal and
such that e, is in the radial direction /||, then we have

hy=0,%%74, b, =0 and k{m=—[:c|—1h,,,i,;i=1, vy T
Then

Gnirsk = '—hrshn/k = lxl-lhrshjk'
Thus, since %,,=0 and k,;=0 for 474, (3.1) gives
|A|AL4]+| 4]+ >2] 4]#|a| 2| 4] = 2[z| 2] 4] 32)

As with inequality (1.34), this inequality holds globally in the distribution sense even if
| 4| vanishes at various points.
We will also need the following formula (which is a special case of the co-area formula)

for integration over C:

[r=[7[ sware@ar-["z] gmoav,@m o9
c 0 Jom, 0 2B,

Here ¢ is an arbitrary summable function on ' and By denotes the intersection with C
of the ball in R"! with radius R and center 0.

We now take f to be a C! function on C — {0} with compact support in ¢ —{0}. Then,
multiplying by f2 in (3.2) and integrating by parts, we have

2 fc |4l fPrt< fc (4] = v|a| P2 -2 fc l4|fvh) - (vi4)), (3.4)

where r is defined on C by
r(x) = |z|.

On the other hand if we use (1.36) with f| 4] in place of f (and with K,=0), we have
[Jare< [ tvaape= [waiee+ [lapiom2flapen-oian. e
Combining (3.4) and (3.5) we then have
[ Jappre< [ lapr. (3.6)

We now assert that (3.6) is valid even if f does not have compact support in C — {0}, pro-
vided that

f [APfr2< co. (3.7)
c

This is proved by applying (3.6) to the function y.f, where y, is any smooth function on
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C —{0} with
ve(®) =1 for e<|z| <&, |Vylz)| <2/|x| forall 2,

and y(x) =0 for |z|<e/2 or |z|>2¢7,

and then letting ¢—0.
We now show that, if » <6, (3.6) cannot possibly hold for all f satisfying (3.7) unless
| 4] =0. To prove this we take £€(0, }) and take

"
1--—2¢
f=7,1+5,’,1 2 ,

where 7, is defined by

ry =max {1, r}.

This choice of f is valid because, using (3.3) together with the fact that |A(z)| =|z[
| A(z/]z|)|, one can easily check that (3.7) holds. Then (3.6) gives

2
5 f |4yt < (1‘— 2+s) f A2 4 (14 o) f 4P, (33)
c 2 C{z:|z}>1y c{rifr| <1}
Now for »<6 we can choose ¢ such that (4n—2+¢)2<2 and (1 +¢)2<2. (3.3) then gives
f |A127.2er%—n—4e=0;
c

that is | 4| =0 as required.
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