SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

CURVATURE FORMS FOR 2-MANIFOLDS

N. R. WALLACH AND F. W. WARNER¹

The Gauss Bonnet formula is a well-known necessary condition for a 2-form to be the curvature form of a Riemannian metric on a 2-manifold. It appears to be not so well known that it is also sufficient. Precisely,

THEOREM. Let M be a compact, connected, orientable 2-dimensional manifold. Let $\overline{\Omega}$ be a 2-form on M. Then a necessary and sufficient condition for $\overline{\Omega}$ to be the curvature form of a Riemannian metric on Mis that

(1)
$$\int_{M} \bar{\Omega} = 2\pi \chi(M),$$

where $\chi(M)$ is the Euler characteristic of M.

PROOF. As we have remarked, the necessity of (1) is the Gauss Bonnet Theorem. For the sufficiency, let g be any Riemannian metric on M. We shall show that $\overline{\Omega}$ is in fact the curvature form of a Riemannian metric conformal to g (that is, of the form $e^{2\lambda}g$ for some C^{∞} function λ on M). Let Ω be the curvature form for g. Then

(2)
$$\int_{M} (\Omega - \bar{\Omega}) = 0.$$

Now (2) is precisely the statement that $\Omega - \overline{\Omega}$ is orthogonal to the harmonic 2-forms on M. Thus by the Hodge Theorem, $\Omega - \overline{\Omega}$ is in the image of the Laplacian. Since $\Omega - \overline{\Omega}$ is a 2-form on a 2-manifold, this means that there is a 2-form β such that

$$\Omega - \bar{\Omega} = d * d * \beta.$$

Let $\lambda = *\beta$. That $\overline{\Omega}$ is then the curvature form of the metric $\overline{g} = e^{2\lambda}g$

Received by the editors September 26, 1969.

AMS Subject Classifications. Primary 5372, 5345; Secondary 5325, 5732.

Key Words and Phrases. Gauss-Bonnet, Riemannian manifold, curvature forms, conformal metric, Laplacian, Hodge Theorem.

¹ Supported in part by NSF grant GP 13850.

follows from the classical formula for change of curvature under conformal change of metric. We may compute this simply as follows. Let $\{\omega_1, \omega_2\}$ be a local oriented orthonormal coframe field on M for the metric g. If we set $\bar{\omega}_i = e^{\lambda}\omega_i$, then $\{\bar{\omega}_1, \bar{\omega}_2\}$ is a local oriented orthonormal coframe field for \bar{g} . Now $\Omega = d\phi_{12}$ where the Riemannian connection form ϕ_{12} is uniquely determined by the requirements that $\phi_{12} = -\phi_{21}, d\omega_1 = -\phi_{12} \wedge \omega_2$, and $d\omega_2 = -\phi_{21} \wedge \omega_1$. We compute $\bar{\phi}_{12}$. Let $d\lambda = \lambda_1 \omega_1 + \lambda_2 \omega_2$. Then

$$d\tilde{\omega}_1 = e^{\lambda}(d\lambda \wedge \omega_1 - \phi_{12} \wedge \omega_2) = -(\lambda_2\omega_1 - \lambda_1\omega_2 + \phi_{12}) \wedge \tilde{\omega}_2.$$

Thus $\bar{\phi}_{12} = \lambda_2 \omega_1 - \lambda_1 \omega_2 + \phi_{12} = \phi_{12} - *d\lambda$. Thus the curvature of the metric $\bar{g} = e^{2\lambda}g$ is $d\bar{\phi}_{12} = d\phi_{12} - d*d\lambda = \Omega - d*d\lambda = \bar{\Omega}$.

RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903 UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19104